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FROM THE SCHAUDER FIXED-POINT THEOREM
TO THE APPLIED MULTIVALUED NIELSEN THEORY

Jan Andres1 — Lech Górniewicz2

Dedicated to the memory of Juliusz P. Schauder

Abstract. Starting from the famous Schauder fixed-point theorem, we

present some Lefschetz-like and Nielsen-like generalizations for certain ad-
missible (multivalued) self-maps on metric ANR-spaces. These fixed-point

principles are applied for obtaining the existence and multiplicity results

for boundary value problems.

1. Schauder’s lines

Everybody knows the second version (Satz II in [17]) of the celebrated Schau-
der fixed-point theorem. Its original form reads in German as follows.

Theorem 1 (J. Schauder). In einem “B”-Raume sei eine konvexe und abge-
schlossene Menge gegeben. Die stetige Funktionaloperation F (x) bilde H auf
sich sebst ab. Ferner sei die Menge F (H) ⊂ H kompakt. Dann ist ein Fixpunkt
vorhanden.

One can readily recognize three characteristic features in Theorem 1:

(i) a subset H of a Banach space is convex and closed,
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(ii) F : H → H, i.e. F is a self-map,
(iii) this self-map is continuous and compact, i.e. F (H) is compact.

The influence of this theorem to modern mathematical analysis, in particular
the fixed-point theory and its application to boundary value problems for differ-
ential equations, is enormous (see e.g. [9], [12], [18] and the references therein).
Keeping in mind condition (ii), our main goal will be to improve Theorem 1,

when replacing some conditions in (i) and (iii) by those being less restrictive.
Thus, we shall not deal here e.g. with the degree theories or, more generally, fixed-
point index theories. On the other hand, since in all our situations the Lefschetz
number can be always considered as a normalization property for fixed-point
indices of self-maps, our first interest is naturally related to a suitable variant of
the Lefschetz fixed-point theorem (see e.g. [8], [11] and the references therein). An
essential step in this direction has been done by A. Granas in [4] (cf. also [15]),
when dropping out condition (i).

Theorem 2 (A. Granas). Let F : X → X be a compact (continuous) self-
map on a (metric) ANR-space X. Then F is a Lefschetz mapping and the
nontrivial generalized Lefschetz number, Λ(F ) 6= 0, implies that F has a fixed-
point. If, in particular, X is an AR-space, then Λ(F ) = 1, by which the associated
fixed-point set is nonempty, i.e. Fix(F ) 6= ∅.

We would like to proceed furthermore in this way, but before it is necessary
to recall some notions like ANR-spaces, AR-spaces, Lefschetz maps, a Lefschetz
number, etc.

2. Lefschetz-type theorems

In the entire text, all topological spaces are metric and by a space we mean
a metric space.

Definition 1. A space Y is called an absolute retract (AR) or an absolute
neighbourhood retract (ANR) if, for any metrizable X and any closed A ⊂ X,
each continuous f : A→ Y is extendable over X or over an open neighbourhood
U of A in X, respectively.

According to the well-known theorem of K. Borsuk (cf. [12]), a metrizable
space is an AR or an ANR if and only if it is a retract of some normed space or
of an open subset of some normed space, respectively.
Thus, since any normed space is known to be homologically trivial (cf. [11]),

any AR-space must be homologically trivial as well.
The definition of a Lefschetz map is based on the notion of a Leray endo-

morphism (for its definition and more details, see e.g. [8], [11], [13]). Let H be
the Čech homology functor with compact carriers and coefficients in the field
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of rational numbers Q. For a metric space X, consider the graded vector space
H(X) = {Hq(X)}. For a continuous map f : X → Y, H(f) is the induced linear
map f∗ = {fq}, where fq : Hq(X)→ Hq(Y ).

Definition 2. A continuous mapping f : X → X is called Lefschetz map
(w.r.t. H) if f∗ : H(X) → H(X) is a Leray endomorphism. For such an f, we
define the (generalized) Lefschetz number Λ(f) of f by putting Λ(f) = Λ(f∗).

For more details and the most important properties of the Lefschetz number
(including the invariance under homotopy) — see again [8], [11]. Let us only
note that, in view of the homological triviality of an AR-space, any continuous
self-map on an AR is Lefschetz with Λ(f) = 1.
Now, we would like to pass directly to multivalued analysis, where the fun-

damental role is played by admissible maps in the sense of [11].

Definition 3. An upper-semi-continuous (u.s.c.) map with nonempty com-
pact values is called admissible if it possesses a multivalued selector which can
be composed by acyclic maps, i.e. u.s.c. maps with nonempty compact acyclic
values.

Let us recall that a set is acyclic (w.r.t. any continuous theory of cohomology)
if it is homologically same as a one point space.
It is known (see [11], [12]) that for any admissible map, say ϕ : X ( Z

(the symbol “(” means, as usual, X → 2Z\{∅}), we can associate a (selected)
pair (p, q) ⊂ ϕ of single-valued continuous maps p, q such that X p←− Y q−→Z,
provided

(i) p is a Vietoris map, i.e. it is proper and, for every x ∈ X, p−1(x) is
acyclic,

(ii) q(p−1(x)) ⊂ ϕ(x), for every x ∈ X.
Observe that if ϕ is compact and (p, q) ⊂ ϕ, then so is q.
So, an equivalent definition (to Definition 3) is the one, where we assume

the existence of a selected pair (p, q) of an u.s.c. map with nonempty compact
values.
In the sequel, all multivalued maps are assumed to be admissible. For them,

a multivalued version of Definition 2 can be given as follows.

Definition 4. An admissible map ϕ : X ( X is called a Lefschetz map if,
for each selected pair (p, q) ⊂ ϕ, the given linear map q∗p−1∗ : H(X)→ H(X) is
a Leray endomorphism. For such a ϕ, we define the (generalized) Lefschetz set
Λ(ϕ) of ϕ by putting Λ(ϕ) = {Λ(q∗p−1∗ ) | (p, q) ⊂ ϕ}. If, in particular, ϕ is an
acyclic Lefschetz map, then the set Λ(ϕ) becomes a singleton.

Since we would like to deal also with not necessarily compact admissible
maps (in order to avoid condition (iii) above), we need still another family of
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locally compact operators with only certain amount of compactness, so called
CAC-maps.
In the single-valued case, particular types of these maps have been studied

e.g. by F. E. Browder, R. Nussbaum, R. S. Palais, W. V. Petryshyn, etc.
Some of these particular cases (eventually compact maps ⊂ asymptotically

compact maps = core maps = Palais maps) are involved in the class of compact
attractions or, equivalently (cf. [16]) compact absorbing contractions (shortly,
CAC-maps). This last class has been defined and systematically investigated
also for multivalued maps in [10] (cf. [13], [16] and the references therein).
In a multivalued setting, analogies exist for admissible maps (cf. [10]) with

the same hierarchy (cf. [16]). As usual, an admissible map ϕ : X ( Y is called
locally compact if, for each x ∈ X, there is an open subset V of X such that
x ∈ V and the restriction ϕ|V of ϕ to V is compact.

Definition 5. An admissible locally compact map ϕ : X ( X is said to
be a compact absorbing contraction (CAC) if there exists an open subset U of X
such that ϕ(u) is a compact subset of U and X ⊂

⋃∞
i=0 ϕ

−i(U).

In [10], the following (multivalued) generalization of Theorem 2 has been
proved.

Theorem 3. Let ϕ : X ( X be a (multivalued) CAC-map on a (metric)
ANR-space X. Then ϕ is a Lefschetz mapping and the nontrivial (well defined)
generalized Lefschetz set, Λ(ϕ) 6= {0}, implies that ϕ has a fixed-point, i.e. there
exists x̂ ∈ ϕ(x̂). If, in particular, X is an AR-space, then Λ(ϕ) = {1}, by which
Fix(ϕ) 6= ∅.

Now, consider the boundary value problem

(1)

{
x′ ∈ F (t, x), for a.a. t ∈ J,
x ∈ S,

where J is a given (possibly infinite) real interval, F : J×Rn ( Rn is an (upper)
Carathéodory map and S is a subset of ACloc(J,Rn).
Let us recall that by a Carathéodory map F we understand that:

(i) the set of values of F is nonempty, compact and convex for all (t, x) ∈
J × Rn;

(ii) F (t, · ) is upper-semi-continuous (u.s.c.) for a.a. t ∈ J ;
(iii) F ( · , x) is measurable for all x ∈ Rn, i.e. for any open U ⊂ Rn and every
x ∈ Rn the set {t ∈ J | F ( · , x) ∩ U 6= ∅} is measurable.

By a solution x(t) of (1), we always mean a locally absolutely continuous
function x(t) ∈ ACloc(J,Rn) satisfying (1) for a.a. t ∈ J , i.e. the one in the sense
of Carathéodory.



From the Schauder Fixed-Point Theorem to ... 233

As an application of Theorem 3 to (1), we can give the following theorem
which can be deduced from the results in [4] (cf. Corollary 2.34) or in [3] (cf.
Theorem 3).

Theorem 4. Consider problem (1). Let G : J×Rn×Rn ( Rn be a Carathé-
odory map such that G(t, c, c) ⊂ F (t, c), for all (t, c) ∈ J × Rn. Assume that

(i) there exists a neighbourhood retract Q in C(J,Rn) such that the asso-
ciated linearized problem

(2)

{
x′ ∈ G(t, x, q(t)), for a.a. t ∈ J,
x ∈ S ∩Q,

has an Rδ-set of solutions T (q), for each q ∈ Q, and Λ(T ) 6= 0;
(ii) there exists a locally integrable function α : J → R such that

|G(t, x(t), q(t))| ≤ α(t), a.e. in J,

for any pair (q, x) ∈ ΓT (i.e. from the graph Γ of T );
(iii) T (Q) is bounded in C(J,Rn) and T (Q) ⊂ S.

Then problem (1) has a solution.

Let us recall that by an Rδ-set we mean the one homeomorphic to the inter-
section of a decreasing sequence of compact AR-spaces and by an Rδ-map the
u.s.c. one with Rδ-values (cf. [12]).

3. Nielsen-type theorems

In [10], it has been shown that, for any (multivalued) CAC-self-map, or
its associated selected pair (p, q), on an ANR-space X, the Lefschetz number
Λ(p, q) ∈ Z is well-defined and Λ(p, q) 6= 0 implies the existence of a coincidence
point z of the pair (p, q), i.e. p(z) = q(z).
As we have demonstrated in [5], a lower estimate of the number of coincidence

points for admissible maps is, in the frame of the multivalued Nielsen theory,
rather appropriate than the one of fixed-points. In fact, one can deal with fixed-
points only for Rδ-maps (see [1]), but no more with their compositions.
With this respect, the multivalued Nielsen theory (suitable for applications

below) concerns a lower estimate of coincidence points. Its central notion, the
Nielsen number N(p, q), can be defined only for certain classes of CAC-self-maps
on ANR-spaces X with suitable properties (see [5], [6]).
As in the single-valued case (cf. [2], [7], [8]), the definition of a related Nielsen

number can be done in two stages: at first, the set of coincidence points is split
into disjoint (Nielsen) classes and then the essential classes are defined (i.e. those
with nontrivial associated Lefschetz number). Since all of these seems to be
rather technical, we restrict ourselves here only to saying that in [6] we have
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introduced the H-Nielsen number NH(p, q) as the number of essential Nielsen
classes of (p, q) modulo a normal subgroup H of π1X.
Of course, NH(p, q) is a homotopy invariant w.r.t. an appropriate class of

homotopy. For more details — see [6] (cf. also [1], [2], [5]), where the following
statement has been proved.

Theorem 5. A (multivalued) CAC-self-map ϕ : X ( X on a (metric)
connected ANR-space has at least NH(ϕ) coincidence points, provided

(i) ϕ can be composed by an Rδ-mapping and a continuous single-valued
function,

(ii) X has a finitely generated abelian fundamental group or, if ϕ is just an
Rδ-mapping, X is compact.

If, in particular, ϕ : X → X is a single-valued (continuous) CAC-self-map on
a (metric) ANR-space, then it has at least N(ϕ) fixed-points.

In order to apply Theorem 5 to problem (1) as in [6], it is convenient to
employ the following definition.

Definition 6. We say that the mapping T : Q( U is retractible onto Q,
where U is an open subset of C(J,Rn) containing Q if there is a retraction
r : U → Q and p ∈ U\Q, r(p) = q implies that p 6∈ T (q).

Theorem 6. Consider problem (1). Let G : J×Rn×Rn ( Rn be a Carathé-
odory map such that G(t, c, c) ⊂ F (t, c), for all (t, c) ∈ J × Rn. Assume that
(i) there exists a closed connected subset Q of C(J,Rn) with a finitely
generated abelian fundamental group such that the associated linearized
problem

(3)

{
x′ ∈ G(t, x, q(t)), for a.a. t ∈ J,
x ∈ S,

has for every q ∈ Q, a (nonempty) Rδ-set of solutions T (q);
(ii) the operator T : Q ( U , related to problem (3), is retractible onto Q
with a retraction r (in the sense of Definition 6);

(iii) there exists a locally integrable function α : J → R such that

|G(t, x(t), q(t))| ≤ α(t), a.e. in J,

for any pair (q, x) ∈ ΓT (i.e. from the graph Γ of T );
(iv) T (Q) is bounded in C(J,Rn) and T (Q) ⊂ S.

Then problem (1) admits at least NH(r|T (Q) ◦ T ) solutions belonging to Q.

Now, consider still the boundary value problem

(4)

{
x′ +A(t)x ∈ F (t, x), for a.a. t ∈ I,
Lx = Θ, L : C(I,Rn)→ Rn,
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on a compact interval I, where A ∈ C(I,Rn×Rn) is a (single-valued) continuous
(n×n)-matrix and F : Rn ( Rn is an (upper-)Carathéodory product-measurable
mapping.
For this problem, Theorem 6 takes the following particular form (see [6]),

which will be suitable for a concrete example below.

Theorem 7. Consider problem (4) and the associated linear homogeneous
problem

(5)

{
x′ +A(t)x = 0,

Lx = 0.

Let

|F (t, x)| ≤ µ(t)(|x|+ 1)
hold for all (t, x) ∈ I×Rn, where µ : I → [0,∞) is a suitable Lebesgue-integrable
bounded function. Furthermore, let L : C(I,Rn)→ Rn be a linear operator such
that problem (5) has only the trivial solution on I. Then the original problem
(4) has NH(r|T (Q) ◦ T ) solutions, provided there exists a closed connected subset
Q of C(I,Rn) with a finitely generated abelian fundamental group such that

(i) T (Q) is bounded;
(ii) T ( · ) is retractible onto Q with a retraction r in the sense of Definition 6;
(iii) T (Q) ⊂ {x ∈ C(I,Rn) | Lx = Θ};

where T (q) denotes the set of (existing) solutions to the linearized problem

(6)

{
x′ +A(t)x ∈ F (t, q(t)), for a.a. t ∈ I,
Lx = Θ.

Remark 1. In the single-valued case (for differential equations), a unique
solvability of the associated linearized problems allows us to consider more gen-
eral problems than (4), even on noncompact intervals (cf. [2]).

4. Nontrivial example showing the power of former theorems

Consider the (upper) Carathéodory system

(7)

{
x′ + ax ∈ e(t, x, y)y1/m + g(t, x, y),
y′ + by ∈ f(t, x, y)x1/n + h(t, x, y),

where a, b are constants with ab > 0; m, n are odd integers with min(m,n) ≥ 3
and e(t, x, y) ≡ e(t+ ω, x, y), f(t, x, y) ≡ f(t+ ω, x, y), g(t, x, y) ≡ g(t+ ω, x, y),
h(t, x, y) ≡ h(t+ ω, x, y) are product-measurable.
Let suitable positive constants E0, F0, G, H exist such that

|e(t, x, y)| ≤ E0, |f(t, x, y)| ≤ F0, |g(t, x, y)| ≤ G, |h(t, x, y)| ≤ H,
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hold for a.a. t ∈ [0, ω] and all (x, y) ∈ R2. Furthermore, assume the existence of
positive constants e0, f0, δ1, δ2 such that

(8) 0 < e0 ≤ e(t, x, y)

for x ≥ −δ1, y ≥ δ2 and a.a. t as well as for x ≤ δ1, y ≤ −δ2 and a.a. t, jointly
with

(9) 0 < f0 ≤ f(t, x, y)

for x ≥ δ1, y ≤ δ2 and a.a. t as well as for x ≤ −δ1, y ≥ −δ2 and a.a. t.
Another possibility is that (8) holds for x ≤ δ1, y ≥ δ2 and a.a. t as well as

for x ≥ −δ1, y ≤ −δ2 and a.a. t and that (9) holds at the same time for x ≥ δ1,
y ≥ −δ2 and a.a. t as well as for x ≤ −δ1, y ≤ δ2 and a.a. t.

• We have shown in [1], [6] that, under the above assumptions, system
(7) admits (according to Theorem 7) at least two ω-periodic solutions,
provided δ1, δ2 satisfy

(10)


1
|a|
|e0δ1/m2 −G| ≥ δ1 >

(
H

f0

)n
,

1
|b|
|f0δ1/n1 −H| ≥ δ2 >

(
G

e0

)m
.

• If still

(11) sup ess
t∈[0,ω]

( sup
(x,y)∈B

|g(t, x, y)|) < G and sup ess
t∈[0,ω]

( sup
(x,y)∈B

|h(t, x, y)|) < H,

where B = {(x, y) ∈ R2 | (|x| = δ1∧|y| ≤ δ2)∨(|x| ≤ δ1∧|y| = δ2)}, then
we can prove, using the additivity, excision and existence properties of
an appropriate fixed-point index (cf. [1], [6] and the references therein),
the third ω-periodic solution of (7).

This result cannot be obtained in any other way. As a concrete example of (7)
satisfying (8)–(11), which demonstrates the necessity of applying the Nielsen
theory, we can give

(12)

{
x′ + x = e(x, y)y1/3 + g(t, x, y),

y′ + y = f(x, y)x1/5 + h(t, x, y),

where (δ1 = 10−4, δ2 = 10−2, R = 100)

e(x, y) =



10, for (x, y) ∈ R2\{(−R < x < −δ1 ∧ δ2 < y < R)
∨(δ1 < x < R ∧ −R < y < −δ2)},

0, for (x, y) ∈
{(
−R− δ1
2
,
R+ δ2
2

)
,

(
R+ δ1
2
,
−R− δ2
2

)}
,

any continuous extension with |e(x, y)| ≤ 10, otherwise,
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f(x, y) =



10, for (x, y) ∈ R2\{(δ1 < x < R ∧ δ2 < y < R)
∨(−R < x < −δ1 ∧ −R < y < −δ2)},

0, for (x, y) ∈
{(
R+ δ1
2
,
R+ δ2
2

)
,

(
−R− δ1
2
,
−R− δ2
2

)}
,

any continuous extension with |f(x, y)| ≤ 10, otherwise,

g(t, x, y) ≡ g(t+ ω, x, y), G ≤ 101/3 − 10−4( .= 2.154),
sup ess
t∈[0,ω]

( sup
(x,y)∈B

|g(t, x, y)|) < 101/3 − 10−4,

h(t, x, y) ≡ h(t+ ω, x, y), H ≤ 101/5 − 10−2( .= 1.574),
sup ess
t∈[0,ω]

( sup
(x,y)∈B

|h(t, x, y)|) < 101/5 − 10−2,

B = {(x, y) ∈ R2|(|x| = δ1 ∧ |y| ≤ δ2) ∨ (|x| ≤ δ1 ∧ |y| = δ2)},

and

g(0, x, y) = 101/3 − 10−4 for (x, y) ∈ P,
h(0, x, y) = 101/5 − 10−2 for (x, y) ∈ P,

P =
{
(x, y) ∈ R2

∣∣∣∣ (|x| = δ1 ∧ |y| = R+ δ22
)
∨
(
|x| = R+ δ1

2
∧ |y| = δ2

)}
.

Remark 2. Applying Theorem 4, only one ω-periodic solution of system (7)
can be guaranteed, under the same assumptions, by means of the nontrivial
Lefschetz number. Using the additivity, excision and existence properties of a
fixed-point index, one can still prove the second ω-periodic solution of (7).

Remark 3. On the basis of the Schauder fixed-point theorem (Theorem 1)
one can get (in the single-valued case) only one ω-periodic solution of system (7).

Remark 4. If, additionally, conditions (8), (9) hold for a.a. t ∈ [0, ω] and all
(x, y) ∈ R2, and if the sharp inequalities take place in (10), then at least three
ω-periodic solutions of (7) can be also deduced by means of the fixed-point index
technique or (in the single-valued case) at least two ω-periodic solutions, when
applying the Schauder fixed-point theorem.
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779 00 Olomouc–Hejč́ın, CZECH REPUBLIC

E-mail address: andres@risc.upol.cz

Lech Górniewicz

Faculty of Mathematics and Computer Sciences
Nicholas Copernicus University

Chopina 12/18
87–100 Toruń, POLAND
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