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SIGN CHANGING SOLUTIONS
OF NONLINEAR SCHRÖDINGER EQUATIONS

Thomas Bartsch — Zhi-Qiang Wang

Abstract. We are interested in solutions u ∈ H1(RN ) of the linear Schrö-

dinger equation −δu+bλ(x)u = f(x, u). The nonlinearity f grows superlin-
early and subcritically as |u| → ∞. The potential bλ is positive, bounded

away from 0, and has a potential well. The parameter λ controls the steep-
ness of the well. In an earlier paper we found a positive and a negative

solution. In this paper we find third solution. We also prove that this third

solution changes sign and that it is concentrated in the potential well if
λ →∞. No symmetry conditions are assumed.

1. Introduction

We consider the problem

(S)

{
−∆u + b(x)u = f(x, u) for x ∈ RN ,

u ∈ H1(RN ).

If b and f are independent of x ∈ RN or depend radially on x one can try to
find radial solutions with a prescribed number of nodes. In this way one can
obtain multiple existence of solutions, in particular solutions which change sign
arbitrarily often, depending on b and f , of course. This has been done by many
authors using various techniques; see e.g. [10], [7], [5] and the references therein.
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In [4] one can also find the existence of nonradial solutions which change sign in
an explicit way breaking the radial symmetry of the equation.

In the general case where b and f depend on x nonradially Rabinowitz [12]
proved the existence of a positive and a negative solution of (S) provided b(x) →
∞ as |x| → ∞, and f is superlinear and subcritical. In [2], among other things
we weakened the conditions on the potential b and still obtained a positive and
a negative solution. Under similar hypotheses as in [2] we shall prove here
the existence of a third solution for (S) which changes sign.

On a bounded domain Ω instead of RN the existence of a third solution
u1 ∈ H1

0 (Ω) of the Dirichlet problem

(D)

{
−∆u = g(x, u) in Ω,

u = 0 on ∂Ω,

for a superlinear and subcritical nonlinearity g has first been proved in [13].
The existence of a sign changing solution of (D) on an arbitrary smooth bounded
domain has been established only quite recently in [8], [9], [6] and [3]. The
results from our earlier paper [3] suggest that most critical point theorems which
are based on an at least two-dimensional linking argument yield in fact a sign
changing solution of (D). In particular, the three solutions theorem from [13]
follows as a corollary from the results in [3] with the third solution u1 being sign
changing. Moreover, if g satisfies a certain convexity condition then this third
solution has precisely two nodal domains; see [6] and [1] for more results in this
direction.

The existence of a third solution on (S) under the hypotheses as in [2] is
new. We are not aware of any result which guarantees that there is a solution
of (S) which changes sign, except when symmetry in the x-variable can be used.
Unfortunately, the techniques from our earlier papers [3], [1] cannot be translated
directly to problems on RN . There it was essential that the positive cone P =
{u ∈ C1

0(Ω) : u ≥ 0} has nonempty interior in the C1
0 -topology. This is not

the case if Ω is unbounded. The idea of this paper is to approximate the equation
on RN by the Dirichlet problem on the balls BR(0) and let R → ∞. We have
to make sure that the limit still changes sign. It would be interesting to find
an approach to the existence of sign changing solutions of (S), or of related
problems on unbounded domains, which does not depend on the cone P having
nonempty interior.

2. Statement of results

We assume the following hypotheses on the nonlinearity.

(f1) f ∈ C(RN × R, R) satisfies f(x, u) = o(|u|) as u → 0, unifomly in x.
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(f2) There are constants a1, a2 > 0 and s > 1 with s < (N + 2)/(N − 2) if
N ≥ 3, such that

|f(x, u)| ≤ a1 + a2|u|s for every x ∈ RN , u ∈ R.

(f3) There exists q > 2 such that

0 < qF (x, u) ≡ q

u∫
0

f(x, t) dt ≤ uf(x, u)

for every x ∈ RN , u ∈ R \ {0}.
(f4) For any R > 0 there exists cR > 0 such that

f(x, t)− f(x, s)
t− s

> −cR for x ∈ RN , −R < s < t < R.

Concerning the potential we consider two situations. For our first result we
assume:

(b1) b ∈ C(RN , R) satisfies b0 := inf
x∈RN

b(x) > 0.

(b2) For every M > 0

µ({x ∈ RN : b(x) ≤ M}) < ∞,

where µ denotes the Lebesque measure in RN .

In [2] we obtained under these conditions the existence of a positive and a nega-
tive solution of (S).

Theorem 2.1. If (b1), (b2), and (f1)–(f3) hold then (S) has a sign changing
solution u1.

Next we consider a parametrized version of (S):

(Sλ)

{
−∆u + (1 + λa(x))u = f(x, u) for x ∈ RN ,

u ∈ H1(RN ).

Here we assume:

(a1) a ∈ C(RN , R) satisfies a ≥ 0 and a−1(0) has nonempty interior.
(a2) There exists M0 > 0 such that

µ({x ∈ RN : a(x) ≤ M0}) < ∞.
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Theorem 2.2. If (a1), (a2), and (f1)–(f3) hold then (Sλ) has a sign chang-
ing solution uλ for every λ large. If in addition µ(∂a−1(0)) = 0 then any se-
quence λn → ∞ has a subsequence such that uλn

converges along this subse-
quence towards a solution u ∈ H1

0 (Ω) of the equation −∆u + u = f(x, u) on
Ω := int a−1(0).

As in the case of (S), the solution uλ is a third nontrivial solution. The ex-
istence of a positive and a negative solution of (Sλ) for λ large has been proved
in [2]. The potential bλ(x) = 1 + λa(x) satisfies (b1) but not (b2). The infi-
mum of bλ is normalized to 1. Observe that in both theorems it is allowed that
lim inf |x|→∞ b(x) = infx∈RN b(x). In particular, the potentials need not have a
bounded well.

3. Proofs

Let

E =
{

u ∈ H1(RN ) :
∫

RN

b(x)u2 dx < ∞
}

be equipped with the norm

‖u‖2 =
∫

RN

(|∇u|2 + b(x)u2) dx.

Similarly, we write Eλ and ‖ · ‖λ when working with bλ = 1 + λa instead of b.
Clearly, for λ > 0 the space

Eλ =
{

u ∈ H1(RN ) : ‖u‖2
λ =

∫
RN

(|∇u|2 + bλ(x)u2) dx < ∞
}

=
{

u ∈ H1(RN ) :
∫

RN

a(x)u2 dx < ∞
}

is independent of λ and all norms ‖ · ‖λ are equivalent. We also write |u|p
for the Lp-norm. We consider first the existence of sign changing solutions of
the problem

(Dk)

{
−∆u + b(x)u = f(x, u) in Bk(0),

u = 0 on ∂Bk(0),

and similarly of (Dλ,k) where b is replaced by bλ.

Theorem 3.1.

(a) Under the assumptions of Theorem 2.1 problem (Dk) has a sign changing
solution wk 6= 0 such that ‖wk‖ ≤ β0 for some β0 independent of k ∈ N.

(b) Under the assumptions of Theorem 2.2 problem (Dλ,k) has a sign chang-
ing solution wλ,k 6= 0 such that ‖wλ,k‖λ ≤ β0 for some β0 > 0 indepen-
dent of λ ≥ 0 and k ∈ N.
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Proof. (a) The existence of a sign changing solution has essentially been
proved in [3] and [1] except that there it is assumed that f is C1. Moreover,
in [3] f is independent of x and f ′ has to be bounded away from 0. This is
not necessary, however, arguing as follows. For n ∈ N we replace f by fn

which coincides with f if |u| ≤ Rn, is increasing in u for |u| > Rn and grows
superlinearly and subcritically, where Rn → ∞ as n → ∞. We let Fn(x, u) :=∫ u

0
fn(x, t) dt be the primitive of fn as usual. By (f4) there exists cn > 0 such

that fn(x, u)+cnu is strictly increasing in u. This has the effect that the gradient
vector field of the C1-functional

H1
0 (Bk(0)) → R, u 7→

∫
Bk(0)

(
Fn(x, u) +

1
2
cnu2

)
dx

with respect to the scalar product

〈u, v〉n :=
∫

Bk(0)

(∇u · ∇v + b(x)uv + cnuv) dx

on H1
0 (Bk(0)) is order preserving. Moreover, it induces a strongly order preserv-

ing vector field on C1
0(Bk(0)) := C1(Bk(0)) ∩H1

0 (Bk(0). Using the convexity of
th positive and the negative cone it is easy to construct a pseudo-gradient vector
field for the functional

Φk,n(u) =
1
2

∫
Bk(0)

(|∇u|2 + b(x)u2) dx−
∫

Bk(0)

Fn(x, u) dx

=
1
2
‖u‖2

n −
∫

Bk(0)

(Fn(x, u) +
1
2
cnu2) dx

on C1
0(Bk(0)) such that the associated flow leaves the positive and negative cone

invariant. It is this property which is used in [3] and [1] and which yields a
sign changing critical point wk,n of Φk,n. An inspection of the proofs in [3]
and [1] shows that the critical point comes from a linking which also yields a
bound for the critical value. More precisely, let e1 ∈ H1

0 (Bρ(0)) be the positive
eigenfunction of −∆ and let e2 ∈ H1

0 (Bρ(0)) be orthogonal to e1, some ρ > 0
fixed. Then an upper bound for the critical value is given by the supremum of
Φk,n on the span of e1, e2 which is independent of k and n. It follows that ‖wk,n‖
is bounded independent of k and n. Then it follows from elliptic theory that for
n large enough the critical point satisfies |wk,n|∞ < Rn, hence wk := wk,n solves
(Dk).

(b) We may proceed as in [3] with the same changes as sketched in (a). Also
we may assume that Bρ(0) ⊂ int a−1(0) for ρ > 0 small. This has the effect
that the associated functional restricted to the span of e1, e2 is independent of λ

yielding bounds independent of λ. �
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Lemma 3.1. There exists α0 > 0 independent of λ ≥ 0 and k ∈ N such
that |w±|s+1 ≥ α0 for any sign changing solution w of (Dk) or of (Dλ,k). Here
w+ = max{0, w} and w− = min{0, w}.

Proof. We consider the parameter dependent problem (Dλ,k). The proof
for (Dk) is the same, one simply drops all λ’s appearing below. Multiplying the
equation by w± we get

‖w±‖2
λ =

∫
Bk(0)

(|∇w±|2 + bλ(x)|w±|2) dx =
∫

Bk(0)

f(x,w±)w± dx.

By (f1) and (f2) there exists A > 0 such that

f(x, t) · t ≤ 1
2
|t|2 + A|t|s+1 for x ∈ RN , t ∈ R.

This implies ∫
Bk(0)

f(x,w±)w± ≤ 1
2
‖w±‖2

λ + A|w±|s+1
s+1

and therefore
‖w±‖2

λ ≤ 2A|w±|s+1
s+1.

By the embedding theorem there exists c0 > 0 such that

|w±|s+1 ≤ c0‖w±‖H1(RN ) ≤ c0‖w±‖λ.

Consequently we obtain
|w±|s−1

s+1 ≥ 1/2c2
0A. �

Lemma 3.2.

(a) Suppose (b1) and (b2) hold. Then given β0 > 0 and ε > 0 there exists
R > 0 such that ‖u‖ ≤ β0 implies

∣∣u|Bc
R

∣∣
s+1

≤ ε, for any u ∈ E. Here
Bc

R := {x ∈ RN : |x| > R}.
(b) Suppose (a1) and (a2) hold. Then given β0 > 0 and ε > 0 there exists

λ0 > 0 and R > 0 such that ‖u‖λ ≤ β0 implies
∣∣u|Bc

R

∣∣
s+1

≤ ε for any
u ∈ Eλ, any λ ≥ λ0.

Proof. The proof is similar to that of Lemma 5.2 in [2]. �

Now we can prove Theorem 2.1 and Theorem 2.2. We choose 0 < ε0 < α0/2
where α0 is from Lemma 3.1. For this ε0 and for β0 as in Theorem 3.1 we choose
R > 0 and λ0 > 0 as in Lemma 3.2. In order to simplify notations we fix λ ≥ λ0

and write wk ∈ H1
0 (Bk(0)) both for the solution of (Dk) from Theorem 3.1(a)

and for the solution of (Dλ,k) from Theorem 3.1(b). Since ‖wk‖λ ≤ β0 we may
assume that up to a subsequence wk ⇀ w in Eλ and wk → w in Lθ

loc(RN ) for
2 ≤ θ < 2∗. It is easy to see that w is a solution of (S) or (Sλ) respectively.
We want to show that w is a sign changing solution. Without loss of generality,
we may also assume that w±k ⇀ w± in Eλ and w±k → w± in Ls+1

loc (RN ). Now
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Lemma 3.1 yields
∣∣w±k ∣∣

s+1
≥ α0 and Lemma 3.2 yields

∣∣w±k |Bc
R

∣∣
s+1

≤ ε0. Since
w±k → w± in Ls+1(BR(0)) we obtain w±|BR(0) 6= 0, hence w± 6= 0.

It remains to prove the last statement in Theorem 2.2. Consider a sequence
of solutions un := uλn

of (Sλn
) with λn →∞. By our above argument we know

that Φλn
(un) and ‖un‖H1 are bounded. Here

Φλ(u) :=
1
2

∫
RN

(|∇u|2 + bλ(x)u2) dx−
∫

RN

F (x, u) dx

is the functional associated to (Sλ). Since (un) is bounded in H1(RN ) we may
assume un ⇀ u in H1(RN ) and

(3.1) un → u in Lθ
loc(RN ), for 2 ≤ θ < 2∗.

We claim u|Ωc = 0 where Ω = int a−1(0) and Ωc = {x ∈ RN : x /∈ Ω}. If
u|Ωc 6= 0 then there exists a compact subset F with dist(F, a−1(0)) > 0 and
µ(F ) > 0 such that u|F 6= 0. Here we used µ(∂a−1(0)) = 0. Then by (3.1)∫

F

u2
n dx →

∫
F

u2 dx > 0.

Setting aF := min a|F > 0 it follows that

Φλn(un) ≥ λn

∫
F

a(x)u2
n dx ≥ λnaF

∫
F

u2
n dx →∞ as n →∞,

a contradiction. Since un solves −∆un + (λna + 1)un = f(x, un) we have that
u ∈ H1

0 (Ω) is a solution of −∆u + u = f(x, u) in Ω.
Next we claim that

(3.2) un → u in Lθ(RN ), for 2 < θ < 2∗.

If not, then by the concentration compactness principle of P. L. Lions (Lemma I.1
in [11]) there exist r > 0 and a sequence xn ∈ RN with |xn| → ∞ such that∫

Br(xn)

u2
n dx ≥ δ > 0.

Now an argument similar to showing u|Ωc = 0 gives a contradiction.
Finally, in order to see un → u in H1(RN ) observe that∫

RN

|∇(un − u)|2 dx +
∫

RN

(λna + 1)(un − u)2 dx

=
∫

RN

|∇un|2 dx +
∫

RN

(λna + 1)u2
n dx−

∫
RN

|∇u|2 dx

−
∫

RN

(λna + 1)u2 dx + o(1)

=
∫

RN

f(x, un)un dx−
∫

RN

f(x, u)u dx + o(1) = o(1)

where we used (3.2).
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