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FIXED POINT INDICES OF EQUIVARIANT MAPS
OF CERTAIN JIANG SPACES

Pedro L. Fagundes — Daciberg L. Gonçalves

Abstract. Given X a Jiang space we know that all Nielsen classes have
the same index. Now let us consider X a G-space where G is a finite

group which acts freely on X. In [7], we do have the notion of X to
be an equivariant Jiang space and under this condition it is true that all

equivariant Nielsen classes have the same index. We study the question

if the weaker condition of X being just a Jiang space is sufficient for all
equivariant Nielsen classes to have the same index. We show a family of

spaces where all equivariant Nielsen classes have the same index. In many

cases the spaces of such a family are not equivariant Jiang spaces. Finally,
we also show an example of one Jiang space together with equivariant maps

where the equivariant Nielsen classes have different indices.

1. Introduction

An equivariant fixed point Nielsen theory has been developed in [7] and very
little has been done in terms of computing the equivariant Nielsen numbers.
Besides the calculations done in [7], J. Guo in [3] was able to use a weaker
hypothesis than the G-Jiang condition to obtain Jiang type results. But in this
case he could only show that the equivariant Nielsen coincidence classes have
index of the same sign. This work will do some computations of this sort. We
deal primarily with the simple case where the spaces involved are Jiang spaces.
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We also consider the larger family of spaces which have the property that all
Reidemeister classes have the same index, which we define by saying that X has
the J-property.

A G-Jiang space has been defined in [7]. Certainly if a space is G-Jiang space,
then all G-equivariant Nielsen classes have the same index. For the torus with
the Z2-action which gives as quotient the Klein bottle, it is not difficult to see
that it is not a Z2-Jiang space. Nevertheless one can show that all Z2-equivariant
Nielsen classes have the same index. This has motivated us to discover a family of
spaces where allG-equivariant Nielsen classes have the same index. We denote by
JN the family of all spaces X which satisfies the J-property and its fundamental
group is a finitely generated torsion free nilpotent group (so isomorphic to the
fundamental group of a compact nilmanifold). In fact many of such spaces are
not G-Jiang spaces, as one can see by Proposition 3.2. Then we prove:

Theorem 3.4. Let X ∈ JN and G be a finite group which acts freely on X.
If the G-spaces X have the property that the fundamental group of the orbit space
is torsion free, then all equivariant Nielsen classes of a given equivariant map
f : X → X have the same index. Furthermore the index of each such class is
|G| times the index of one of the Nielsen classes of f .

On the other hand, we also show an example of a Jiang space and equivariant
maps fk, where the equivariant Nielsen classes don’t have the same index. Let
Z2 act on S1×S2 by t(x, y) = (x,−y) and fk(x, y) = (xk, y). More precisely, we
prove:

Theorem 4.4. The space S1 × S2 is a Jiang space and the map fk has
|k − 1| essential fixed point classes, i.e. N(fk) = |k − 1| and each class has
index 2. If k is odd, the map fk has |k − 1|/2 + 1 equivariant fixed point classes
where |k − 1|/2− 1 have index 4 and the two remaining ones have index 2. If k
is even, the map fk has |k|/2 equivariant fixed point classes where one class has
index 2 and the remaining ones have index 4.

This note is divided into three sections. In Section 2 we define the isotropy
group of a Nielsen class and show how to compute its cardinality by algebraic
means. This is Proposition 2.2. In Section 3 we define the family JN of spaces
X which satisfy the J-property and whose fundamental group is a finitely ge-
nerated torsion free nilpotent group. Then, we prove Theorem 3.4. Finally,
in Section 4, we construct some spaces with free actions which realize some
algebraic data. This is Proposition 4.3. Then we construct a very simple Z2-
space and functions which have the property that the equivariant Nielsen classes
have different indices. This is Theorem 4.4. In the end we make a few remarks
about the relations between families of spaces related to the Jiang condition.
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2. The isotropy subgroup of a Nielsen class

In [7, Section 2], a notion of equivariant Nielsen class is defined for a G-map
f : X → X where G is a compact Lie Group. When we look at the particular case
where G is finite and acts freely on X, we have by means of [7, Proposition 2.4]
that x, y ∈ Fix(f) belong to the same equivariant Nielsen class if and only if

(a) y = σx for some σ ∈ G, or
(b) there exists a path α : I → X such that α(0) = x, α(1) = σ′(y) for

some σ′ ∈ G where α ≈ f ◦ α (rel endpoints).

Let X be a space where a finite group G acts freely. Denote by X the orbit
space and p : X → X the projection. In order to study the indices of the
equivariant Nielsen classes of f we define below a certain subgroup associated
with a (non-equivariant) Nielsen class of f .

Definition 2.1. Given f : X → X an equivariant map and x0 ∈ Fix(f), let
Gf,x0 = {α ∈ G | x0 and αx0 are Nielsen related}.

One can easily see that Gf,x0 is a subgroup of G. Also if two points x0, x1

are Nielsen related then Gf,x0 = Gf,x1 . So, from now on we will write Gf,F ,
where F denotes a Nielsen class, for the subgroup Gf,x where x belongs to F .

Now we will compute the cardinality of Gf,F in terms of the fundamental
group π1(X) and the induced homomorphism f# : π1(X,x0) → π1(X,x0), where
f : X → X is the map induced by f on the orbit space.

Proposition 2.2. Let F ⊂ Fix(f) be a Nielsen class and θ ∈ π1(X,x0)
be a representative of the Reidemeister class which corresponds to F . Then the
cardinality of Gf,F , also denoted by ϕ(θ), is:

|Gf,F | = #
Cθ(f)

Cθ(f) ∩ Γ1

,

where

Cθ(f) = {α ∈ π1(X,x0) | αθf#(α)−1 = θ},

and

Γ1 = p#(π1(X,x0)) ⊂ π1(X,x0).

Proof. Let x ∈ F and g ∈ Gf,F . We have that x ∼ gx (Nielsen related).
Let λ be a path from x to gx such that λ ∼ f(λ), rel {x, gx}. If γ is a path from
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x0 to x = p(x), we define a loop based in x0 by α = γ ∗ p(λ) ∗ γ−1. Then we
have:

f#(α) = f#(γ) ∗ f#(p(λ)) ∗ f#(γ)−1 = f#(γ) ∗ p(f(λ)) ∗ f#(γ)−1

= f#(γ).γ−1.γ.p(λ).γ−1.γf#(γ−1) = θ−1αθ,

or θ = αθf#(α)−1.
By taking the class of α in the quotient Cθ(f)/Cθ(f) ∩ Γ1, we define a map

between Gf,F and Cθ(f)/Cθ(f) ∩ Γ1. It is a routine argument to show that this
map is independent of the choice of the path λ and is a bijection. So the equality
follows. �

Corollary 2.3. If π1(X) is abelian then Cθ is independent of θ and con-
sequently Gf,F is independent of the Nielsen class.

Corollary 2.4. If X is a Jiang space and π1(X) is abelian, then all equi-
variant Nielsen classes have the same index.

Corollary 2.5. Under the hypotheses of either Corollary 2.3 or 2.4 we
have that the equivariant Nielsen class which contains a Nielsen class F has
index [G : Gf,F ].i(F ).

3. Certains spaces with the J-property

We will start with the definition of the J-property.

Definition 3.1. A space X is said to have the J-property, if for every map
f : X → X all Reidemeister classes have the same index.

Observe that if X satisfies the J-property and the number of Reidemeister
classes is infinite, then all Nielsen classes have index zero.

In many cases X satisfies the J-property but it is not a G-Jiang space.

Proposition 3.2. Let X be a compact nilmanifold where G acts freely. If
the extension 1 → π1(X) → π1(X) → G → 1 is not central, then X is not a
G-Jiang space.

Proof. Let JG(id) ⊂ π1(X,x0) be the set of loops which are obtained by
an equivariant self-homotopy of the identity map on X. Every such homotopy
factors through the quotient space. So the projection provides a natural map
p# : JG(idX) → J(idX) which is injective. But since X is a K(π, 1) space, we
know that J(idX) = center(π1(X)) (see [B, Corollary 12, p. 103]). But the center
of π1(X) cannot contain π1(X) since the extension is not central by hypothesis.
So JG(id) is different from π1(X,x0) and the result follows. �

Remarks. (a) This, in particular, shows that the Torus, with the action
which gives as orbit space the Klein bottle, is not a G-Jiang space.
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(b) The family of compact Nilmanifolds satisfies the J-property. For a larger
family see [2].

Proposition 3.3. Let f : X → X be an equivariant map and θ ∈ π1(X).
We have that Cθ(f) ⊂ Cθ(f) and Cθ(f) is a normal subgroup of Cθ(f). Fur-
thermore the quotient group is a torsion group.

Proof. By abuse of notation let us denote by θ an element of π1(X) and
the corresponding element of π1(X) under the natural inclusion. It is clear that
Cθ(f) ⊂ Cθ(f). Next we show that Cθ(f) is a normal subgroup of Cθ(f). For,
let α and β satisfying αθf(α−1) = θ and βθf(β−1) = θ, respectively. So we have
αβα−1θf(α)f(β−1)f(α−1) = αβα−1αθf(β−1)θ−1α−1θ = αβθθ−1β−1α−1θ = θ.
Therefore the subgroup is normal.

Since Cθ(f) ∩ π1(X) = Cθ(f), the quotient group injects in the finite group
G and the last part follows. �

Now we come to the main theorem of this section. We define, by JN ,
the family of all spaces X which satisfies the J-property and its fundamental
group is a finitely generated torsion free nilpotent group (so isomorphic to the
fundamental group of a compact nilmanifold).

Theorem 3.4. Let X ∈ JN and G be a finite group which acts freely on X.
If the G-spaces X have the property that the fundamental group of the orbit space
is torsion free, then all equivariant Nielsen classes of a given equivariant map
f : X → X have the same index. Furthermore the index of each such class is
|G| times the index of one of the Nielsen classes of f .

Proof. Let θ ∈ π1(X) and f : X → X. We can assume that N(f) 6= 0, o-
therwise the result is clear. Since f satisfies the J-property, we have #R(f) <∞.
Since π1(X) is a finitely generated torsion free nilpotent group, by Theorem 2.3
of [2] we get #R(f) <∞ implies that Fix(f#) = 1. By Proposition 2.1 of [2] we
have that Cθ(f) = 1. By Proposition 3.3 above follows that Cθ(f) is a torsion
group and, at the same time, a subgroup of π1(X). Since π1(X) is torsion free
group, it follows that Cθ(f) = 1. From Proposition 2.2 of Section 2 and the fact
that the space X satisfies the J-property, the result follows. �

Remark. The hypothesis that the fundamental group of the orbit space
is torsion free is equivalent to saying that it is isomorphic to the fundamental
group of an infranilmanifold (for details about infranilmanifolds, in particular
for properties of its fundamental group, see [5])

4. Examples

Let G be a finite group which acts on an abelian group A. We consider the
very simple algebraic situation where A ≈ Z, G ≈ Z2 and the action w : Z2 →
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Aut(Z) is the only non-trivial one. Let H = Z oZ2, be the semi-direct product
of Z by Z2 with respect to the action w above, and k an integer different from 1.
Denote by 〈k〉 the integer k − 2 if k > 1 and |k| if k ≤ 0

Proposition 4.1. Let ψ : Z o Z2 → Z o Z2 be the homomorphism defined
by ψ(n, 1) = (kn, 1) and ψ(0, t) = (0, t) where Z C ZoZ2 is a normal subgroup.
Let θ ∈ Z and 0 ≤ θ ≤ 〈k〉. Then the cardinality of Cθ(ψ)/Cθ(ψ) ∩H is 2, if k
is odd and θ is either 0 or |k − 1|/2, or if k is even and θ is 0. Otherwise the
cardinality is 1.

Proof. It is easy to see that ψ defines a homomorphism. For every θ ∈ Z
we have: Cθ(ψ) = {(m, ξ) | (m, ξ)(θ, 1)(km, ξ)−1 = (θ, 1)}. So

(m, 1)(θ, 1)(−km, 1) = (kθ, 1), ξ = 1,

(m, t)(θ, 1)(km, t) = (θ, 1), ξ = t.

The solution of the first equation is always m = 0. Recall that k 6= 1. So let us
solve the second equation:

(m− θ − km, 1) = (θ, 1) ⇔ m− θ − km = −θ + (1− k)m = θ ⇔ (1− k)m = 2θ.

Now, by a simple divisibility argument, the last equation has a unique solution
if and only if θ is as stated in the proposition. So the result follows. �

Corollary 4.2. If either k ≥ 3 or k ≤ −2 then there are two Reidemeister
classes θ1, θ2 such that ϕ(θ1) = 1 and ϕ(θ2) = 2.

Now let w : G→ Aut(A) be a given action of G on the abelian group A and
X a G-space such that π1(X,x0) = A, where x0 ∈ X is fixed by G. Suppose
that the induced action of G on π1(X,x0) is w. Let Y be a simply connected
space such that G acts freely.

Proposition 4.3. The action of G on X × Y given by g(x, y) = (gx, gy)
where G acts on X and Y as above is free. The quotient space W has π1(W ) =
AoG, i.e., the semi-direct product of A by G with respect to the action w.

Proof. Since G acts freely on X × Y , we have the covering space

X × Y
p−→ W,

and consequently the short exact sequence

0 → π1(X) → π1(W ) → G→ 1 or 0 → A→ π1(W ) → G→ 1.

The map Y → (X × Y ) defined by y 7→ (x0, y) is certainly a G-map. Let Y
be the quotient of Y by G. So we have the induced map Y →W which gives us
a splitting G→ π1(W ) of the short exact sequence. It remains to show that the
action of G on A is the one given by w. Let α : I → X be a loop which represents



Index of Equivariant Classes 157

an element of π1(X). So (α, c), where c is the constant path c(t) = y0 ∈ Y , t ∈ I,
represents the image of α in π1(X × Y ). For g ∈ G, consider a path λ in Y such
that λ(0) = y0 and λ(1) = g.y0. So (p(λ), c) represents an element of π1(W )
which projects on g under the map π1(W ) → G. We must compute gp(α)g−1.
This loop in W lifts to the loop (x0, λ) ∗ (g(α), g.y0) ∗ (x0, λ

−1). This last loop
is homotopic to the loop (g(α), c) and the result follows. �

Now consider the space X = S1, Y = S2 and Z2-actions on S1 and S2

respectively as follows: t(x) = x is the conjugation of the complex number for
x ∈ S1 and t(y) = −y, y ∈ S2. Let fk : S1 × S2 → S1 × S2 be the map
(x, y) 7→ (xk, y) where k is any integer greater than 3 or less than -2. The map
fk is certainly a Z2-equivariant map for any value of k.

Theorem 4.4. The space S1×S2 is a Jiang space and the map fk has |k−1|
essential fixed point classes, i.e. N(fk) = |k − 1|, and each class has index 2.
If k is odd, the map fk has |k − 1|/2 + 1 equivariant fixed point classes where
|k − 1|/2−1 have index 4 and the two remaining ones have index 2. If k is even,
the map fk has |k|/2 equivariant fixed point classes where one class has index 2
and the remaining ones have index 4.

Proof. Let us compute Fix(fk).

fk(x, y) = (x, y) ⇔ xk = x⇔


x = 1, ξ, ξ2, . . . , ξk−2, if k ≥ 2,

or

x = 1, ξ, ξ2, . . . , ξ|k|, if k ≤ 0,

where ξ is a |k−1|-primitive root of the unity. So Fix(f) = {1, ξ, ξ2, . . . , ξl}×S2

where l is either k− 2 or |k|. Call Fi = {ξi}×S2. The Reidemeister class which
represents Fi is given by [i − 1]. By Proposition 4.3, we have that π1(W ) =
Z o Z2 where W is the quotient of S1 × S2 by the action given above. So, by
Propositions 2.2 and 4.1, we know when ϕ([i]) is either 1 or 2. The cases where
ϕ([i]) = 1 means that the equivariant class which contains the Nielsen class has
index the order of the group, which is 2, times the index of a Nielsen class.
Therefore index 4. The cases where ϕ[i] = 2 mean that the Nielsen class is itself
the equivariant Nielsen class. Therefore it has index 2. So the result follows. �

Remarks. (a) This example shows that we can have a finite cover which
has the property that all Nielsen classes of a map f have the same index, but
it is not true for the map f . In our particular example for k = 5 we have
p(Fix(f)) = Fix(f), where p is the projection, N(f) = 3 and the Nielsen classes
of f have indices 1, 2 and 1.

(b) Let us consider the following three properties of one space X:

(1) X is a Jiang space.
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(2) X is a G-equivariant Jiang space.
(3) X, the orbit space, is a Jiang space.

We have the following results:
(i) (3) ⇒ (2) and (2) ⇒ (1) , clear.
(ii) (2) 6⇒ (3) by [6]. Of course the sphere S2 having the projective plane

RP 2 as orbit space, also shows that (2) 6⇒ (3). Neverthless by using [6] we get an
example with the property that the free actions on the odd dimensional spheres
are orientation preserving and the orbit space is not a Jiang space.

(iii) (1) 6⇒ (2) by the first remark at the end of Proposition 3.2. So (1) 6⇒ (3).
Finally (2) and (3) certainly imply that all equivariant Nielsen classes have the
same index but (1) doesn’t, as a result of Theorem 4.4.

(c) This Section 4 gives a procedure for building many other examples from
an algebraic data.
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