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SOME EXISTENCE RESULTS FOR DYNAMICAL SYSTEMS
ON NON-COMPLETE RIEMANNIAN MANIFOLDS

Elvira Mirenghi — Maria Tucci

Abstract. LetM∗ be a non-complete Riemannian manifold with bound-

ed topological boundary and V : M → R a C2 potential function sub-

quadratic at infinity.
In this paper we look for curves x : [0, T ] → M having prescribed

period T or joining two fixed points of M, satisfying the system

Dt(ẋ(t)) = −∇RV (x(t)),

where Dt(ẋ(t)) is the covariant derivative of ẋ along the direction of ẋ and

∇RV the Riemannian gradient of V .

We assume that V (x) → −∞ if d(x, ∂M) → 0 and, in the periodic
case, suitable hypotheses on the sectional curvature of M at infinity.

We use variational methods in addition with a penalization technique

and Morse index estimates.

1. Introduction and main results

Let (M∗, 〈 · , · 〉R) be a finite dimensional Riemannian manifold and consider
M ⊆ M∗, an open unbounded connected subset such that (M, 〈 · , · 〉R) is a
Riemannian manifold with bounded topological boundary ∂M, and V :M→ R
a C2 potential function.
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In this paper we want to look for curves x : [0, T ] → M having prescribed
period T or joining two fixed points of M, satisfying the system

(1.1) Dt(ẋ(t)) = −∇RV (x(t)),

where Dt(ẋ(t)) is the covariant derivative of ẋ along the direction of ẋ and ∇RV

the Riemannian gradient of V .
Those problems have been studied when V is subquadratic at infinity and M

is a complete manifold, assuming, if M is non-compact, the existence of a func-
tion convex at infinity on M, (see [10]) or suitable hypothesis on the sectional
curvature at infinity (see [8], [9]).

Moreover, if M is non-complete, existence results of problem (1.1) have been
obtained assuming that M has a convex boudary and V is bounded (see [1], [2],
[7], [11], [17]).

In this paper we consider a potential V subquadratic at infinity and a non-
complete manifold; the convexity assumptions on the boundary are replaced
by suitable behaviour assumptions of the potential V nearby ∂M. Moreover in
the study of the periodic orbits we will need suitable assumptions on the sectional
curvature of M at infinity.

Difficulties arise from the non-completeness ofM, and we will overcome them
using a penalization technique, in addition to Morse index estimates.

We introduce now some notations and state the main theorems of the paper.
If M is a Riemannian manifold, denote Λ(M) the free loop space on M and

K(x) (x ∈M) the supremum of the sectional curvature i.e.

K(x) = sup{Kπ | π ⊂ TxM},

where TxM is the tangent space of M at x and Kπ its sectional curvature with
respect to the plane π ⊂ TxM.

Moreover let d( · , · ) denote the distance induced by the Riemannian struc-
ture of M and Hd(x) the Hessian of the function d( · , ∂M) at x. Analogously if
f ∈ C2(M,R), Hf (x) will denote the Hessian of the function f at x (see [12]).

The main theorems we prove are the following:

Theorem 1.1. Let (M, 〈 · , · 〉R) be a C∞ connected, unbounded, finite di-
mensional Riemannian manifold having smooth topological bounded boundary,
x0 a fixed point of M. Suppose that:

(V1) (i) lim
d(x,x0)→+∞

V (x) = +∞,

(ii) lim
d(x,∂M)→0

V (x) = −∞,

(V2) (i) lim inf
d(x,x0)→+∞

sup
v 6=0

v∈TxM

HV (x)[v, v]
〈v, v〉R

> 0,
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(ii) lim sup
d(x,x0)→+∞

sup
v 6=0

v∈TxM

HV (x)[v, v]
〈v, v〉R

< +∞,

(iii) lim sup
d(x,∂M)→0

sup
v 6=0

v∈TxM

HV (x)[v, v]
〈v, v〉R

< 0,

(M1) lim sup
d(x,x0)→+∞

K(x) ≤ 0,

(M2) infinitely many integers q ∈ N exist, such that

(1.2) Hq(Λ(M),K) 6= 0

Hq( · ,K) being the q-th group of singular homology with coefficients in
a field K.

Moreover, suppose that δ > 0 exists such that, for any x ∈M, with d(x, ∂M) <
δ, it results:

(D1) 〈∇d(x, ∂M),∇V (x)〉 > 0,
(D2) Hd(x)[v, v] ≤ 0 for any v ∈ TxM.

Then T ∗ > 0 exists such that, for any prescribed T ∈ ]0, T ∗[, at least one T -
periodic non-constant solution of problem (1.1) exists in M.

Remark 1.2. Hypothesis (V2) implies that V is subquadratic at infinity.
Indeed, it is possible to show that, if (ii) of (V1) and (ii) of (V2) hold and

ν = lim sup
d(x,x0)→+∞

sup
v 6=0

v∈TxM

HV (x)[v, v]
〈v, v〉R

then there exist two real constants c1 and c2 such that, for any x ∈M,

(1.3) V (x) ≤ ν

2
d2(x, x0) + c1d(x, x0) + c2

(see Lemma 2.2 of [5]).

Remark 1.3. From Theorem 1.1 it follows that problem (1.1) admits perio-
dic solutions for any prescribed period T > 0. Indeed, if T > 0, p ∈ N exists such
that T/p ∈ ]0, T ∗[ and so the existing solution of period T/p has also period T .

Theorem 1.4. Let (M, 〈 · , · 〉R) be a C∞ connected, unbounded, finite di-
mensional Riemannian manifold having bounded boundary, x0 and x1 two fixed
points of M. Assume that (V1)(i) and (V2)(ii), (D1), (D2) and (M2) hold. Then
there exist T > 0 and at least one solution x : [0, T ] → M of (1.1) such that
x(0) = x0 and x(T ) = x1.

2. Preliminaries and functional framework

Let us introduce now some preliminary notations which will be used in the
following sections.
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Let | · | denote the Euclidean norm in RN and 〈 · , · 〉 its usual inner product.
Moreover, denote S1 = R/TZ and H1 = H1([0, T ],RN ) the following Sobolev
space

H1 =
{
x : [0, T ] → RN

∣∣∣∣ absolutely continuous,
∫ T

0

〈ẋ, ẋ〉 dt < +∞
}

endowed with its usual norm.
Let (M, 〈 · , · 〉R) be a finite dimensional Riemannian manifold; the Nash

embedding theorem (see [13]) assures that N large enough exists such that M
can be isometrically embeddable in RN .

Thus, from now on we will identify M with a submanifold of the Euclidean
space RN and the Riemannian product 〈 · , · 〉R will be simply denoted 〈 · , · 〉.

Moreover, denote

Λ1 = Λ1(M) = {x ∈ H1(S1,RN ) | x(t) ∈M, x(0) = x(T )}

and

Ω1 = Ω1(M, x0, x1) = {x ∈ H1 | x(t) ∈M, x(0) = x0, x(T ) = x1}.

It is known that Λ1 and Ω1 are Hilbert manifolds (see [11], [15], [17]) and
their tangent spaces are

TxΛ1 = {ξ ∈ H1(S1,RN ) | ξ(t) ∈ Tx(t)M for any t ∈ [0, T ]}, if x ∈ Λ1,

equipped with the Riemannian product:

(2.1) 〈ξ, η〉1 =
∫ T

0

〈Dtξ,Dtη〉 dt+ 〈ξ(0), η(0)〉 for x ∈ Λ1, ξ, η ∈ TxΛ1

and

TxΩ1 = {ξ ∈ H1 | ξ(0) = ξ(T ) and ξ(t) ∈ Tx(t)M for any t ∈ [0, T ]}, if x ∈ Ω1,

equipped with the Riemannian product

(2.2) 〈ξ, η〉1 =
∫ T

0

〈Dtξ,Dtη〉 dt x ∈ Ω1, ξ, η ∈ TxΩ1.

Both TxΛ1 and TxΩ1 have a Riemannian structure.
Moreover, let us recall the Palais–Smale condition for a functional on a man-

ifold.

Definition 2.1. Let N be a Riemannian manifold and f : N → R a C1

functional and b ∈ R; the functional f is said to satisfy the Palais–Smale condi-
tion in f b = {x ∈ N | f(x) ≤ b}, briefly (PS), if and only if any sequence {xn}
in N such that

f(xn) ≤ b for any n ∈ N
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and
f ′(xn) → 0 as n→ +∞,

admits a convergent subsequence in N .

Definition 2.2. Let N be a Riemannian manifold, f ∈ C2(N ,R) and let
x ∈ N be a critical point of f . The strict Morse index of x (possibly +∞) is
the dimension of the maximal subspace of TxN where Hf (x) is negative definite
and will be denoted m(x).

The large Morse index of x (possibly +∞) is the dimension of the maximal
subspace of TxN whereHf (x) is negative semidefinite and will be denotedm∗(x).
If m∗(x) = m(x), x is said to be a non-degenerate critical point.

We recall now an abstract theorem on the Morse index that is a variant of
some known theorems (see [8]) and will be used in the proofs of our results.

Theorem 2.3. Let N be a complete Riemannian manifold of class C2 and
f ∈ C2(N ,R). Suppose that:

(i) for any critical point x of f , if 0 is an eigenvalue of Hf (x), both it is
isolated and it has finite multiplicity,

(ii) f satisfies the (PS) condition on f b, for any b ∈ R,
(iii) infN f > −∞,
(iv) q ≥ 0 is an integer such that Hq(N ,K) 6= 0.

Denote Γq = {A ⊆ N | i∗(Hq(A,K)) 6= 0}, where i : A → N is the inclusion
map. Then there exists a critical point x∗ of f corresponding to the critical value

(2.3) c = inf
A∈Γq

sup
x∈A

f(x)

and satisfying

(2.4) m(x∗) ≤ q ≤ m∗(x∗).

It is well known that the search of periodic solutions of problem (1.1) with
prescribed period T or joining two fixed points ofM can be reduced to the search
of the critical points of the action functional

(2.5) f(x) =
1
2

∫ T

0

〈ẋ, ẋ〉 ds−
∫ T

0

V (x) ds

defined in Λ1 (respectively, in Ω1).
Let x be a critical point of the functional f ; then the Hessian of f at x is:

Hf (x)[v, v] =
∫ T

0

〈Dsv,Dsv〉 ds−
∫ T

0

〈Rẋvẋ, v〉 ds

−
∫ T

0

HV (x)[v, v] ds for any v ∈ TxΛ1 (resp. v ∈ TxΩ1)
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where Rẋv denotes the Riemannian curvature tensor of M at (ẋ, v) whose prop-
erties are: if ẋ(s) and v(s) are not linearly independent then Rẋ(s)v(s)ẋ(s) = 0
otherwise

(2.6) 〈Rẋvẋ, v〉 = Kπ(〈ẋ, ẋ〉〈v, v〉 − 〈ẋ, v〉2)

where π is the plane generated by ẋ and v (see [14]).

3. Periodic case

For any ε > 0, let ψε ∈ C2(R+,R+) be such that ψ′ε ≥ 0 and

ψε(t) =

{
0 if t ≤ 1/2ε,

e2t−1/ε − 1 if t > 1/ε.

Denote, for any ε > 0,

(3.1) Uε(x) = ψε(|V (x)|) for any x ∈M

and consider the following penalized functional fε : Λ1 → R defined

fε(x) = f(x) +
∫ T

0

Uε(x(t)) dt.

Lemma 3.1. Let {xn} ⊂ Λ1 be such that

(3.2)
{ ∫ T

0

〈ẋn, ẋn〉 dt
}

is bounded

and let {sn} ⊂ [0, T ] satisfy

(3.3) lim
n
d(xn(sn), ∂M) = 0.

Then, up to a subsequence, for any ε > 0,

(3.4) lim
n

∫ T

0

ψε(|V (xn(t))|) dt = +∞.

Proof. Fix ε > 0. As ∂M is bounded, from (3.2) and (3.3) it follows that

{xn(s) | n ∈ N, s ∈ [0, T ]}

is bounded. Without loss of generality, we can assume that, for any n ∈ N,

d(xn(sn), ∂M) = inf
t∈[0,T ]

d(xn(t), ∂M).

Moreover, denote {tn} ⊆ [0, T ] a sequence such that

d(xn(tn), ∂M) = sup
t∈[0,T ]

d(xn(t), ∂M).

If

(3.5) lim inf
n

d(xn(tn), ∂M) = 0,
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then (3.4) can be easily proved. Indeed, in this case, up to a subsequence,

lim
n

sup
t∈[0,T ]

d(xn(t), ∂M) = 0

and then, from (ii) of (V1), it follows that for any σ > 1/ε > 0, n∗ ∈ N exists
such that, for any n ∈ N, n > n∗,

|V (xn(t))| > σ > 1/ε for any t ∈ [0, T ]

and thus

ψε(|V (xn(t))|) = e2|V (xn(t))|−1/ε − 1 for any t ∈ [0, T ].

It follows that,∫ T

0

ψε(|V (xn(t))|) dt =
∫ T

0

e2|V (xn(t))|−1/ε dt− T ≥ T (eσ − 1).

Then

lim
n

∫ T

0

ψε(|V (xn(t))|) dt = +∞.

Let us consider now the case when

lim inf
n

d(xn(tn), ∂M) > 0.

Up to a subsequence, we can suppose that

lim
n
d(xn(tn), ∂M) > 0.

We can choose η > 0 such that

(3.6) e−|V (xn(tn))| > η for any n ∈ N.

From (3.3) and (ii) of (V1), it follows that

e−|V (xn(sn))| → 0,

and then, if n is large enough

(3.7) e−|V (xn(sn))| < η/2.

From (3.6) and (3.7) it follows that

(3.8) e−|V (xn(tn))| − e−|V (xn(sn))| > η − η/2 = η/2 > 0.

In order to state (3.4), we need further evaluations. Fix s > sn (similar argu-
ments hold if s < sn), then
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(3.9) e−|V (xn(s))| − e−|V (xn(sn))| =
∫ s

sn

〈∇(e−|V (xn(τ))|), ẋn(τ)〉 dτ

≤
∫ s

sn

||∇(e−|V (xn(τ))|)|| ||ẋn(τ)|| dτ

≤ c1(s− sn)1/2

( ∫ T

0

||ẋn(τ)||2 dτ
)1/2

≤ c2
√
s− sn.

From (3.9), it follows that, for any s > sn,

e−|V (xn(s))| ≤ c2
√
s− sn + e−|V (xn(sn))|

and, from the inequality (a+ b)2 ≤ 2(a2 + b2), it results that, if tn > sn,∫ tn

sn

ds

(c2
√
s− sn + e−|V (xn(sn))|)2

(3.10)

≥
∫ tn

sn

ds

2(c22(s− sn) + e−2|V (xn(sn))|)

= c3 ln(1 + c22(tn − sn)e2|V (xn(sn))|).

From (3.8) and (3.9), it follows that lim
n

(tn − sn) > 0 and then, from (3.10),

(3.11) lim
n

ln(1 + c22(tn − sn)e2|V (xn(sn))|) = +∞.

If it happens that, for an infinite number of integer:

|V (xn(t))| > 1/ε for any t ∈ [sn, T ]

then, for any t ∈ [sn, T ],

ψε(|V (xn(t))|) = e2|V (xn(t))|−1/ε − 1,

and then, if tn > sn,∫ tn

sn

ds

(c2
√
s− sn + e−|V (xn(sn))|)2

≤
∫ tn

sn

ds

e−2|V (xn(s))|

= e1/ε

∫ tn

sn

ψε(|V (xn(s))|) ds+ e1/εT

and thus, from (3.10) and (3.11),

lim
n

∫ T

0

ψε(|V (xn(t))|) dt = +∞.

If, for infinite integers n, τn ∈ [sn, T ] exists such that

|V (xn(τn))| ≤ 1/ε,
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denote
t∗n = inf{t ∈ ]sn, T ] | |V (xn(t))| = 1/ε}

and
s∗n = sup{t ∈ ]sn, t

∗
n[ | |V (xn(t))| = 2/ε}.

Remark that, if t ∈ ]s∗n, t
∗
n[, 1/ε ≤ |V (xn(t))| ≤ 2/ε.

Up to subsequences, we can suppose that

sn → s0, s∗n → s∗0, t∗n → t∗0,

where s0, s∗0 and t∗0 are distinct.
Let ρ∗ > 0 be such that [s∗0 − ρ∗, s∗0 + ρ∗] ∩ [t∗0 − ρ∗, t∗0 + ρ∗] = ∅ and take

un ∈ [s∗0 + ρ∗, t∗0 − ρ∗] ∩ ]s∗n, t
∗
n[ . We can assume that

2/ε ≥ lim
n→∞

|V (xn(un))| ≥ 1/ε.

That implies that a constant c∗ ∈ R exists such that, up to a subsequence,

e−|V (xn(un))| ≥ c∗, for any n ∈ N.

As
lim
n
e−|V (xn(sn))| = 0

it follows that, if n is large enough,

e−|V (xn(sn))| < c∗/2

and then
e−|V (xn(un))| − e−|V (xn(sn))| > c∗ − c∗/2 > 0.

Reasoning as in the previous case with un instead of tn, we can obtain (3.9)
and (3.11). Moreover, if t ∈ [sn, un], then

|V (xn(t))| ≥ 1/ε

and thus
ψε(|V (xn(t))|) = e2|V (xn(t))|−1/ε − 1.

Reasoning in the same way, the claim follows. �

Lemma 3.2. For any b ∈ R and for any ε ∈ R+, fε satisfies the (PS)
condition in f b

ε .

Proof. Let b > 0 and {xn} ⊂ Λ1be such that

(3.12) fε(xn) ≤ b for any n ∈ N,

(3.13) dfε(xn) → 0 if n→ +∞,

and let us prove that a convergent subsequence exists.
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Indeed, if I = {t ∈ [0, T ] | V (x(t)) ≥ 0}, reasoning as in Lemma 3.6 of [9], it
is possible to show that{

−
∫

I

V (xn) ds+
∫

I

ψε(|V (xn)|) ds
}

is bounded from below and then

(3.14)
{
−

∫ T

0

V (xn) ds+
∫ T

0

ψε(|V (xn)|) ds
}

is bounded from below in Λ1. From (3.12) and (3.14) it follows that:

(3.15)
{ ∫ T

0

〈ẋn, ẋn〉 ds
}

is bounded,

and then
{

sup
s∈[0,T ]

d(x0, xn(s))
}

is bounded too. In fact, if

sup
s∈[0,T ]

d((x0, xn(s)) → +∞

from (3.15) it follows that

inf
s∈[0,T ]

d((x0, xn(s)) → +∞

and that contradicts (3.12). Then a subsequence exists, such that

xn ⇀ x weakly in H1 and strongly in L∞.

Moreover, δ > 0 exists, such that

{xn} ⊂ Λ1(Aδ) = {x ∈ Λ1 | d(x(t), ∂M) ≥ δ for any t ∈ [0, T ]}.

Indeed, if {sn} ⊂ [0, T ] exists such that lim
n
d(xn(sn), ∂M) = 0, then, from (3.15)

and from Lemma 3.1, it follows that∫ T

0

ψε(|V (xn(s))|)ds→ +∞,

which contradicts (3.12).
As Λ1(Aδ) is a complete space, arguing as in Lemma 3.2 of [6], it can be

proved that {xn} strongly converges to x ∈ Λ1(Aδ) ⊆ Λ1 in H1 (see also
Lemma 3.2 of [7] and Theorem 1.1 of [8]). �

Theorem 3.3. Let q ∈ N be such that (1.2) holds. Then, for any ε > 0, fε

has a critical point xε in Λ1, corresponding to the critical value

(3.16) cε = inf
A⊂Γq

sup
x∈A

fε(x)

and such that

(3.17) m(xε) ≤ q ≤ m∗(xε).
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Proof. Reasoning as in Lemma 3.1 of [9] it is possible to show that, for any
ε > 0, fε satisfies condition (i) of Theorem 2.3. Moreover, from Lemma 3.2 and
from (3.14), it follows that (ii) and (iii) of Theorem 2.3 hold. Furthermore, as
the inclusion of Λ1 in Λ(M) is a homotopy equivalence, the nontrivial homology
groups of Λ1 and Λ(M) with respect to a field are the same (see [15], [16]).
Thus also (iv) holds. All the hypotheses of Theorem 2.3 are satisfied, thus (3.16)
and (3.17) follow. �

Lemma 3.4. An ε0 > 0 and Q ∈ N exist, such that for any ε ∈ ]0, ε0[ and,
for any xε critical point of fε satisfying (3.16) and (3.17), the following relation
hold

xε is constant ⇒ m∗(xε) ≤ Q.

Proof. Let ε > 0 and xε a constant critical point of fε, then the tangent
space TxεΛ

1 is given by

Txε
Λ1 =

{
ξ ∈ H1(S1,RN )

∣∣∣∣ ∃v = (v1, . . . , vn) ∈ H1(S1,RN ) s.t. ξ =
n∑

i=1

viei

}
,

{e1, . . . , en} being an orthonormal basis of Txε
M and n = dimM.

From the definition of covariant derivative along a curve, it follows that, for
any ξ ∈ TxεΛ

1

Dsξ(s) =
n∑

1=i

v̇i(s)ei.

It means that
Txε

Λ1 ≡ H1(S1, Txε
M)

that is, the covariant derivative is equal to the usual derivative and Txε
Λ1 is

isometric to H1(S1,Rn). Then, the Hessian of fε at xε reduces to

(3.18) Hfε(xε)[v, v] =
∫ T

0

〈v̇, v̇〉 ds−
∫ T

0

HV (xε)[v, v] ds+
∫ T

0

HUε(xε)[v, v] ds,

for any v ∈ Txε
Λ1. Let us consider the following decomposition of H1(S1,Rn)

with respect to the metric (2.1):

H1(S1,Rn) = Rn ⊕H1
0 (S1,Rn),

where Rn is identified with the constant loop space and

H1
0 (S1,Rn) = {v ∈ H1(S1,Rn) | v(0) = v(T ) = 0}.

It is well known that the self-adjoint realization in L2([0, T ],Rn)

v → −v̈

with T -periodic boundary conditions has a sequence (λk)k∈N of eigenvalues, each
one to be counted with its multiplicity.
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Denote ζk the eigenvector relative to λk and let Hr be the space spanned by
{ζ1, . . . , ζr}, then

H1
0 (S1,Rn) = Hr ⊕H⊥

r .

From (i) and (ii) of (V2), it follows that K > 0 and ν > 0 exist, such that

(3.19) 0 < sup
v 6=0

v∈TxM

HV (x)[v, v]
〈v, v〉

< ν for any x ∈M, d(x, x0) > K,

and, from (ii) of (V1) and from (iii) of (V2) it follows that δ′ < δ exists, such
that, for any x ∈M, d(x, ∂M) < δ′,

(3.20) V (x) < 0 and sup
v 6=0

v∈TxM

HV (x)[v, v]
〈v, v〉

< 0.

Denote

I1 = {s ∈ [0, T ] | d(xε(s), x0) > K},
I2 = {s ∈ [0, T ] | d(xε(s), ∂M) < δ′},

and I3 = [0, T ]− (I1 ∪ I2), then

(3.21)
∫

I1

HUε
(xε)[v, v] ds ≥ 0

and, from (3.19),

(3.22) −
∫

I1

HV (xε)[v, v] ds ≥ −ν
∫

I1

〈v, v〉 ds

and, from (3.20),

(3.23)
∫

I2

(−HV (xε)[v, v] +HUε
(xε)[v, v]) ds ≥ 0.

The potential V is bounded on the set

D = {x ∈M | d(x, x0) ≤ K, d(x, ∂M) ≥ δ′}

therefore ε0 > 0 exists, such that

|V (x)| < 1
2ε0

for any x ∈ D

and so, for any ε ∈ ]0, ε0[,

(3.24)
∫

I3

HUε
(xε)[v, v] ds = 0.

Denote

sup
x∈D

sup
v 6=0

v∈TxM

∣∣∣∣HV (x)[v, v]
〈v, v〉

∣∣∣∣ = KD,
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then ∣∣∣∣HV (xε(s))[v(s), v(s)]
〈v(s), v(s)〉

∣∣∣∣ ≤ KD for any s ∈ I3, and any ε ∈ ]0, ε0[.

If we choose r ∈ N such that λr > λ = max{ν,KD}, from (3.18), (3.21),
(3.22), (3.23) and (3.24), it results that

Hfε
(xε)[v, v] ≥

∫ T

0

〈v̇, v̇〉 ds− ν

∫
I1

〈v, v〉 ds−
∫

I3

HV (xε)[v, v] ds

≥ λr

∫ T

0

〈v, v〉 ds− λ

∫
I1∪I3

〈v, v〉 ds

≥ (λr − λ)
∫

I1∪I3

〈v, v〉 ds > 0 for any v ∈ H⊥
r .

Then it follows that

(3.25) m∗(xε) ≤ dimHr + dimM = Q. �

Proof of Theorem 1.1. Fix T > 0 and let q > 2 dimM be such that
q > Q and (1.2) hold. If xε is a critical point of fε satisfying (3.16) and (3.17)
and ε < ε0, ε0 being the one defined in Lemma 3.4; then xε is a non-costant
solution. In order to prove the theorem it is enough to show that ε1 > 0, ε1 < ε0
and M > 0 exist, such that, for any ε ∈ ]0, ε1[ and for any s ∈ [0, T ],

d(xε(s), x0) ≤M,(3.26)

d(xε(s), ∂M) ≥ δ′,(3.27)

where δ′ is such that (3.20) holds. Indeed, if (3.26) and (3.27) hold, the potential
V is bounded on the set

{xε(s) ∈M| s ∈ [0, T ], ε ∈ ]0, ε1[},

then we can choose ε∗ ∈ ]0, ε1[ small enough, such that

|V (xε∗(s))| ≤ K <
1

2ε∗
for any s ∈ [0, T ].

Then
ψε∗(|V (xε∗(s))|) = 0 for any s ∈ [0, T ]

which implies that xε∗ is a critical point of f .
Let us prove (3.26). Argue by contradiction and suppose there exist εn → 0+

and a sequence {xn} of critical points of fn = fεn such that (3.16) and (3.17)
hold and, moreover,

(3.28) sup
s∈[0,T ]

d(xn(s), x0) → +∞ as n→ +∞.
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As the singular homology has compact support, β independent of n exists,
such that

fn(xn) ≤ β for any n ∈ N,

and then

(3.29) f(xn) ≤ β for any n ∈ N.

We want to show that

inf
s∈[0,T ]

d(xn(s), x0) → +∞ as n→ +∞.

Indeed, if { ∫ T

0

〈ẋn, ẋn〉 ds
}

is bounded, the claim is obvious because of (3.28); if∫ T

0

〈ẋn, ẋn〉 ds→ +∞

and {
inf

s∈[0,T ]
d(xn(s), x0)

}
is bounded

then ( ∫ T

0

〈ẋn, ẋn〉 ds
)1/2

≥
∫ T

0

〈ẋn, ẋn〉1/2 ds ≥ sup
s∈[0,T ]

d(xn(s), x0).

Then, from (1.3) and (3.29) it follows that

(3.30)
∫ T

0

〈ẋn, ẋn〉 ds ≤β +
∫ T

0

V (xn) ds ≤ β′ +
ν

2

∫ T

0

d2(xn, x0) ds

+ c1

∫ T

0

d(xn, x0) ds

≤β′ + ν

2
T sup

s∈[0,T ]

d2(xn(s), x0) + c1T sup
s∈[0,T ]

d(xn(s), x0)

≤ ν

2
T

∫ T

0

〈ẋn, ẋn〉 ds+ c1T

( ∫ T

0

〈ẋn, ẋn〉 ds
)1/2

+ β′,

if n is large enough, and then(
1− ν

2
T

) ∫ T

0

〈ẋn, ẋn〉 ds− c1T

( ∫ T

0

〈ẋn, ẋn〉 ds
)1/2

≤ β′.

Suppose T ≤ 2/ν, then { ∫ T

0

〈ẋn, ẋn〉 ds
}

is bounded
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and it is a contradiction, thus

inf
s∈[0,T ]

d(xn(s), x0) → +∞ as n→ +∞.

As xn is a critical point of fn, for any n ∈ N, En > 0 exists, such that

1
2
〈ẋn(s), ẋn(s)〉+ V (xn(s)) = En.

By virtue of (M1) and (2.6) we can choose a sequence δn → 0+ such that
δnEn → 0+ and

〈Rvwv, w〉
〈v, v〉〈w,w〉 − 〈v, w〉2

< δn.

Then, for any v ∈Wn = {w ∈ TxnΛ1 | w(0) = 0},

Hfn(xn)[v, v] =
∫ T

0

〈Dsv,Dsv〉 ds−
∫ T

0

〈Rẋnvẋn, v〉 ds

−
∫ T

0

HV (xn)[v, v] ds+
∫ T

0

HUn
(xn)[v, v] ds

≥
∫ T

0

〈Dsv,Dsv〉 ds

− δn

{ ∫ T

0

〈ẋn, ẋn〉〈v, v〉 ds−
∫ T

0

〈ẋn, v〉2 ds
}

−
∫ T

0

HV (xn)[v, v] ds+
∫ T

0

HUn
(xn)[v, v] ds

≥
∫ T

0

〈Dsv,Dsv〉 ds− δn

∫ T

0

〈ẋn, ẋn〉〈v, v〉 ds

−
∫ T

0

HV (xn)[v, v] ds.

Denote, for any n ∈ N,

M(xn) = sup
v 6=0

v∈TxnM

HV (xn)[v, v]
〈v, v〉

,

then, from (ii) of (V2) and from the inequality

( ∫ T

0

〈v, v〉 ds
)1/2

≤ 2T
( ∫ T

0

〈Dsv,Dsv〉 ds
)1/2

,
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it follows that, if n is large enough and v ∈Wn − {0},

Hfn
(xn)[v, v] ≥

∫ T

0

〈Dsv,Dsv〉 ds− δn

∫ T

0

[2En − 2V (xn)]〈v, v〉 ds

−
∫ T

0

M(xn)〈v, v〉 ds

≥
∫ T

0

[
1

4T 2
− 2δnEn −M(xn)

]
〈v, v〉 ds.

Take T ∗ > 0 such that T ∗ ≤ min{2/ν, 1/2
√
ν}, then Hfn(xn)[v, v] > 0 and

m∗(xn) ≤ dim(Wn)⊥ ≤ 2 dimM,

which contradicts q > 2 dimM.
Let us prove (3.27). We argue by contradiction and suppose {εn} → 0+,

{sn} ⊂ [0, T ] and {xn} ⊂ Λ1 exist such that xn is a critical point of fn = fεn ,
(3.16) and (3.17) hold and, moreover,

d(xn(sn), ∂M) = inf
s∈[0,T ]

d(xn(s), ∂M) < δ′.

Denote vn(s) = d(xn(s), ∂M). Then, it results that

(3.31) v′n(sn) = 0 and v′′n(sn) ≥ 0.

Moreover, as xn is a critical point,

(3.32) Dtẋn = −∇V (xn) + ψ′n(|V (xn))|)∇V (xn)sign(V (xn))

and, from (3.31),

0 ≤ Hd(xn(sn))[ẋn(sn), ẋn(sn)] + 〈∇d(xn(sn), ∂M), Dtẋn(sn))〉.

Then, from (D1), (D2) and (3.32)

0 ≤Hd(xn(sn))[ẋn(sn), ẋn(sn)] + 〈∇d(xn(sn), ∂M),−∇V (xn(sn))〉
+ 〈∇d(xn(sn), ∂M),∇V (xn(sn))〉ψ′n(|V (xn(sn))|) sign(V (xn(sn)))

≤ (−1 + ψ′n(|V (xn(sn))|) sign(V (xn(sn)))〈∇d(xn(sn)), ∂M),∇V (xn(sn))〉
< 0.

That is a contradiction, thus the claim follows. �

4. Case of curves joining two points

As in Section 3, for any ε > 0, we consider the penalized functional fε : Ω1 →
R defined,

fε(x) = f(x) +
∫ T

0

Uε(x(t)) dt.
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It is possible to show that Lemma 3.1 still holds. The proof is obtained
reasoning as in the case of Λ1and observing that the inequality

e−|V (xn(T ))| = e−|V (x1)| > 0

holds also in a neighbourhood I of T and then η > 0 and {tn} ⊂ I, tn > sn

exist, such that

e−|V (xn(tn))| > η for any n ∈ N,

thus obtaining (3.6).
The functional fε can be proved to satisfy (PS) condition and also all the hy-

potheses of Theorem 2.3 in Ω1 so xε ∈ Ω1 exists, such that (3.16) and (3.17)
hold.

Proof of Theorem 1.4. Let us choose q > 2 dimM; as in the periodic
case, in order to prove the theorem it is enough to show that ε0 > 0 and M > 0
exist, such that, for any s ∈ [0, T ] and for any ε ∈ ]0, ε0[, (3.26) and (3.27) hold.

In order to get (3.26) we argue by contradiction and suppose εn → 0+ and
a sequence {xn} of critical points of fn = fεn

exist, such that (3.16), (3.17)
and (3.28) hold.

Then, as the singular homology has compact support, β independent of n
exists such that

f(xn) ≤ β for any n ∈ N.

Thus, as {
inf

s∈[0,T ]
d(xn(s), x0)

}
is bounded,

and (3.30) holds, arguing as in Theorem 1.1, it is possible to show that, if n is
large enough,

(4.1)
{ ∫ T

0

〈ẋn, ẋn〉 ds
}

is bounded.

From (4.1) and (3.28) we obtain a contradiction, so (3.26) follows. The in-
equality (3.27) is obtained as in the periodic case. �
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