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QUASILINEAR PARABOLIC EQUATIONS WITH NONLINEAR
MONOTONE BOUNDARY CONDITIONS

CHIN-YUAN LIN

ABSTRACT. Of concern is the following quasilinear parabolic equation with
a nonlinear monotone boundary condition:

% +g(z,w), (z,t) €(0,1) x (0,00),
(%) (@(0,uz(0, 1)), —a(1,usz (1, 1)) € B(u(0, 1), u(1,t)),
u(z,0) = uo(x).

ug(z,t) =

Here 8 is a maximal monotone graph in R x R, which contains the origin
(0,0). It is showed that (*) has a unique strong solution u, with the property
that
sup |lu(,t)llc1+vio,1]
t€[0,T]

is uniformly bounded for 0 < v < 1 and finite T" > 0.

1. Introduction

We consider the following parabolic equation

%ﬁcux) +g(z,u), (z,1) € (0,1) x (0, 00),

(1) (0, uz(0,1)), —a (1, ux(1,1)) € Bul(0,1), u(1, 1)),
u(z,0) = ug(x),

ug(z,t) =
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where f3 is a maximal monotone graph in R x R, containing the origin (0,0). We
apply the evolution equation theory [1]-[5], [8], [14], [16], [17] to show that (1)
has a unique strong solution. Finally, a difference scheme from the method of
lines [11], [20] is employed to obtain a strong solution w, which coincides with
the solution from the evolution equation theory and has the property:
sup |[u(z,t)|cr+vo,)
te[0,T]

is uniformly bounded for 0 < v < 1 and finite 7" > 0.

When a(z,£) = o(x)€, a case in [18] follows, where a more general linear
equation of order 2n is considered and many other nice results are obtained.
When S(z,y) = (Box,B1y) and By and ; are maximal monotone graphs in
R, containing the origin, we obtain a case in [9]. Both [18] and [9] use the
evolution equation theory. Elliptic problems corresponding to (1) are studied in
[21], [22] with less nonlinearity. Nonlinear monotone boundary conditions of this
sort in (1) are very general, from which follows all the traditional ones, such as
Dirichlet, Neumann, Robin, and periodic; the derivation of these results can be
seen in e.g. [17], [18], [21], [22].

There are many ways to tackle parabolic problems. The traditional one for
solving quasilinear equations with linear boundarey conditions is detailed quite
well in [13]. Linear evolution equation (operator semigroup) approach is used in
e.g. [6], [15] and the nonlinear counterpart is applied in e.g. [1]-[5], [8], [9], [14],
[16]-[18].

The nonlinear evolution equation (operator semigroup) approach is to rewrite
(1) as an abstract ODE

d
(2) d—Q: = Au, u(0) =ug
in a Banach space (X, || - ||). If the nonlinear operator A satisfies conditions:
(i) Dissipativity condition. ||[u—v|| < ||(u—v)—A(Au— Av)]|| for A > 0 and

u,v € D(A).
(ii) Range condition. The range of (I — AA) D D(A) for small A > 0,

then A generates a nonlinear operator semigroup

t —-n
T(t)up = lim (I— nA> U

n—o0

for uy € D(A) by the Crandall-Liggett theorem [5] or the Komura theorem
[12] in the case of Hilbert spaces, and u(t) = T(t)up for ug € D(A) is the
unique generalized solution to (2). The notion of a generalized solution is due
to Benilan [2]. When X is reflexive, u is a strong solution which satisfies (2) for
almost every ¢. If A satisfies (i) and

(iii) The range of (I — AA) = X for small A > 0,
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A is called m-dissipative.
The method of lines [11], [20] is to time-discretize (2) and construct the
Rothe’s functions. In doing so, some crucial apriori estimates need to be derived.
The rest of this paper is organized as follows. Section 2 contains some basic
assumptions and preliminary results. The proof by the evolution equation (op-
erator semigroup) approach is given in Section 3 and Section 4 deals with the
the difference scheme from the method of lines.

2. Some basic assumptions and preliminary results

From here on, k denotes a generic constant, which can vary with different
situations.
We make the following assumptions.

(2.1) § is a maximal monotone graph in R x R, such that the range of (
contains the origin (0, 0).

(2.2) «is a continuously differentiable function on [0, 1] xR, such that a¢(z, §)
>k >0and a(z,0) =0 for all z and &.

(2.3) ag/a¢ has at most linear growth in ¢, so that there is a continuous
function M(z) > k > 0, for which

Ay

< M(x)(1+ [£])-

Qg
(2.4) ¢ is a continuous function on [0,1] x R, such that g(z,£) is monotone
non-increasing in ¢ and g(z,0) = 0 for all z.

Define a nonlinear operator A : D(A) C L?(0,1) — L2(0,1) as follows
D(A) = {ue W*2(0,1) : (a(0,u'(0)), —a(1,2/(1))) € Bu(0), u(1))}

and J ,
Au = % +g(z,u) for u e D(A).

PROPOSITION 1. For each h € C[0,1], A > 0, and a,b € R, there is a unique
solution to the equation

do(z,u) B
{ u—)\T — Mgz, u) = h,

u(0) =a, wu(l)=0».

3)

PROOF. Since the properties of a and g are not affected when multiplied
by A, it suffices to consider only the case of A = 1.
Let w € C*[0,1] and let Tw be the unique solution to
@ u— ag(z,w') — ag(z,w )" — g(z,w) = h,
u(0) =a, wu(l)=h,

by linear ordinary differential equation theory [10], for all wu.
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We show that the nonlinear operator T : C1[0,1] — C1[0, 1] satisfies |Jul/c1 <
k for which, cTu = u, o € [0, 1], and that T is compact and continuous.
Let cTu = u. Then (4) gives that

(5)

u—oag(z,u) — ag(z, v )u” — og(x,u) = oh,
u(0) = oa, wu(l)=ob.

If the maximum of u occurs at end points, then ||ul|s is uniformly bounded
from (5); if instead, it occurs at some interior point z in (0,1), then we have
that u'(zg) = 0 and wu(zg)u”(x0) < 0 by the first and second derivative tests.
With those plugged into (5), we have that, by the monotonicity assumption of g,

u?(z0) < ofu(zo)ag(zo,0) + h(xo)u(zo)]

and so again, ||u|e is uniformly bounded.
We continue to estimate u’. Equation (5) gives that
az(z,u')  (u—og(x,u) —ch)

" .
(6) u +Ja§(x,u’) B ag(z,u) '

The assumptions (2.2) and (2.3) imply that (6) is a uniformly elliptic equation
with bounded coefficients and bounded right side, and so, ||u/||« and ||u” || are
all uniformly bounded by linear ordinary differential equations theory [10]. Thus
[ullcz < k.

Next, let w, be a bounded sequence in C*[0,1]. By the definition of T, we
have that

(7)

{ Up, — g (z,w))) — ag(x, w)u” — gz, wy,) = h,

un(0) =a, wu,(l)="0,

if u,, = Tw,,. By the above arguments, we have that ||u,|c2 < k, and so, u,, has
a convergent subsequence in C1[0,1] by the Ascoli-Arzela theorem. Therefore,
T is compact.

Next, let w,, converge to w in C1[0,1] ( and so, w™ is uniformly bounded
in C'[0,1]). Then u,, = Tw, has a convergent subsequence u,, , converging to
some u in C1[0,1] since T is compact. It follows that (7) converges to (3) with
A = 1 through the subsequences u,, and w,,, and so, Twy, = u,, converges
to u = Tw. Here we have used the fact that the first differential operator d/dx
with C1[0, 1] as its domain is closed in C[0, 1]. This arguments, when repeated,
shows that every subsequence of Tw, has, in turn, a convergent subsequence
conveging to Tw, and so, T is continuous.

With the above properties, T has a fixed point by the Schauder fixed point
theorem [7], which is a solution to (3) with A = 1.
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We continue to prove uniqueness. Let u; and usy satisfy (3) with A = 1. Then

g () M g ) <o

(U1 - Ug)(O) = (u1 - UQ)(l) =0.
Integrating (8) gives that

1 3
OS/ (Ul—U2)2d$:ZL’,
0 i=1

where )
I = / (ug — ug)[g(z,u1) — g(z,ug) dz, <0
since g(z,n) is monoton(g non-increasing in 7,
I = (ur — up) [, uy) — afe,wp))], = 0,

by the boundary condition in (3),

1
L= / (s — ub)[o(e, o) — e, )] d < 0,
0

by the assumption (2.2).
Thus, fol (uy — ug)?dr = 0, and so, u; = uy since ui,us € C*[0,1]. O
3. The evolution equation approach
We rewrite (1) as
o=
U(O) = Uug,
in the Hilbert space (L?(0,1),] - ||), where the nonlinear operator A is defined

{du—Au for t > 0,

Section 2.

LEMMA 1. The nonlinear operator A has the dissipativity condition (i) on
L?(0,1).

ProoOF. Let u; € D(A),A > 0, and h; = u; — AMu;, where i = 1,2. Using
integration by parts, we have that

1 1 3
/ (ur — un) (b1 — hs) da = / (un — )2 de + A Y
0 0 i=1
where

1
J—— /0 (w1 — uz) g, ur) — gl uz) da, > O

since g(x,n) is monotone non-increasing in 7,

1
Ty = / (s — ) ty) — (e, )] der > 0,
0
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by the uniformly elliptic assumption of (2.2),
Js = —(u = ug)la(w, u) — ale,u)]], 2 0,

using the monotonicity assumption (2.1) of 8 and the boundary condition in
D(A). Thus,

1
l[ur — ual* < / (u1 —ug)(h1 — h2) dz < |luy — ua||[|h1 — ha||
0

by the Holder inequality, and so, ||u; — ua|| < |[h1 — hz||. This proves the
dissipativity of A. O

PROPOSITION 2. For A > 0, the range of (I — AA) contains C[0,1] and so,
is dense in L*(0,1).

PRrROOF. It suffices to consider only the case of A = 1. Let h € C]0,1] and
a,b € R. Consider the equation

do(z,u) B
{ U—T —g(z,u) = h,

u(0) =a, u(l)=na.

9)

Proposition 1 implies that (9) has a unique solution w. Define the nonlinear
operator S : R x R — R x R by

S(a,b) = B(a,b) + B(a,b),
where
B(a,b) = —(a(0,4/(0)), —a(1,4/(1))).
We show that B is monotone and hemicontinuous, and that S is coercive.
Let uy be the solution to (9), corresponding to the pair (aq,by). Similarly, let
ug correspond to the pair (ag,bs) through (9). Here, a;,b; € R, i = 1,2. Then
do(z, ul)

(10) {“ T dwu)=h
(uz(O),uZ(l)) = (ai,bi), = 1,2.

Integration by parts applied to (10) gives that

C = (w1 — ws)alz, u}) — alz, u)] |}

- / (ur — us)? da + / (u, — ) (B, ) — B, )]

1
- / (ur — u)lgle, us — gl ug)] da > 0,

by the arguments as in proving Lemma 1. Let (-, -) be the inner product in
R x R. Then

<(a1 — bl) — (ag — bg),B(CLl — bl) — B(a2 — b2)> = C Z 07
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and so, B is monotone.
Next, let ¢ € [0,1] and u; be the unique solution to (9), corresponding to the
pair (a + te,b + td) = (a,b) + t(c,d), that is, let u; satisfy

da(z,u)
{ Ut — % —g(;v,ut) = h,

u(0) = a+te, w(l)=0>b+td.

(11)

Similarly, let u correspond to the pair (a,b) through (9). Then, it follows from
as in proving Proposition 1 that ||us||c2j0,1) < k for ¢ € [0,1]. Therefore, we can
use the Ascoli-Arzela theorem to derive that (11) converges to (9) through some
subsequence of u; as t — 0 and then, through the very sequence u; as in proving
Proposition 1. Consequently, we have that

—(@(0,u4(0)), —a(L, (1)) = —(a(0,4(0)), —a(1,u/(1))),

that is, B((a,b) + t(c,d)) converges to B(a,b), and so, B is hemicontinuous.
Next, let 2 = (u(0),u(1)) = (a,b). Then (Sz,z) = J; + Ja, where

Ji = <ﬁ(u(0)7u(1))7 (u(O),u(l))> >0,
by the monotonicity assumption (2.1) of 3,
J2 = (—(a(0,u/(0)), —a(1,u/(1))), (u(0), u(1)))

1
= ua(m,u'){(l) = / (u? + ' a(z,u') — ug(x,u) — uh) dz,
0
by integrating (9), which we denote as Z?:l I;. Here,

1
I :/ u2d;10207
0

2 1
I, = / va(z,u)de >k | (u)?de,
0 0

by the uniform elliptic assumption (2.2) of «,

1
I3 = —/ ug(z,u)dx > 0,
0

by the monotone non-increasing assumption (2.4) of g together with g(z,0) =0
and by the Holder inequality

1 1
I, :—/ uhde—/ |uh| dx
0 0
1 1/2 1 1/2 i
0 0 —2

So, if we let M = ||ul|? and N = ||u’||?, then we have that

(Sa,x) > k(M + N) — ||h]|/2.
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We estimate further. By the fundamental theorem of calculus, for 0 < z < 1,
we have that

1 1
b = Ju(1)] = |uz) + / W (t) de|, < [u] + / | dz,
T 0

and so, by the Holder inequality,

1 2 1
o < b ([ ) 2 [ ulas
0 0
1 1 2
<l ([ Wraop e [+ ([ wlac) | < 2P+
0 0

Integrating both sides gives that |[b|> < 2(M + N). Similarly, we have that
a? = [u(0)]* < 2(M + N). So, we obtain that
(Sz,x2)  (Sz,x) < 2k(a® + b%) — ||h|?

|| va?+b2 — 2va? + b? ’

which converges to oo as |z| = |(a,b)| — 00. So, S is concercive.

Now, we have shown that B is monotone and hemicontinuous and that S is
coercive and so, S is onto [1]; in particular, we have that (0,0) € S(a,b) for some
(a,b) € R x R. Thus, given h € C[0, 1], there exists a solution u to

do(z,u') B
(12) {u_dx_g(x’u)_h’
(@(0,u'(0)), —a(1,w'(1))) € B(u(0), u(1)),
which implies that the range of (I — A) contains C[0, 1]. O

Since A satisfies the dissipativity condition (i) and the range of (I — AA) D
C[0,1] D D(A) for A > 0, we have by the Crandall-Liggett theorem or the
Komura theorem in the Hilbert space case that

THEOREM 1. Problem (1) (written as (2) on L?(0,1)) has a unique strong
solution for every ug € D(A).

REMARK. In fact, A is m-dissipative on L?(0,1). For this, it suffices to show
that A is closed in L?(0,1) since C[0,1] is dense in L?(0,1).

Let wy, € D(A) — w and Aw, — v. We need to show that w € D(A) and
Aw =v. Let

(13) vy, = Aw,, = dia(:v,w;l) + g(x, wy).
x

Since Aw,, — v in L?(0, 1), we have v, || < k. Multiplying (13) by w,, and using
integration by parts, we have

1 1 1
/ w) oz, w),) de —/ wng(z,wy,) dr + wyo(z,w))|) = —/ Wy Uy, d,
0 0 0
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which gives that
1
w1 < [ o) do < oL
0

by (2.2), (2.4), and the boundary condition in D(A). So we have ||w] | < k.
Now, as in proving the coerciveness of S, we have that

(wn(1))* < 2(|fwn* + [y, |1*)

and so, |w,(1)| < k. By the fundamental theorem of calculus, we have
1
|wn ()] < Jwn(1)] +/ |w| da <k + [|wn,|
0

and so, ||wp]|eo < k. Next, (13) gives that

[[onl| + llg(z, wn)]|
k

by using (2.2) and (2.3) and so, ||w}/|| < k. Now as in proving the coerciveness

lwnll < + K[ 4w,

of S, we have
(Wi (1))? < 2(Jlwy |I* + [lwn]I*),

and so |w)(1)] < k. Then as above, |[w)|lcoc < k. It follows from (13) that
|w!]|so < k. Thus by the Ascoli-Arzela theorem, we have w,, — w in C1[0, 1]
for 0 < v < 1 and so, w satisfies the boundary condition in D(A) since (I —3)~!:
RxR — R xR is nonexpansive (and so continuous) and w, satisfies the boundary
condition in D(A).

Next, for each ¢ € L?(0,1), (13) gives formally that

[ondin = [(autewt) +actetyul + gaw)ods
= [(au (o)) - aulow o ds
+ [agtewl ol - agle.w)u")ods
+ [ gtawa) - glo,w)odo
+ [ (ot +aaw Jod

which we denote as Z?Zl I;. Here the integration range [0, 1] is omitted.

Since w,, converges to w in C**¥[0,1] and a,(z,&) is continuous in &, we
have |I;| — 0.

Next, rewrite I as

/ vg(r,w) (! — ") + / (e, ') — o, 0 ylls di,
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which we denote as J; + J5. We have |.J3| — 0 since
| Jo] < [l (2, wy,) — ag(@,w')||oo|lwy [l

and ||wn||cz[0_’1] <k.

On the other hand, we have |.J;| — 0 since w,, converges weakly in W22(0, 1)
by the Alaoglu theorem and since ag(z,w’)¢ € L?(0,1).

Next, to see |I3] — 0, we note that w,, converges in C'*¥[0,1] and g is
continuous and the Lebesgue convergence theorem applies.

Thus, we have shown

/Un¢dx — 14:/(;ia(at,w’)+g(x,w)>q§dx

for each ¢ € L? and so, w € D(A) and Aw = v. This shows that A is closed in
L2(0,1).

4. The difference scheme from the method of lines

Let T > 0 and n € N large. Time-discretize (2) to have
(14) u; — eAu; = Ui—1, Ui € D(A),

where e =T'/n and i =1 to n.

We assume that ug € D(A). Proposition 2 applied to (14) gives the existence
of a uy. The dissipativity proof for Lemma 1 shows immediately that u; exists
uniquely. By induction, u; exists uniquely for 4 = 1 to n. For convenience, we
define

u_1 = ug — Auyg.
Next, we estimate u;. From (14), we have that

U; — Uj—1 Uj—1 — Uj—2

Au; — Au;_q) =
E (Au Ui—1) E

(15)
Multiplying (15) by (u; — u;—1)/e and using integration by parts, we have, as in
proving dissipativity of A, that ||v; || < |lvi—1,¢ll, if we let v;e = (u; — ui—1)/e,
and so, ||v; || is uniformly bounded since ||vg || = ||Auo|| < k. Here, || - || is the
norm in L2(0,1). The same arguments also show that |Ju;|| < |luo]| < k.

Now, rewrite (14) as

do(x, uf)

(16) e

+9(x,ui) = vie, u; € D(A).

Multiplying (16) by u; and using integration by parts, we have that
0

1
= —/ U;V; ¢ de,
1 0

1 1
/ uéa(w,ué)dw—i—/ (—ul)g(z,u;) dr + ua(w, u})
0 0
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which gives that
1
K| < / dhoe, ) de < o [[vse

by the uniformly elliptic assumption (2.2) of «, the monotone non-increasing
assumption (2.4) of g, and the boundary condition in D(A). Therefore, we have
that [|uj|| < k.

Now, as in proving the coerciveness of S in Section 3, we have that
(wi(1))? < 2(JJus|* + [lui]1?)

and so, |u;(1)] < k. By the fundamental theorem of calculus formula

ui(x) = u;(1) +/ wy(t) dt,
1
we have that )
lui(z)| < |ui(1)] +/ |z de <k + ||ui],
0

by the Holder inequality, and so ||u;||s is uniformly bounded.
Next, rewrite (16) as
Vie —g(myu;)  ag(z,ul)

17 - _
17 WS ) ag@)’

which implies that

|+ llg (e, wa)l
k

l|vi,e

i | < + R+ i,

by the uniformly elliptic assumption (2.2) of « and the most possible linear
growth assumption (2.3) of a(z,€) in £. So, ||uf|| is uniformly bounded.

Next, again as in proving the coerciveness of S in Section 3, we have that
(wi (1)) < 2(luill* + uf [1%),

and so, |uf(1)] is uniformly bounded. Thus, by the fundamental theorem of
calculus, we have that

1
()] < ()] + / | da,

which is less than or equal to (k + ||u/]|) by the Holder inequality. Thus, |[u}||c
is uniformly bounded. With this, (17) implies that ||u}||c is uniformly bounded.
Therefore, we have shown that ||u;||c2 is uniformly bounded.

Next, we construct the Rothe’s functions [11], [20]. Let

X" (0) =ug, X"(t) = u
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for t € (t;—1,t;], and let

i — Ui—1

(18) u(t) = upg + 2 (t—t;_1) fort € [ti,ti,

where, as before, n € N is large, ¢ = T'/n, and i = 1 to n. By the definition of
Xx"(t) and u™(t), and by ||v; .|| < k, we have that

sup |[u"(#) = x"(#)[lcc — 0,

t€0,1]
(19) [[u(t) —u™ ()| < k|t — 7| for t,7 € [ti—1,ti],
and
du™(t
(20) udt( ) _ Axn(t), un(o) = ug,

where the last equation has values in B([0, 1]; L?(0, 1)), the real Banach space of
all bounded functions from [0, 1] to L?(0, 1) since |lu;||c= is uniformly bounded.

Next, we show convergence of u"(t). Since ||u;||c2 < k, we have that

sup |[u"(t)lc2 <k,
te[0,T]

and so, u™(t) has a t-uniformly convergent subsequence in C1*¥[0,1] (and so in
L?(0,1)) by using the Ascoli-Arzela theorem. Here, 0 < v < 1. Thus, for each
t, u"(t) is relatively compact in L?(0,1). Since u™(t) is also equi-continuous in
C([0,1]; L?(0,1)) by (19), we have that u"(¢) (actually, its some subsequence)
converges to, say u(t) € C([0,1];L?(0,1)) by using the Ascoli-Arzela theorem
[19] again.

Since (I + 3)~! : R x R — R x R is nonexpansive (and so continuous),
u™(t) converges t-uniformly in C**¥[0,1] to u(t), and wu; satisfies the boundary
condition in (1), we see easily that u(t) also satisfies the boundary condition in
(1). Here we notice, from the above, that sup,¢jo 7y [|u(t)||c1+vj0,1) < k.

Next, from (20), we have formally that for each ¢ € L?(0,1),

du™ _ an an dQXn N
/ dt (bdm_/{%(x’ dx ) +a£(x’ dm) dx? + 9@ x")| o dz
_ dx™ du
—/{0@(:3, dz) az<m7dx>}¢dx
dx™\ d>x" du\ d*u

gz, x") — gz, u i d7+gx,u odx,
+ ot - st + [ |2 g0

which we denote as Z?Zl I;. Here, we omit the integration range [0, 1].
Now, we estimate I;. Since u™ converges t-uniformly to u in C'T¥[0,1] and
a,(x,€) is continuous in &, we have that |I;| — 0 t-uniformly.
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Next, rewrite I as

du\ (X" dPu dx™ du\] ?x™
Joele ) (i — oot [ ool 50 ) —oe(o ) o

which we denote as J; + J;. We have that |J>| — 0 since
dx™ du d>x™
ol x,—=— ) —ael| z, —
S\ de S\ dx ol dz?

and ||u"||c2 < k. On the other hand, we have that |J;| — 0 since u"(t) con-
verges weakly in W22(0, 1) by the Alaoglu’s theorem and since ag(z, du/dz)d €
L2(0,1).

Next, to see that |I5] — 0, we note that «™ () converges to u(t) t-uniformly in

|J2] <

]l

C'*7[0,1] and g is continuous and the Lebesgue dominated convergence theorem
applies. Thus, we have shown that

[ ot —1- | [C;ia@,j;‘)w(x,u) bz,

for each ¢ € L?(0,1), which we rewrite as

(du;‘t(t) |

¢) ~ (Bu(t), 9

t-uniformly, where (-, -) is the inner product in L?(0,1). So, by the Fubini
theorem, we have that

i -0 = ([ Do) = [ (%0 ar,

which converges to

(ult) — uo, &) = / (Bu(r), ) dr,

by the Lebesgue dominated convergence theorem since
du™(t) p du™(t)
dt ' dt
Now, by the Fubini theorem again, we have that
t
(u(t) — up, @) = (/ Bu(r) dr, (/))
0

for each ¢ € L?(0,1), and so,

<

H|¢|| <k

u(t) —ug = /0 Bu(r)dr.

Hence, by the fundamental theorem of calculus, we have that

d
{ di: = Bu(t) almost everywhere in ¢,

u(0) = wp.

(21)
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To prove uniqueness of solution, let u; and us be two solutions of (21). By
integration by parts, we have that

Ldllur(t) —us()]? 1 fy (ua(t) — ua(t)* da

2 dt 2 dt
- /O (Bua () — Bus(#))(us (£) — us(t)) dz < 0,

and so,
0 < Jur(t) —uz()|* < JJur (0) — u2(0)[* = 0

and so, u; = ug in L?(0,1) for almost every ¢t. Thus, we have proved that

THEOREM 2. If ug € D(A), then there is a unique solution u satisfying (1)
on (0,T) (T € R is given) almost everywhere in t, with the properties that

E

7 <k for almost every t

and

sup [|u(t)[lcr+voa) < k-
t€[0,7]

Here 0 < v < 1.

REMARK. Since u; = (I —eA)~[/lug for each t € [t;,t;41), we have the solu-
tion u from the difference scheme coincides with the solution from the Crandall-
Liggett theorem or the Komura theorem in the Hilbert space case.
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