Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 13, 1999, 235–249

QUASILINEAR PARABOLIC EQUATIONS WITH NONLINEAR MONOTONE BOUNDARY CONDITIONS

CHIN-YUAN LIN

ABSTRACT. Of concern is the following quasilinear parabolic equation with a nonlinear monotone boundary condition:

$$(*) \qquad \begin{cases} u_t(x,t) = \frac{\partial \alpha(x,u_x)}{\partial x} + g(x,u), & (x,t) \in (0,1) \times (0,\infty), \\ (\alpha(0,u_x(0,t)), -\alpha(1,u_x(1,t))) \in \beta(u(0,t),u(1,t)), \\ u(x,0) = u_0(x). \end{cases}$$

Here β is a maximal monotone graph in $\mathbb{R} \times \mathbb{R}$, which contains the origin (0,0). It is showed that (*) has a unique strong solution u, with the property that

$$\sup_{t \in [0,T]} \|u(x,t)\|_{C^{1+\nu}[0,1]}$$

is uniformly bounded for $0 < \nu < 1$ and finite T > 0.

1. Introduction

We consider the following parabolic equation

(1)
$$\begin{cases} u_t(x,t) = \frac{\partial \alpha(x,u_x)}{\partial x} + g(x,u), & (x,t) \in (0,1) \times (0,\infty), \\ (\alpha(0,u_x(0,t)), -\alpha(1,u_x(1,t))) \in \beta(u(0,t),u(1,t)), \\ u(x,0) = u_0(x), \end{cases}$$

1991 Mathematics Subject Classification. 35A05, 35B35, 35B65, 47H17, 47H20. Key words and phrases. m-dissipative operators, method of lines.

 ${\hbox{\Large \textcircled{c}}}1999$ Juliusz Schauder Center for Nonlinear Studies

where β is a maximal monotone graph in $\mathbb{R} \times \mathbb{R}$, containing the origin (0,0). We apply the evolution equation theory [1]–[5], [8], [14], [16], [17] to show that (1) has a unique strong solution. Finally, a difference scheme from the method of lines [11], [20] is employed to obtain a strong solution u, which coincides with the solution from the evolution equation theory and has the property:

$$\sup_{t \in [0,T]} \|u(x,t)\|_{C^{1+\nu}[0,1]}$$

is uniformly bounded for $0 < \nu < 1$ and finite T > 0.

When $\alpha(x,\xi) = \sigma(x)\xi$, a case in [18] follows, where a more general linear equation of order 2n is considered and many other nice results are obtained. When $\beta(x,y) = (\beta_0 x, \beta_1 y)$ and β_0 and β_1 are maximal monotone graphs in \mathbb{R} , containing the origin, we obtain a case in [9]. Both [18] and [9] use the evolution equation theory. Elliptic problems corresponding to (1) are studied in [21], [22] with less nonlinearity. Nonlinear monotone boundary conditions of this sort in (1) are very general, from which follows all the traditional ones, such as Dirichlet, Neumann, Robin, and periodic; the derivation of these results can be seen in e.g. [17], [18], [21], [22].

There are many ways to tackle parabolic problems. The traditional one for solving quasilinear equations with linear boundarey conditions is detailed quite well in [13]. Linear evolution equation (operator semigroup) approach is used in e.g. [6], [15] and the nonlinear counterpart is applied in e.g. [1]–[5], [8], [9], [14], [16]–[18].

The nonlinear evolution equation (operator semigroup) approach is to rewrite (1) as an abstract ODE

(2)
$$\frac{du}{dt} = Au, \quad u(0) = u_0$$

in a Banach space $(X, \|\cdot\|)$. If the nonlinear operator A satisfies conditions:

- (i) Dissipativity condition. $||u-v|| \le ||(u-v) \lambda(Au Av)||$ for $\lambda > 0$ and $u, v \in D(A)$.
- (ii) Range condition. The range of $(I \lambda A) \supset D(A)$ for small $\lambda > 0$, then A generates a nonlinear operator semigroup

$$T(t)u_0 \equiv \lim_{n \to \infty} \left(I - \frac{t}{n}A\right)^{-n} u_0$$

for $u_0 \in D(A)$ by the Crandall-Liggett theorem [5] or the Komura theorem [12] in the case of Hilbert spaces, and $u(t) \equiv T(t)u_0$ for $u_0 \in D(A)$ is the unique generalized solution to (2). The notion of a generalized solution is due to Benilan [2]. When X is reflexive, u is a strong solution which satisfies (2) for almost every t. If A satisfies (i) and

(iii) The range of $(I - \lambda A) = X$ for small $\lambda > 0$,

A is called m-dissipative.

The method of lines [11], [20] is to time-discretize (2) and construct the Rothe's functions. In doing so, some crucial apriori estimates need to be derived.

The rest of this paper is organized as follows. Section 2 contains some basic assumptions and preliminary results. The proof by the evolution equation (operator semigroup) approach is given in Section 3 and Section 4 deals with the the difference scheme from the method of lines.

2. Some basic assumptions and preliminary results

From here on, k denotes a generic constant, which can vary with different situations.

We make the following assumptions.

- (2.1) β is a maximal monotone graph in $\mathbb{R} \times \mathbb{R}$, such that the range of β contains the origin (0, 0).
- (2.2) α is a continuously differentiable function on $[0,1] \times \mathbb{R}$, such that $\alpha_{\xi}(x,\xi) \ge k > 0$ and $\alpha(x,0) \equiv 0$ for all x and ξ .
- (2.3) α_x/α_ξ has at most linear growth in ξ , so that there is a continuous function $M(x) \ge k > 0$, for which

$$\left|\frac{\alpha_x}{\alpha_{\varepsilon}}\right| \le M(x)(1+|\xi|).$$

(2.4) g is a continuous function on $[0,1] \times \mathbb{R}$, such that $g(x,\xi)$ is monotone non-increasing in ξ and $g(x,0) \equiv 0$ for all x.

Define a nonlinear operator $A:D(A)\subset L^2(0,1)\to L^2(0,1)$ as follows

$$D(A) = \{u \in W^{2,2}(0,1) : (\alpha(0,u'(0)), -\alpha(1,u'(1))) \in \beta(u(0),u(1))\}$$

and

$$Au = \frac{d\alpha(x, u')}{dx} + g(x, u)$$
 for $u \in D(A)$.

PROPOSITION 1. For each $h \in C[0,1], \lambda > 0$, and $a,b \in \mathbb{R}$, there is a unique solution to the equation

(3)
$$\begin{cases} u - \lambda \frac{d\alpha(x, u')}{dx} - \lambda g(x, u) = h, \\ u(0) = a, \quad u(1) = b. \end{cases}$$

PROOF. Since the properties of α and g are not affected when multiplied by λ , it suffices to consider only the case of $\lambda = 1$.

Let $w \in C^1[0,1]$ and let Tw be the unique solution to

(4)
$$\begin{cases} u - \alpha_x(x, w') - \alpha_{\xi}(x, w')u'' - g(x, w) = h, \\ u(0) = a, \quad u(1) = b, \end{cases}$$

by linear ordinary differential equation theory [10], for all u.

We show that the nonlinear operator $T: C^1[0,1] \to C^1[0,1]$ satisfies $||u||_{C^1} \le k$ for which, $\sigma Tu = u$, $\sigma \in [0,1]$, and that T is compact and continuous.

Let $\sigma Tu = u$. Then (4) gives that

(5)
$$\begin{cases} u - \sigma \alpha_x(x, u') - \alpha_{\xi}(x, u')u'' - \sigma g(x, u) = \sigma h, \\ u(0) = \sigma a, \quad u(1) = \sigma b. \end{cases}$$

If the maximum of u occurs at end points, then $||u||_{\infty}$ is uniformly bounded from (5); if instead, it occurs at some interior point x_0 in (0,1), then we have that $u'(x_0) = 0$ and $u(x_0)u''(x_0) \leq 0$ by the first and second derivative tests. With those plugged into (5), we have that, by the monotonicity assumption of g,

$$u^{2}(x_{0}) \leq \sigma[u(x_{0})\alpha_{x}(x_{0},0) + h(x_{0})u(x_{0})]$$

and so again, $||u||_{\infty}$ is uniformly bounded.

We continue to estimate u'. Equation (5) gives that

(6)
$$u'' + \sigma \frac{\alpha_x(x, u')}{\alpha_\xi(x, u')} = \frac{(u - \sigma g(x, u) - \sigma h)}{\alpha_\xi(x, u')}.$$

The assumptions (2.2) and (2.3) imply that (6) is a uniformly elliptic equation with bounded coefficients and bounded right side, and so, $||u'||_{\infty}$ and $||u''||_{\infty}$ are all uniformly bounded by linear ordinary differential equations theory [10]. Thus $||u||_{C^2} \leq k$.

Next, let w_n be a bounded sequence in $C^1[0,1]$. By the definition of T, we have that

(7)
$$\begin{cases} u_n - \alpha_x(x, w_n'') - \alpha_{\xi}(x, w_n')u'' - g(x, w_n) = h, \\ u_n(0) = a, \quad u_n(1) = b, \end{cases}$$

if $u_n = Tw_n$. By the above arguments, we have that $||u_n||_{C^2} \le k$, and so, u_n has a convergent subsequence in $C^1[0,1]$ by the Ascoli–Arzela theorem. Therefore, T is compact.

Next, let w_n converge to w in $C^1[0,1]$ (and so, w^n is uniformly bounded in $C^1[0,1]$). Then $u_n \equiv Tw_n$ has a convergent subsequence u_{n_k} , converging to some u in $C^1[0,1]$ since T is compact. It follows that (7) converges to (3) with $\lambda = 1$ through the subsequences u_{n_k} and w_{n_k} , and so, $Tw_{n_k} = u_{n_k}$ converges to u = Tw. Here we have used the fact that the first differential operator d/dx with $C^1[0,1]$ as its domain is closed in C[0,1]. This arguments, when repeated, shows that every subsequence of Tw_n has, in turn, a convergent subsequence converging to Tw, and so, T is continuous.

With the above properties, T has a fixed point by the Schauder fixed point theorem [7], which is a solution to (3) with $\lambda = 1$.

We continue to prove uniqueness. Let u_1 and u_2 satisfy (3) with $\lambda = 1$. Then

(8)
$$(u_1 - u_2) - \frac{\alpha(x, u_1') - \alpha(x, u_2')}{dx} - [g(x, u_1) - g(x, u_2)] = 0,$$

$$(u_1 - u_2)(0) = (u_1 - u_2)(1) = 0.$$

Integrating (8) gives that

$$0 \le \int_0^1 (u_1 - u_2)^2 \, dx = \sum_{i=1}^3 I_i,$$

where

$$I_1 = \int_0^1 (u_1 - u_2)[g(x, u_1) - g(x, u_2) \, dx, \le 0$$

since $g(x, \eta)$ is monotone non-increasing in η ,

$$I_2 = (u_1 - u_2)[\alpha(x, u_1') - \alpha(x, u_2')]\Big|_0^1 = 0,$$

by the boundary condition in (3),

$$I_3 = -\int_0^1 (u_1' - u_2') [\alpha(x, u_1') - \alpha(x, u_2')] dx \le 0,$$

by the assumption (2.2).

Thus,
$$\int_0^1 (u_1 - u_2)^2 dx = 0$$
, and so, $u_1 \equiv u_2$ since $u_1, u_2 \in C^1[0, 1]$.

3. The evolution equation approach

We rewrite (1) as

$$\left\{ \begin{array}{l} \displaystyle \frac{du}{dt} = Au & \text{ for } t>0, \\ \displaystyle u(0) = u_0, \end{array} \right.$$

in the Hilbert space $(L^2(0,1), \|\cdot\|)$, where the nonlinear operator A is defined Section 2.

Lemma 1. The nonlinear operator A has the dissipativity condition (i) on $L^2(0,1)$.

PROOF. Let $u_i \in D(A), \lambda > 0$, and $h_i = u_i - \lambda A u_i$, where i = 1, 2. Using integration by parts, we have that

$$\int_0^1 (u_1 - u_2)((h_1 - h_2) dx = \int_0^1 (u_1 - u_2)^2 dx + \lambda \sum_{i=1}^3 J_i,$$

where

$$J_1 = -\int_0^1 (u_1 - u_2)[g(x, u_1) - g(x, u_2) \, dx, \ge 0$$

since $g(x, \eta)$ is monotone non-increasing in η ,

$$J_2 = \int_0^1 (u_1' - u_2') [\alpha(x, u_1') - \alpha(x, u_2')] dx \ge 0,$$

by the uniformly elliptic assumption of (2.2),

$$J_3 = -(u_1 - u_2)[\alpha(x, u_1') - \alpha(x, u_2')]\Big|_0^1 \ge 0,$$

using the monotonicity assumption (2.1) of β and the boundary condition in D(A). Thus,

$$||u_1 - u_2||^2 \le \int_0^1 (u_1 - u_2)(h_1 - h_2) dx \le ||u_1 - u_2|| ||h_1 - h_2||$$

by the Hölder inequality, and so, $||u_1 - u_2|| \le ||h_1 - h_2||$. This proves the dissipativity of A.

PROPOSITION 2. For $\lambda > 0$, the range of $(I - \lambda A)$ contains C[0,1] and so, is dense in $L^2(0,1)$.

PROOF. It suffices to consider only the case of $\lambda=1.$ Let $h\in C[0,1]$ and $a,b\in\mathbb{R}.$ Consider the equation

(9)
$$\begin{cases} u - \frac{d\alpha(x, u')}{dx} - g(x, u) = h, \\ u(0) = a, \quad u(1) = b. \end{cases}$$

Proposition 1 implies that (9) has a unique solution u. Define the nonlinear operator $S: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ by

$$S(a,b) = \beta(a,b) + B(a,b),$$

where

$$B(a,b) = -(\alpha(0, u'(0)), -\alpha(1, u'(1))).$$

We show that B is monotone and hemicontinuous, and that S is coercive.

Let u_1 be the solution to (9), corresponding to the pair (a_1, b_1) . Similarly, let u_2 correspond to the pair (a_2, b_2) through (9). Here, $a_i, b_i \in \mathbb{R}$, i = 1, 2. Then

(10)
$$\begin{cases} u_i - \frac{d\alpha(x, u_i')}{dx} - g(x, u_i) = h, \\ (u_i(0), u_i(1)) = (a_i, b_i), & i = 1, 2. \end{cases}$$

Integration by parts applied to (10) gives that

$$C \equiv (u_1 - u_2)[\alpha(x, u_1') - \alpha(x, u_2')]\Big|_0^1$$

$$= \int_0^1 (u_1 - u_2)^2 dx + \int (u_1' - u_2')[\phi(x, u_1') - \phi(x, u_2')] dx$$

$$- \int_0^1 (u_1 - u_2)[g(x, u_1 - g(x, u_2)] dx \ge 0,$$

by the arguments as in proving Lemma 1. Let $\langle\,\cdot\,,\,\cdot\,\rangle$ be the inner product in $\mathbb{R}\times\mathbb{R}.$ Then

$$\langle (a_1 - b_1) - (a_2 - b_2), B(a_1 - b_1) - B(a_2 - b_2) \rangle = C \ge 0,$$

and so, B is monotone.

Next, let $t \in [0, 1]$ and u_t be the unique solution to (9), corresponding to the pair (a + tc, b + td) = (a, b) + t(c, d), that is, let u_t satisfy

(11)
$$\begin{cases} u_t - \frac{d\alpha(x, u_t')}{dx} - g(x, u_t) = h, \\ u_t(0) = a + tc, \quad u_t(1) = b + td. \end{cases}$$

Similarly, let u correspond to the pair (a,b) through (9). Then, it follows from as in proving Proposition 1 that $||u_t||_{C^2[0,1]} \leq k$ for $t \in [0,1]$. Therefore, we can use the Ascoli–Arzela theorem to derive that (11) converges to (9) through some subsequence of u_t as $t \to 0$ and then, through the very sequence u_t as in proving Proposition 1. Consequently, we have that

$$-(\alpha(0, u_t'(0)), -\alpha(1, u_t'(1))) \rightarrow -(\alpha(0, u_t'(0)), -\alpha(1, u_t'(1))),$$

that is, B((a,b) + t(c,d)) converges to B(a,b), and so, B is hemicontinuous.

Next, let
$$x = (u(0), u(1)) = (a, b)$$
. Then $\langle Sx, x \rangle = J_1 + J_2$, where

$$J_1 = \langle \beta(u(0), u(1)), (u(0), u(1)) \rangle \ge 0,$$

by the monotonicity assumption (2.1) of β ,

$$J_2 = \langle -(\alpha(0, u'(0)), -\alpha(1, u'(1))), (u(0), u(1)) \rangle$$

= $u\alpha(x, u') \Big|_0^1 = \int_0^1 (u^2 + u'\alpha(x, u') - ug(x, u) - uh) dx,$

by integrating (9), which we denote as $\sum_{i=1}^{4} I_i$. Here,

$$I_1 = \int_0^1 u^2 dx \ge 0,$$

$$I_2 = \int_0^2 u' \alpha(x, u') dx \ge k \int_0^1 (u')^2 dx,$$

by the uniform elliptic assumption (2.2) of α ,

$$I_3 = -\int_0^1 ug(x, u) dx \ge 0,$$

by the monotone non-increasing assumption (2.4) of g together with g(x,0)=0 and by the Hölder inequality

$$I_4 = -\int_0^1 uh \, dx \ge -\int_0^1 |uh| \, dx$$
$$\ge -\left(\int_0^1 |u|^2 \, dx\right)^{1/2} \left(\int_0^1 |h|^2 \, dx\right)^{1/2} \ge \frac{\|u\| + \|h\|}{-2}.$$

So, if we let $M = ||u||^2$ and $N = ||u'||^2$, then we have that

$$\langle Sx, x \rangle > k(M+N) - ||h||^2/2.$$

We estimate further. By the fundamental theorem of calculus, for $0 \le x \le 1$, we have that

$$|b| = |u(1)| = \left| u(x) + \int_x^1 u'(t) \, dt \right|, \le |u| + \int_0^1 |u'| \, dx,$$

and so, by the Hölder inequality,

$$|b|^{2} \leq |u|^{2} + \left(\int_{0}^{1} |u'| \, dx\right)^{2} + 2|u| \int_{0}^{1} |u'| \, dx$$

$$\leq |u|^{2} + \left(\int_{0}^{1} |u'| \, dx\right)^{2} + \left[|u|^{2} + \left(\int_{0}^{1} |u'| \, dx\right)^{2}\right] \leq 2|u|^{2} + 2||u'||^{2}.$$

Integrating both sides gives that $|b|^2 \le 2(M+N)$. Similarly, we have that $a^2 = |u(0)|^2 \le 2(M+N)$. So, we obtain that

$$\frac{\langle Sx, x \rangle}{|x|} = \frac{\langle Sx, x \rangle}{\sqrt{a^2 + b^2}} \ge \frac{2k(a^2 + b^2) - \|h\|^2}{2\sqrt{a^2 + b^2}},$$

which converges to ∞ as $|x| = |(a,b)| \to \infty$. So, S is concercive.

Now, we have shown that B is monotone and hemicontinuous and that S is coercive and so, S is onto [1]; in particular, we have that $(0,0) \in S(a,b)$ for some $(a,b) \in \mathbb{R} \times \mathbb{R}$. Thus, given $h \in C[0,1]$, there exists a solution u to

(12)
$$\begin{cases} u - \frac{d\alpha(x, u')}{dx} - g(x, u) = h, \\ (\alpha(0, u'(0)), -\alpha(1, u'(1))) \in \beta(u(0), u(1)), \end{cases}$$

which implies that the range of (I - A) contains C[0, 1].

Since A satisfies the dissipativity condition (i) and the range of $(I - \lambda A) \supset C[0,1] \supset D(A)$ for $\lambda > 0$, we have by the Crandall–Liggett theorem or the Komura theorem in the Hilbert space case that

THEOREM 1. Problem (1) (written as (2) on $L^2(0,1)$) has a unique strong solution for every $u_0 \in D(A)$.

REMARK. In fact, A is m-dissipative on $L^2(0,1)$. For this, it suffices to show that A is closed in $L^2(0,1)$ since C[0,1] is dense in $L^2(0,1)$.

Let $w_n \in D(A) \to w$ and $Aw_n \to v$. We need to show that $w \in D(A)$ and Aw = v. Let

(13)
$$v_n = Aw_n = \frac{d}{dx}\alpha(x, w'_n) + g(x, w_n).$$

Since $Aw_n \to v$ in $L^2(0,1)$, we have $||v_n|| \le k$. Multiplying (13) by w_n and using integration by parts, we have

$$\int_0^1 w_n' \alpha(x, w_n') \, dx - \int_0^1 w_n g(x, w_n) \, dx + w_n \alpha(x, w_n')|_1^0 = -\int_0^1 w_n v_n \, dx,$$

which gives that

$$k||w_n'|| \le \int_0^1 w_n' \alpha(x, w_n') dx \le ||w_n|| ||v_n||,$$

by (2.2), (2.4), and the boundary condition in D(A). So we have $||w'_n|| \le k$. Now, as in proving the coerciveness of S, we have that

$$(w_n(1))^2 \le 2(||w_n||^2 + ||w_n'||^2)$$

and so, $|w_n(1)| \leq k$. By the fundamental theorem of calculus, we have

$$|w_n(x)| \le |w_n(1)| + \int_0^1 |w_n'| \, dx \le k + ||w_n'||$$

and so, $||w_n||_{\infty} \leq k$. Next, (13) gives that

$$||w_n''|| \le \frac{||v_n|| + ||g(x, w_n)||}{k} + k||1 + w_n'||,$$

by using (2.2) and (2.3) and so, $||w_n''|| \le k$. Now as in proving the coerciveness of S, we have

$$(w'_n(1))^2 \le 2(||w'_n||^2 + ||w''_n||^2),$$

and so $|w'_n(1)| \leq k$. Then as above, $||w'_n||_{\infty} \leq k$. It follows from (13) that $||w''_n||_{\infty} \leq k$. Thus by the Ascoli–Arzela theorem, we have $w_n \to w$ in $C^{1+\nu}[0,1]$ for $0 < \nu < 1$ and so, w satisfies the boundary condition in D(A) since $(I-\beta)^{-1}$: $\mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ is nonexpansive (and so continuous) and w_n satisfies the boundary condition in D(A).

Next, for each $\phi \in L^2(0,1)$, (13) gives formally that

$$\int v_n \phi \, dx = \int (\alpha_x(x, w'_n) + \alpha_\xi(x, w'_n) w''_n + g(x, w_n)) \phi \, dx$$

$$= \int (\alpha_x(x, w'_n) - \alpha_x(x, w')) \phi \, dx$$

$$+ \int (\alpha_\xi(x, w'_n) w''_n - \alpha_\xi(x, w') w'') \phi \, dx$$

$$+ \int g(x, w_n) - g(x, w)) \phi \, dx$$

$$+ \int \left(\frac{d}{dx} \alpha(x, w') + g(x, w)\right) \phi \, dx,$$

which we denote as $\sum_{i=1}^{4} I_i$. Here the integration range [0, 1] is omitted.

Since w_n converges to w in $C^{1+\nu}[0,1]$ and $\alpha_x(x,\xi)$ is continuous in ξ , we have $|I_1| \to 0$.

Next, rewrite I_2 as

$$\int \alpha_{\xi}(x,w)(w_n''-w'')\phi \,dx + \int (\alpha_{\xi}(x,w_n')-\alpha_{\xi}(x,w'))w_n''\phi \,dx,$$

which we denote as $J_1 + J_2$. We have $|J_2| \to 0$ since

$$|J_2| \le \|\alpha_{\mathcal{E}}(x, w_n') - \alpha_{\mathcal{E}}(x, w')\|_{\infty} \|w_n''\| \|\phi\|$$

and $||w_n||_{C^2[0,1]} \le k$.

On the other hand, we have $|J_1| \to 0$ since w_n converges weakly in $W^{2,2}(0,1)$ by the Alaoglu theorem and since $\alpha_{\xi}(x, w') \phi \in L^2(0,1)$.

Next, to see $|I_3| \to 0$, we note that w_n converges in $C^{1+\nu}[0,1]$ and g is continuous and the Lebesgue convergence theorem applies.

Thus, we have shown

$$\int v_n \phi \, dx \ \to \ I_4 = \int \left(\frac{d}{dx} \alpha(x, w') + g(x, w) \right) \phi \, dx$$

for each $\phi \in L^2$ and so, $w \in D(A)$ and Aw = v. This shows that A is closed in $L^2(0,1)$.

4. The difference scheme from the method of lines

Let T > 0 and $n \in \mathbb{N}$ large. Time-discretize (2) to have

(14)
$$u_i - \varepsilon A u_i = u_{i-1}, \quad u_i \in D(A),$$

where $\varepsilon = T/n$ and i = 1 to n.

We assume that $u_0 \in D(A)$. Proposition 2 applied to (14) gives the existence of a u_1 . The dissipativity proof for Lemma 1 shows immediately that u_1 exists uniquely. By induction, u_i exists uniquely for i = 1 to n. For convenience, we define

$$u_{-1} = u_0 - \varepsilon A u_0.$$

Next, we estimate u_i . From (14), we have that

(15)
$$\frac{u_i - u_{i-1}}{\varepsilon} - (Au_i - Au_{i-1}) = \frac{u_{i-1} - u_{i-2}}{\varepsilon}.$$

Multiplying (15) by $(u_i - u_{i-1})/\varepsilon$ and using integration by parts, we have, as in proving dissipativity of A, that $||v_{i,\varepsilon}|| \le ||v_{i-1,\varepsilon}||$, if we let $v_{i,\varepsilon} = (u_i - u_{i-1})/\varepsilon$, and so, $||v_{i,\varepsilon}||$ is uniformly bounded since $||v_{0,\varepsilon}|| = ||Au_0|| \le k$. Here, $||\cdot||$ is the norm in $L^2(0,1)$. The same arguments also show that $||u_i|| \le ||u_0|| \le k$.

Now, rewrite (14) as

(16)
$$\frac{d\alpha(x, u_i')}{dx} + g(x, u_i) = v_{i,\varepsilon}, \quad u_i \in D(A).$$

Multiplying (16) by u_i and using integration by parts, we have that

$$\int_0^1 u_i' \alpha(x, u_i') \, dx + \int_0^1 (-u_i') g(x, u_i) \, dx + u_i \alpha(x, u_i') \Big|_1^0 = -\int_0^1 u_i v_{i,\varepsilon} \, dx,$$

which gives that

$$|k||u_i'||^2 \le \int_0^1 u_i' \alpha(x, u_i') \, dx \le ||u_i|| ||v_{i,\varepsilon}||$$

by the uniformly elliptic assumption (2.2) of α , the monotone non-increasing assumption (2.4) of g, and the boundary condition in D(A). Therefore, we have that $||u'_i|| \leq k$.

Now, as in proving the coerciveness of S in Section 3, we have that

$$(u_i(1))^2 \le 2(||u_i||^2 + ||u_i'||^2)$$

and so, $|u_i(1)| \leq k$. By the fundamental theorem of calculus formula

$$u_i(x) = u_i(1) + \int_1^x u_i'(t) dt,$$

we have that

$$|u_i(x)| \le |u_i(1)| + \int_0^1 |u_i'| dx \le k + ||u_i'||,$$

by the Hölder inequality, and so $||u_i||_{\infty}$ is uniformly bounded.

Next, rewrite (16) as

(17)
$$u_i'' = \frac{v_{i,\varepsilon} - g(x, u_i)}{\alpha_{\xi}(x, u_i')} - \frac{\alpha_x(x, u_i')}{\alpha_{\xi}(x, u_i')},$$

which implies that

$$||u_i''|| \le \frac{||v_{i,\varepsilon}|| + ||g(x,u_i)||}{k} + k||1 + u_i'||,$$

by the uniformly elliptic assumption (2.2) of α and the most possible linear growth assumption (2.3) of $\alpha(x,\xi)$ in ξ . So, $||u_i''||$ is uniformly bounded.

Next, again as in proving the coerciveness of S in Section 3, we have that

$$(u_i'(1))^2 \le 2(||u_i'||^2 + ||u_i''||^2),$$

and so, $|u_i'(1)|$ is uniformly bounded. Thus, by the fundamental theorem of calculus, we have that

$$|u_i'(x)| \le |u_i'(1)| + \int_0^1 |u_i''| dx,$$

which is less than or equal to $(k + ||u_i''||)$ by the Hölder inequality. Thus, $||u_i'||_{\infty}$ is uniformly bounded. With this, (17) implies that $||u_i''||_{\infty}$ is uniformly bounded. Therefore, we have shown that $||u_i||_{C^2}$ is uniformly bounded.

Next, we construct the Rothe's functions [11], [20]. Let

$$\chi^n(0) = u_0, \quad \chi^n(t) = u_i$$

for $t \in (t_{i-1}, t_i]$, and let

(18)
$$u^{n}(t) = u_{i-1} + \frac{u_{i} - u_{i-1}}{\varepsilon} (t - t_{i-1}) \text{ for } t \in [t_{i-1}, t_{i}],$$

where, as before, $n \in \mathbb{N}$ is large, $\varepsilon = T/n$, and i = 1 to n. By the definition of $\chi^n(t)$ and $u^n(t)$, and by $||v_{i,\varepsilon}|| \leq k$, we have that

(19)
$$\sup_{t \in [0,1]} \|u^n(t) - \chi^n(t)\|_{\infty} \to 0,$$

$$\|u^n(t) - u^n(\tau)\| \le k|t - \tau| \quad \text{for } t, \tau \in [t_{i-1}, t_i],$$

and

(20)
$$\frac{du^{n}(t)}{dt} = A\chi^{n}(t), \quad u^{n}(0) = u_{0},$$

where the last equation has values in $B([0,1]; L^2(0,1))$, the real Banach space of all bounded functions from [0,1] to $L^2(0,1)$ since $||u_i||_{C^2}$ is uniformly bounded.

Next, we show convergence of $u^n(t)$. Since $||u_i||_{C^2} \leq k$, we have that

$$\sup_{t \in [0,T]} ||u^n(t)||_{C2} \le k,$$

and so, $u^n(t)$ has a t-uniformly convergent subsequence in $C^{1+\nu}[0,1]$ (and so in $L^2(0,1)$) by using the Ascoli–Arzela theorem. Here, $0 < \nu < 1$. Thus, for each t, $u^n(t)$ is relatively compact in $L^2(0,1)$. Since $u^n(t)$ is also equi-continuous in $C([0,1];L^2(0,1))$ by (19), we have that $u^n(t)$ (actually, its some subsequence) converges to, say $u(t) \in C([0,1];L^2(0,1))$ by using the Ascoli-Arzela theorem [19] again.

Since $(I + \beta)^{-1} : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ is nonexpansive (and so continuous), $u^n(t)$ converges t-uniformly in $C^{1+\nu}[0,1]$ to u(t), and u_i satisfies the boundary condition in (1), we see easily that u(t) also satisfies the boundary condition in (1). Here we notice, from the above, that $\sup_{t \in [0,T]} \|u(t)\|_{C^{1+\nu}[0,1]} \leq k$. Next, from (20), we have formally that for each $\phi \in L^2(0,1)$,

$$\int \frac{du^n}{dt} \phi \, dx = \int \left[\alpha_x \left(x, \frac{d\chi^n}{dx} \right) + \alpha_\xi \left(x, \frac{d\chi^n}{dx} \right) \frac{d^2 \chi^n}{dx^2} + g(x, \chi^n) \right] \phi \, dx$$

$$= \int \left[\alpha_x \left(x, \frac{d\chi^n}{dx} \right) - \alpha_x \left(x, \frac{du}{dx} \right) \right] \phi \, dx$$

$$+ \int \left[\alpha_\xi \left(x, \frac{d\chi^n}{dx} \right) \frac{d^2 \chi^n}{dx^2} - \alpha_\xi \left(x, \frac{du}{dx} \right) \frac{d^2 u}{dx^2} \right] \phi \, dx$$

$$+ \int \left[g(x, \chi^n) - g(x, u) \right] \phi \, dx + \int \left[\frac{d\alpha(x, du/dx)}{dx} + g(x, u) \right] \phi \, dx,$$

which we denote as $\sum_{i=1}^{4} I_i$. Here, we omit the integration range [0, 1].

Now, we estimate I_i . Since u^n converges t-uniformly to u in $C^{1+\nu}[0,1]$ and $\alpha_x(x,\xi)$ is continuous in ξ , we have that $|I_1| \to 0$ t-uniformly.

Next, rewrite I_2 as

$$\int \alpha_{\xi} \left(x, \frac{du}{dx} \right) \left(\frac{d^2 \chi^n}{dx^2} - \frac{d^2u}{dx^2} \right) \phi \, dx + \int \left[\alpha_{\xi} \left(x, \frac{d\chi^n}{dx} \right) - \alpha_{\xi} \left(x, \frac{du}{dx} \right) \right] \frac{d^2 \chi^n}{dx^2} \phi \, dx,$$

which we denote as $J_1 + J_2$. We have that $|J_2| \to 0$ since

$$|J_2| \le \left\| \alpha_{\xi} \left(x, \frac{d\chi^n}{dx} \right) - \alpha_{\xi} \left(x, \frac{du}{dx} \right) \right\|_{\infty} \left\| \frac{d^2 \chi^n}{dx^2} \right\| \|\phi\|$$

and $||u^n||_{C^2} \leq k$. On the other hand, we have that $|J_1| \to 0$ since $u^n(t)$ converges weakly in $W^{2,2}(0,1)$ by the Alaoglu's theorem and since $\alpha_{\xi}(x, du/dx)\phi \in L^2(0,1)$.

Next, to see that $|I_3| \to 0$, we note that $u^n(t)$ converges to u(t) t-uniformly in $C^{1+\nu}[0,1]$ and g is continuous and the Lebesgue dominated convergence theorem applies. Thus, we have shown that

$$\int \frac{du^n}{dt} \phi \, dx \to I_4 = \int \left[\frac{d}{dx} \alpha(x, \frac{du}{dx}) + g(x, u) \right] \phi \, dx,$$

for each $\phi \in L^2(0,1)$, which we rewrite as

$$\left(\frac{du^n(t)}{dt},\phi\right) \to (Bu(t),\phi)$$

t-uniformly, where $(\cdot\,,\,\cdot\,)$ is the inner product in $L^2(0,1)$. So, by the Fubini theorem, we have that

$$(u^n(t)-u^n(0),\phi)=\left(\int_0^t\frac{du^n}{dt}\,dt,\phi\right)=\int_0^t\left(\frac{du^n}{dt},\phi\right)dt,$$

which converges to

$$(u(t) - u_0, \phi) = \int_0^t (Bu(\tau), \phi) d\tau,$$

by the Lebesgue dominated convergence theorem since

$$\left| \left(\frac{du^n(t)}{dt}, \phi \right) \right| \le \left\| \frac{du^n(t)}{dt} \right\| \|\phi\| \le k.$$

Now, by the Fubini theorem again, we have that

$$(u(t) - u_0, \phi) = \left(\int_0^t Bu(\tau) d\tau, \phi\right)$$

for each $\phi \in L^2(0,1)$, and so,

$$u(t) - u_0 = \int_0^t Bu(\tau) d\tau.$$

Hence, by the fundamental theorem of calculus, we have that

(21)
$$\begin{cases} \frac{du}{dt} = Bu(t) & \text{almost everywhere in } t, \\ u(0) = u_0. \end{cases}$$

To prove uniqueness of solution, let u_1 and u_2 be two solutions of (21). By integration by parts, we have that

$$\frac{1}{2} \frac{d||u_1(t) - u_2(t)||^2}{dt} = \frac{1}{2} \frac{d \int_0^1 (u_1(t) - u_2(t))^2 dx}{dt}
= \int_0^1 (Bu_1(t) - Bu_2(t))(u_1(t) - u_2(t)) dx \le 0,$$

and so,

$$0 < ||u_1(t) - u_2(t)||^2 < ||u_1(0) - u_2(0)||^2 = 0$$

and so, $u_1 \equiv u_2$ in $L^2(0,1)$ for almost every t. Thus, we have proved that

THEOREM 2. If $u_0 \in D(A)$, then there is a unique solution u satisfying (1) on (0,T) $(T \in \mathbb{R} \text{ is given})$ almost everywhere in t, with the properties that

$$\left\| \frac{du}{dt} \right\| \le k$$
 for almost every t

and

$$\sup_{t \in [0,T]} \|u(t)\|_{C^{1+\nu}[0,1]} \le k.$$

Here $0 < \nu < 1$.

REMARK. Since $u_i = (I - \varepsilon A)^{-[t/\varepsilon]} u_0$ for each $t \in [t_i, t_{i+1})$, we have the solution u from the difference scheme coincides with the solution from the Crandall–Liggett theorem or the Komura theorem in the Hilbert space case.

References

- V. Barbu, Semigroups and Differential Equations on Banach Spaces, Leyden, Noordhoff, 1976.
- Ph. Benilan, Equations d'Evolution dans an Espace de Banach Quelconque et Applications, Ph. D. Thesis, Univ. Paris, Orsay, 1972.
- [3] H. Brezis, Op'erateurs Maximaux Monotone et Semigroupes de Contractions les Espaces de Hilbert, North Holland, Amserdam, 1973.
- [4] M. G. CRANDALL, An introduction to evolution equations governed accretive operators, Dynamical Systems (L. Cesari, H. K. Hale, and J. P. Lassale, eds.), vol. 1, Academic, New York, 1976, pp. 131–165.
- [5] M. G. CRANDALL AND T. M. LIGGETT, Generation of semigroups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 256–298.
- [6] G. DA PRATO AND P. GRISVARD, Equations d'Evolution abstraites de type parabolique, Ann. Mat. Pura Appl. 120 (1979), 329–396.
- [7] D. GILBARG AND N. S. TRUDINGER, Elliptic Particial Differential Equations of Second Order, Springer, Berlin, 1983.
- [8] J. A. Goldstein, Semigroups of Nonlinear Operators and Applications (to appear).
- [9] J. A. GOLDSTEIN AND C.-Y. LIN, An L^p semigroup approach to degenerate parabolic boundary value problems, Ann. Mat. Pura Appl. 159 (1991), 221–227.
- [10] P. HARTMAN, Ordinary Differential Equations, Wiley, New York, 1964.

- [11] J. Kacur, Method of Rothe in evolution equations, Teubner-Texte Math. 80 (1985).
- [12] Y. KOMURA, Nonlinear semigroups in Hilbert space, J. Math. Soc. Japan 19 (1967), 493–507.
- [13] O. A. LADYZHENSKAYA, V. SOLONNIKOV, AND N. N. URAL'TSEVA, *Linear and quasi-linear equations of parabolic type*, Transl. Math. Monogr. (1968), Amer. Math. Soc., Providence, R. I.
- [14] V. LAKSHMIKANTHAM AND S. LEELA, Nonlinear Differential Equations in Abstract Spaces, Pergaman Press, Oxford, 1981.
- [15] A. Lunardi, Maximal space regularity in nonhomogeneous initial boundary parabolic problem, Numer. Funct. Anal. Optim. 10 (1989), 323–349.
- [16] I. MIYADERA, Nonlinear Semigroups, Kinokunniya Bookstore, Tokyo, 1977. (Japanese)
- [17] G. MOROSANU, Nonlinear Evolution Equations and Applications, D. Riedel Publishing Company, 1988.
- [18] G. MOROSANU AND D. PETROVANU, Nonlinear monotone boundary conditions for parabolic equations, Rend. Istit. Mat. Univ. Trieste (1986), 137–155.
- [19] J. R. Munkres, Topology, A First Course, Prentice-Hall Inc., Englewood Cliffs, N. J., 1975.
- [20] E. ROTHE, Zweidimensionale parabolische Randwertaufgaben als Grenfall eindimensionale Rentwertaufgaben, Math. Ann. 102 (1930), 650–670.
- [21] D. Tiba, Nonlinear boundary value problems for second order differential equations, Funkcial. Ecvac. 20 (1977).
- [22] ______, General boundary value problems for second order differential equations, Nonlinear Anal. 2 (1978), 447–455.

Manuscript received June 2, 1998

CHIN-YUAN LIN Department of Mathematics National Central University Chung-Li, TAIWAN

E-mail address: cylin@wangwei.math.ncu.edu.tw