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THE COINCIDENCE REIDEMEISTER CLASSES
OF MAPS ON NILMANIFOLDS

Daciberg L. Gonçalves

Introduction

Given a pair of maps f, g : N1 → N2 where N1, N2 are compact nilmanifolds
of the same dimension, in [15], C. K. McCord has very recently shown that
N(f, g) = |L(f, g)| where N(f, g), L(f, g) mean the coincidence Nielsen number
and Lefschetz coincidence number, respectively. Furthermore, he has also shown
that the essential coincidence Nielsen classes have the same coincidence index
which is either +1 or −1. In the fixed point situation, or even more general in
the coincidence case where N1 = N2, several authors have exploited the relation
among N(f, g), L(f, g), coin(f#, g#) and R(f, g), where f#, g# are the induced
homomorphisms on the fundamental group by f , g, respectively, and R(f, g) is
the Reidemeister coincidence number. See for example [2], [7] and [8]. For the
general situation f, g : N1 → N2, the main part which is missing so far is the
relation between coin(f#, g#) and R(f, g). The purpose of this work is first to
study such relation including the case where the two compact nilmanifolds N1

and N2 do not have the same dimension. Finally, to study coin(f, g) for g = c

the constant map, where the two compact nilmanifolds N1 and N2 do not have
necessarily the same dimension. Then we prove:
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Theorem 2.5. Let f, g : N1 → N2, where N1, N2 are compact nilmanifolds.
Then the two conditions below are equivalent

(a) The Hirsch lenght of coin(f#, g#) is dimN1 − dimN2,
(b) R(f, g) <∞.

Based on this result we can prove:

Theorem 2.6. Let f, g : N1 → N2, where N1, N2 are compact nilmanifolds
of the same dimension. Then the three conditions below are equivalent:

(a) N(f, g) 6= 0,
(b) coin(f#, g#) = 1,
(c) R(f, g) <∞.

If one of the three conditions above holds, then N(f, g) = R(f, g) = |L(f, g)|.

Finally, we consider the root case. Let c denote a constant map. We prove:

Theorem 3.4. For f : N1 → N2 where N1, N2 are compact nilmanifolds,
the following three conditions are equivalent:

(a) N(f, c) 6= 0,
(b) the Hirsch lenght of Ker f# : π1(N1) → π1(N2) is dimN1 − dimN2,
(c) the index of f#(π1(N1)) in π1(N2), i.e. R(f, c) is finite.

If one of the three conditions above holds, then

N(f, c) = R(f, c) = [f#π(N1)), π1(N2)],

and Ȟm−n(Fi, Z) 6= 0 for l coincidence Nielsen classes F1, . . . , Fl and l =
R(f, c).

This paper is organized in three sections. In Section 1 we present some
general facts about maps on Lie groups and give the background in order to
relate our original questions with a question about maps on Lie groups. In
Section 2, for given N1, N2 compact nilmanifolds, we consider the Lie Groups
which are the respectively universal covers. Then we solve the related problem
for these Lie Groups and prove Theorems 2.5 and 2.6. In Section 3, we consider
the root case, where we show that the number of essential Nielsen classes is
precisely the number of Reidemeister classes if this number is finite, and zero
otherwise. This is Theorem 3.4.

Certainly the result here will have implication in the coincidence theory of
solvmanifolds. This will be analized elsewhere.

Theorem 2.5, has been obtained independently by P. Wong, at the same time,
using different method (see [20]).

We would like to thank Dr. Francisco Rui Tavares de Almeida and Prof. Al-
brecht Dold for many helpful conversations. The first one about Lie Groups
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and the second about Section 3. We also would like to thank the referee for his
critical reading making this work much more clear.

1. Preliminaries

Let G1, G2 be two simply connected Lie groups, and Γ1 ↪→ G1, Γ2 ↪→ G2

two uniform (discrete and co-compact) subgroups. Suppose ϕ1, ϕ2 : G1 → G2

are two group homomorphisms such that ϕi(Γ1) ⊂ Γ2, i = 1, 2, and call f, g :
G1/Γ1 → G2/Γ2 the maps induced by ϕ1, ϕ2, respectively, on the homogeneous
spaces.

The following elementary fact is true.

Proposition 1.1. We have that π1(G1/Γ1) = Γ1, π1(G2/Γ2) = Γ2 and
f#, g# : π1(G1/Γ1) → π1(G2/Γ2) are the homomorphism ϕ1|Γ1 , ϕ2|Γ1 , respec-
tively.

As before, let G be a simply connected Lie Group.

Definition 1.2. We say that G has the P1 property, if the map ψ : H1 ×
H2 → G given by ψ(h1, h2) = h2h

−1
1 is surjective for any pair of closed Lie

subgroups H1 and H2 where the two submanifolds H1, H2 are in general position
(see [10, p. 4] for the definition of general position).

For the next definition we will consider any two connected and simply con-
nected closed Lie subgroups H1, H2 of G and uniform subgroups Γ1 ⊂ H1,
Γ2 ⊂ H2, Γ ⊂ G such that Γ1,Γ2 ⊂ Γ.

Definition 1.3. The Reidemeister classes of (Γ1,Γ2) on Γ, denoted by
R[Γ1,Γ2; Γ], are the classes of elements of Γ given by the relation α ∼ h2αh

−1
1 ,

for h1 ∈ Γ1, h2 ∈ Γ2.

Remark. We can define in a similar way R[Γ1,Γ2; Γ] without the assump-
tion Γi ⊂ Γ, i = 1, 2. For this we have the relation α ∼ h2αh

−1
1 whenever both

elements belong to Γ.

Let the cardinality of R[Γ1,Γ2; Γ] be denoted either by #R[Γ1,Γ2; Γ] or
R(Γ1,Γ2; Γ). Recall that R[f#, g#] is the same as R[f, g] which is the set of
Reidemeister classes defined by the pair (f, g). So #R[f#, g#] = #R[f, g] =
R(f#, g#) = R(f, g).

Definition 1.4. A pair (G,Γ), where G is a simply connected Lie group
and Γ ⊂ G is a uniform subgroup, has the P2 property, if for any two pairs
(H1,Γ1), (H2,Γ2) as above, R(Γ1,Γ2; Γ) < ∞ implies that ψ : H1 × H2 → G

is surjective. Finally, we say that G has the P2 property if (G,Γ) has the P2

property for all uniform subgroups Γ.
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The map ψ plays an important role in our approach and it has the following
nice property, which is going to be used later.

Proposition 1.5. The map ψ has constant rank.

Proof. Let us show that the rank of dψ(e1,e2) is the same as the rank of
dψ(h1,h2) for any point (h1, h2) ∈ H1 ×H2. Consider the commutative diagram

H1 ×H2
ψ−−−→ G

L(h1,h2)

y yLh2 .( ).R
h
−1
1
.

H1 ×H2 −−−→
ψ

G

So, at the tangent space level, we have the commutative diagram

T(e1,e2)(H1 ×H2)
dψ−−−→ TeG

dL(h1,h2)

y yd(Lh2 .( ).R
h
−1
1

).

T(h1,h2)(H1 ×H2) −−−→
dψ

Th2h
−1
1
G

Since the maps L(h1,h2) and Lh2 .( ).Rh−1
1

are diffeomorphisms, we have that
dL(h1,h2) and d(Lh2 .( ).Rh−1

1
) are isomorphisms and the result follows. �

Remark. By completely analogous argument, if ϕ1, ϕ2 : G1 → G2 are two
group homomorphisms, then the map ϕ = ϕ2 · ϕ−1

1 : G1 → G2 has constant
rank.

We consider now, the necessary preliminaries on the topology of the Lie
groups to show the two main results of this section. Following [12, Théorèm 5,
Exposé 22] we have that any simply connected Lie group is topologicaly equiva-
lent to the product of a compact Lie group by an Euclidean space Rn. This also
follows from [17, Chapter 1, Theorem 6, Problem 13 and Chapter 6, Theorem 2].
(For the non simply connected case see [12, Théorèm 6, Exposé 22]). We consider
the Lie groups G1 which are homeomorphic to the Euclidean space Rn for some
n. There are many groups which satisfy this condition. By the result above they
are the Lie groups which do not contain a non trivial compact subgroup. For
example the universal cover of SL(2, R) is homeomorphic to R3. The families of
abelian, nilpotent and solvable Lie groups, also provide us with such examples.
For the topology of the abelian, nilpotent and solvable Lie groups, we refer to
[11] and [1]. For the topology of the nilmanifolds and solvmanifolds we refer to
[13], [16] and [19]. Also in [14, Section 1] one finds some information in a very
explicit and suitable form that we may use. A simply connected abelian group
is difeomorphic to Rn. For N a simply connected nilpotent Lie group, not only
is diffeomorphic to Rn, but the exponencial map at the identity, denoted by exp,
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provides one diffeomorphism. For S simply connected solvable Lie groups, the
situation is more complicated. Nevertheless, we still have that S is diffeomorphic
to the Euclidean space. There is a subfamily called the exponential groups. They
consist of those groups where the map exp is a diffeomorphism. The compact
nilmanifolds and solvmanifolds are Eilenberg–MacLane spaces K(π, 1).

Finally, let us consider the family of the properly discontinuous groups Γ,
operating in the Euclidean space Rn for some n, such that the quotient Rn/Γ is
compact. Define l(Γ) to be the dimension of the Euclidean space. This number
l(Γ) is well defined. To see this, we have that the orbit space Rn/Γ is a compact
manifold. Since its universal covering is contractible, the cohomology of Rn/Γ is
the same as the group cohomology of Γ. Hence l(Γ) coincides with the maximal
dimension where H l(Γ, Z2) 6= 0. So l(Γ) is well defined and coincides with the
maximal dimension where H l(Γ, Z2) 6= 0. The uniform subgroups of a Lie group
homeomorphic to Rn, are examples of groups where our definition of length
applies. In particular, if Γ is a finitely generated torsion free nilpotent group,
by [13] we have that l(Γ) coincides with the Hirsh lenght of Γ. See [18] for the
definition of the Hirsh length. Let dim (G1) = m and dim (G2) = n.

Now we are ready to show the two main results of this section. For the pur-
pose of Proposition 1.6, we will assume that G1 is diffeomorfic to the Euclidean
space Rn.

Proposition 1.6. If G1×G2 satisfies the property P1, then l(coin(f#, g#))
= m− n implies ϕ : G1 → G2 is surjective.

Proof. Let G = G1 × G2 and H1,H2 the graphs of ϕ1, ϕ2, respectively.
Certainly H1, H2 are closed subgroups. Since dimH1+dimH2 = 2dimG1 = 2m,
in order to show that H1, H2 are transverse at the identity, it suffices to show
that Te(H1) ∩ Te(H2) = Te(H1 ∩H2) is a subspace of dimension m− n.

Certainly H1 ∩H2 = {(x, ϕ1(x))|x ∈ coin(ϕ1, ϕ2)}.
But coin(ϕ1, ϕ2) is certainly a closed subgroup which has coin(f#, g#) as a

uniform subgroup (see the proof of Lemma 2.2 in [15]). Therefore coin(ϕ1, ϕ2)
has dimension m− n, since G1 has no nontrivial compact subgroup. So H1,H2

are in general position and ψ is surjective. So ϕ is also surjective. �

Proposition 1.7. If G1×G2 satisfies the property P2, then R(f#, g#) <∞
implies that l(coin(f#, g#)) = m− n.

Proof. As before, let H1, H2 be the closed Lie subgroups of G which are
the graphs of ϕ1, ϕ2, respectively. It is straightforward to see that the inclusion
G2 ↪→ G1 × G2, i(g) = (e1, g), induces a map i : R[f#, g#] → R[Γ′

1,Γ
′
2; Γ1 ×

Γ2] which is a bijection where Γ′
1 = (Γ1, f#(Γ1)) and Γ′

2 = (Γ1, g#(Γ1)). So
R(Γ′

1,Γ
′
2; Γ1 × Γ2) < ∞. Since G1 ×G2 satisfies the P2 condition, it follows by

definition that ψ : H1×H2 → G is surjective. By Proposition 1.5, ψ has constant
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rank. Since it is surjective, Sard’s Theorem implies that ψ is a submersion. Once
we know that ψ : H1 ×H2 → G = G1 ×G2 is a submersion it remains to notice
that ψ−1(1, 1) is a closed Lie subgroup,

dimψ−1(1, 1) = dim (H1 ×H2)− dim (G1 ×G2) = 2m− (m+ n) = m− n,

and
ψ−1(1, 1) = H1 ∩H2 = {(x, ϕ1(x));x ∈ coin(ϕ1, ϕ2)}

which is homeomorphic to coin(ϕ1, ϕ2). So the result follows. �

2. The nilmanifold case

In this section we specialize for the case where G1, G2 are simply connected
Nilpotent Lie groups, and prove our main result for compact nilmanifolds.

It is not difficult to see that the next two propositions hold for all commu-
tative groups G. Using induction, in these two propositions we will show the
results for the noncommutative Nilpotent Lie groups.

Proposition 2.1. If G is a simply connected Nilpotent Lie group, then G

satisfies the property P1.

Proof. The proof is by induction on the dimension of G. If dimG = 2
then G = R2 with the standart Lie Group structure and the result is clear.
So, suppose that the result is true for simply connected Nilpotent Lie Group of
dimension less than or equal to n. Let dimG = n + 1 and H1,H2 ⊂ G be two
closed subgroups which are in general position. Consider the sequence.

1 −→ C(G) −→ G
p−→ G/C(G) −→ 1,

where C(G) is the center of G. It is known that dim (C(G)) > 0 therefore
dimG/C(G) ≤ n. Since the two closed Lie subgroups H1,H2 ⊂ G are in general
position, then the subgroups H ′

1 = p(H1), H ′
2 = p(H2) ⊂ G/C(G) are also closed

subgroups which are transversal. This follows from the diagram

T (H1 ×H2)
dψ−−−→ TG

dp

y y
T (H ′

1 ×H ′
2) −−−→

dψ′
TG/C(G)

since the right vertical map and the top horizontal map are surjective, where ψ′

is the induced map from ψ.
By induction hypothesis we have that im(ψ′) = G/C(G). So, it suffices

to show that C(G) ⊂ Im (ψ). Since dψe : T (H1 × H2) → TeG is surjec-
tive, by the Local Submersion Theorem (see [9, Section 4]) it follows that
Imψ contains an open neighbourhood U of the identity. So UC = U ∩ C(G)
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is an open neighbourhood of e in C(G). If we show that Imψ ∩ C(G) is
closed under the group operation, it follows by [3, Chapter II, §IV, Theorem 1],
that Imψ ∩ C(G) = C(G). So let us show that Imψ ∩ C(G) is closed un-
der the group operation. Let c1, c2 ∈ Imψ ∩ C(G). We have c1 = g2g

−1
1 ,

c2 = h2h
−1
1 and c1.c2 = (g2g−1

1 )(h2h
−1
1 ) = g2(g−1

1 (h2h
−1
1 )) = g2(h2h

−1
1 )g−1

1 =
(g2h2).(h−1

1 g−1
1 ) = (g2h2)(g1h1)−1, where the third equality follows from the fact

that (h2h
−1
1 ) belongs to the center. So the result follows. �

Proposition 2.2. If G is a simply connected nilpotent Lie group, then G

satisfies the property P2.

Proof. Let Γ ⊂ G be a uniform subgroup. We will show that (G,Γ) satifies
the property P2. The proof is by induction on the dimension of G. If dimG

is 2 the result is easy. Let us assume that the result is true if dimG ≤ n. Let
dimG = n+ 1. In order to apply the induction hypothesis, we will define a Lie
subgroup H of C(G) of dimension one.

In order to define H, let Γ0 be the center of Γ. Take H1,H2 ⊂ G and Γ1,Γ2 ⊂
Γ ⊂ G where Γ1, Γ2, Γ are uniform subgroups of H1, H2, G, respectively, and
R(Γ1,Γ2; Γ) <∞. Since Γ0 is abelian, denoting [e] ∈ R(Γ1,Γ2; Γ) the class which
contains the identity, we have that Γ0∩ [e], is a subgroup and the set of classes on
Γ0 given by Γ0 ∩ [g] for [g] ∈ R(Γ1,Γ2; Γ) is finite because R(Γ1,Γ2; Γ) is finite.
The fact that Γ0 ∩ [e] is a subgroup can be proved as follows: given c = h2h

−1
1

then c−1 = h1h
−1
2 = h1h

−1
2 h−1

1 h2h
−1
2 h1 = h−1

1 .h1h
−1
2 .h2h

−1
2 h1 = h−1

2 h1. If
c1 = h2h

−1
1 , c2 = g2g

−1
1 then c1c2 = h2h

−1
1 g2g

−1
1 = h2g2g

−1
1 h−1

1 = h2g2(h1g1)−1.
So this is a subgroup. To prove that c0(Γ0 ∩ [e]) = Γ0 ∩ [c0] it remains to notice
that c0[e] = [c0] for c0 ∈ Γ0 = the center of Γ.

So we conclude that Γ0/∼ is the coset classes of Γ0/Γ0 ∩ [e] where ∼ is the
relation induced by the one which gives R(Γ1,Γ2; Γ). Since Γ0/Γ0 ∩ [e] is finite,
it means that we have an element g ∈ Γ0 ∩ [e] where g 6= e. So g = g2g

−1
1 for

some gi ∈ Γi, i = 1, 2. If γx denote the one-parameter subgroup through x, we
define H = γg.

Now let us consider the short exact sequence:

1 −→ H −→ G
p−→ G/H −→ 1.

The subgroups p(H1), p(H2) ⊂ G/H are closed subgroups. For, the projection
p1 : G → G/Γ is the composite of p with projection p2 : G/H → G/Γ. Since
Hi/Γi is compact, p1(Hi) is compact and hence p(Hi) = p−1

2 (p1(Hi) is closed.
The groups p(Γ1), p(Γ2), p(Γ) are discrete subgroups of p(H1), p(H2), G/H,
respectively. It suffices to show that p(Γ) is a discrete subgroup of G/H. Since
p1 : G→ G/Γ is a covering map and p1(H) is compact, there is a neighbourhood
V of p1(H) such that the restriction of p1 of p−1

1 (V ) → V is also a covering.
Hence we have that p(Γ) is discrete. So we have that p(Γ1), p(Γ2), p(Γ) are
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uniform subgroups of p(H1), p(H2), p(Γ), respectively. Certainly the projection
induces a map p : R(Γ1,Γ2; Γ) → R(p(Γ1), p(Γ2); p(Γ)) which is surjective. By
induction, hypothesis ψ : p(H1) × p(H2) → G/H is surjective. So, it suffices to
show that Imψ ⊃ H.

In order to show that Imψ ⊃ H, it suffices to show that γg = γg2 .γ
−1
g1 . First

we show that for every rational p/q the two curves coincide. We consider the
parameter t = 1/q. Let Γ′ be the subgroup generated by Γ, w, w1 and w2, where
w = γg(1/q), w1 = γg1(1/q) and w2 = γg2(1/q). The center of Γ′, denoted by
Γ′

0, clearly contains Γ0. We would like to show that w = w2w
−1
1 . We know that

wq = wq2w
−q
1 . By a result of Mal’cev (see [18, Chapter 5, 5.2.19]) the quotient of

a Nilpotent group by the center is torsion free. So the quotient of Γ′ by the center
Γ′

0 is torsion free and we have [w1]q = [w2]q since wq ∈ Γ′
0. Also, in a torsion

free nilpotent group the qth root is unique. Therefore [w1] = [w2] and w2w
−1
1 ∈

Γ′
0. Since wq = wq2w

−q
1 = (w2w

−1
1 )q, where the last equality follows because

w2w
−1
1 ∈ Γ′

0, we have w = w2w
−1
1 . It follows that γg(1/q) = γg2(1/q)γ

−1
g1 (1/q).

By a similar and simpler argument we show that in fact the two curves coincide
for all t = p/q. By continuity, it follows that γg = γg2γ

−1
g1 for all t. Therefore,

we conclude that H ⊂ Im (ψ). So the result follows. �

Let f, g : N1 → N2 be two maps between compact nilmanifolds. Now we can
prove

Proposition 2.3. If l(coin(f#, g#)) = m− n then R(f, g) <∞.

Proof. By Lemma 2.7 of [15], maps f , g (up to homotopy) are covered by
homomorphisms ϕ1, ϕ2 : G1 → G2.

By Proposition 1.6, the map ϕ = ϕ2ϕ̇
−1
1 is surjective. So, given any element

y ∈ Γ, there exists g ∈ G1 such that ϕ1(g)ϕ2(g−1) = y−1 or ϕ2(g−1)y = ϕ1(g−1).
Therefore g−1 ∈ coin(ϕ2, ϕ1) and consequently coin(ϕ2, ϕ1) is non empty. There-
fore, for each Reidemeister class, there is a Nielsen class (non-empty one) which
corresponds to this Reidemeister class. Since the number of Nielsen classes is
finite, we must have only a finite number of Reidemeister classes and the result
follows. �

Proposition 2.4. If R(f, g) <∞ then l(coin(f#, g#)) = m− n.

Proof. As in Proposition 2.3, let ϕ1, ϕ2 : G1 → G2 be homomorphisms
which cover (up to homotopy) f and g, respectively. Since G1 ×G2 satisfies the
property P2, by Proposition 1.7 the result follows. �

Now we come to the main result.

Theorem 2.5. Let f, g : N1 → N2, where N1, N2 are compact nilmanifolds.
Then, the two conditions below are equivalent

(a) The Hirsch length of coin(f#, g#) is dimN1 − dimN2,
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(b) R(f, g) <∞.

Proof. The equivalence follows imediately from Propositions 2.3 and 2.4.�

Theorem 2.6. Let f, g : N1 → N2, where N1, N2 are compact nilmanifolds
of the same dimension. Then, the three conditions below are equivalent

(a) N(f, g) 6= 0,
(b) coin(f#, g#) = 1,
(c) R(f, g) <∞.

If one of the three conditions above holds, then N(f, g) = R(f, g) = |L(f, g)|.

Proof. The fact that (a) is equivalent to (b) has been proved in [15]. The
equivalence of (b) and (c) follows from Theorem 2.5. Since (a), (b) and (c) are
equivalent, let us show that they imply N(f, g) = R(f, g) = |L(f, g)|. From
either the condition (a) or (c) follows (see [15]) that N(f, g) = |L(f, g)|. Finally,
if (c) holds, we know that the map ψ is surjective. Therefore every Reidemeister
class comes from a non empty Nielsen class. By Lemma 2.6 of [15], we have
that this Reidemeister class represents an essential Nielsen class. So we have
N(f, g) = #R[f, g] and the result follows. �

Comment. In Theorem 2.5 we should expect that the conditions (a) and (b)
are also equivalent to say that the pair (f, g) cannot be deformed to coincidence
free. The usual type of argument to show this cannot be applied because, at
present, there are difficulties to define a suitable Nielsen coincidence number in
terms of a local index.

3. The root case

We begin by stating and giving a very nice and simple proof, due to A. Dold,
of a classical result due C. Ehresmann (see [5]). Let f : M → N be a differential
map between manifolds.

Theorem 3.1. If f : M → N is a submersion which is proper and closed,
then f is a fibration.

Proof. We will prove that f is locally trivial. Denote by F the preimage
f−1(y) of a point y ∈ N . Let r : U → F be a smooth neighbourhood retraction
(e.g. the one of the tubular neighbourhood). Then τ = (f, r) : U → N × F

is a map over N which is identity on F , hence it is diffeomorphic in an open
neighbourhood V of F . Since F is compact the set W of all w ∈ N such that
w × F is contained in τV is an open neighbourhood of y, and W × F is in τV .
The counterimage of W × F under τ may be smaller than the counterimage of
W under f . We therefore cut down W as follows: the set of all v ∈ V such
that τ(v) ∈W × F is open in M , its complement C is closed in M , hence fC is
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closed in N , and its complement CfC is an open neighbourhood of y in N . Now
(W∩CfC)×F will do; its counterimage under τ coincides with the counterimage
of W ∩ CfC under f . �

Let g : N1 → N2 be a primitive map, i.e. g#(π1(N1)) = π1(N2), where Ni
are nilmanifolds.

Proposition 3.2. The subset g−1(y) has the property that Ȟm−n(g−1(y), Z)
is different from zero.

Proof. Call G1, G2 the universal covers of N1, N2, respectively. We know
that g can be covered (up to homotopy) by a homomorphism ψ : G1 → G2, i.e.
the map induced by ψ, f : N1 → N2, is homotopic to g. Since g#(π1(N1)) =
π1(N2), this implies that f#(π1(N1)) = π1(N2). Hence f is a submersion and, by
Theorem 3.1, f is a fibration. The fibre F is certainly a nilmanifold of dimension
m− n and Ȟm−n(F,Z) 6= 0. Now we consider the diagram

N1yf
N1

f−−−→−−−→
g

N2

where g is homotopic to f . Since f : N1 → N2 is a fibration, by the lifting
homotopy property, we have H : N1 × I → N1 where H( · , 0) = idN1 . Call
φ = H( · , 1). We have that g−1(y) = φ−1(F ). Now, we apply Proposition 10.2
Chapter VIII of [4] for the case where the two manifolds M , M ′ are equal to
N1. The map f in Proposition 10.2 is φ, K = F and L the empty subset.
Since φ is homotopic to the identity, we have that the transfer is multiplication
by one. Since Ȟm−n(F,Z) 6= 0, by definition of the transfer map, follows that
Ȟm−n(g−1(y), Z) = Ȟm−n(φ−1(F ), Z) 6= 0 and the result follows. �

Proposition 3.3. If g : N1 → N2 has the property that

[g#π1(N1)), π1(N2)] = l <∞,

then g−1(y) is the union of at least l disjoint subsets F1, . . . , Fl for Ȟm−n(Fi, Z)
6= 0 for i = 1, . . . , l.

Proof. The map g : N1 → N2 admits a lift g : N1 → Ñ2 where Ñ2 is
the cover of N2 which corresponds to the subgroup g#(π1(N1)). Then we apply
Proposition 3.2 for each point yi, i = 1, . . . , l over the base point y and the result
follows. �

Let N(f, g) be the topological Nielsen coincidence number as defined in [14,
Section 2].



The Coincidence Reidemeister Classes of Maps on Nilmanifolds 385

Theorem 3.4. Let f : N1 → N2 where N1, N2 are compact nilmanifolds.
Then, the three conditions below are equivalent

(a) N(f, c) 6= 0,
(b) the Hirsch lenght of Ker f# : π1(N1) → π1(N2) is dimN1 − dimN2,
(c) the index of f#(π1(N1)) in π1(N2), i.e. R(f, c) is finite.

If one of the three conditions above holds, then

N(f, c) = R(f, c) = [f#π(N1)), π1(N2)],

and Ȟm−n(Fi, Z) 6= 0 for l coincidence Nielsen classes F1, . . . , Fl and l =
N(f, c).

Proof. The equivalence of (b) and (c) follows by Theorem 2.5. The fact
that (c) implies (a) follows by Proposition 3.3. So let #R[f, c] = ∞. Consider
the cover p : N2 → N2 which corresponds to f#(π1(N1)). N2 is a noncompact
manifold. Let f be a lifting of f and consider a triangulations of N2 and N2 such
that the projection is a simplicial map. Since N1 is compact, then f(N1) ⊂ N2 is
also compact. Hence, there is a compact submanifold M of the same dimension
as N2 (necessarily with boundary) which contains f(N1) and is a subcomplex.
Hence there is a retraction of this submanifolds into the (n − 1)-subcomplex of
N2. Since we can assume that y is in the interior of a maximal simplex, it follows
that p−1(y) lies in the union of the interior of maximal simplexes. Therefore, we
can deform f into N2 − p−1(y). Hence we can deform f to f ′ without roots.

Finally, if one of the three conditions holds, then by Proposition 3.3 the result
follows. �

Remarks. (1) From the proof of Proposition 3.2, we can see that the map
g can be deformed to a map f ′ such that the set f ′−1(y) is a connected manifold
of dimension m − n. Hence, by routine argument using covering, the map f in
Theorem 3.4 can be deformed to f ′ such that f ′−1(y) is the union of l connected
submanifolds all of dimension m− n.

(2) It would be nice to know if the above result for roots extends to coinci-
dence in general.
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Departamento de Matemática - IME-USP
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