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UNIQUENESS OF PERIODIC SOLUTIONS
FOR ASYMPTOTICALLY LINEAR DUFFING

EQUATIONS WITH STRONG FORCING

Guy Katriel

1. Introduction

In this work we investigate equations of the form

(1) x′′ + cx′ + ax + g(x) = λp(t),

where g : R → R is C1, satisfies a Lipschitz condition, and

(2) lim
|x|→∞

g(x)
x

= 0,

so that we are dealing with an asymptotically linear problem. The forcing term
p is T -periodic, and we are interested in T -periodic solutions of (1). We assume
that the linear part of the equation is nonresonant, that is a 6= 0 and if c = 0
then a 6= (2πm/T )2 for all integer m. Our result shows that for generic forcing
term p, when the parameter λ, which measures the strength of the forcing, is
sufficiently large, (1) has a unique T -periodic solution.

The existence of a solution (for all λ) under the assumptions made above
is a well-known application of degree theory or Schauder’s fixed point theorem
(see [5] for existence results under much more general conditions), and it is the
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uniqueness of the solution that is of interest here. As far as we know, this result
is new even for the case when g is bounded.

In contrast with other known uniqueness results (see e.g. [8] for the Duff-
ing equation, [4] for abstract principles), there is no assumption here that the
derivative of g does not “interact” with the spectrum of the linear part. The con-
clusion, on the other hand, is weaker than that obtained in the above-mentioned
results, since the uniqueness is only for |λ| large. We note that for λ = 0 the
solutions of the algebraic equation ax + g(x) = 0 are equilibria of (1), and by
continuation these generate T -periodic solutions for |λ| sufficiently small, so that
we may have an arbitrary number of T -periodic solutions, hence the assumption
that |λ| is sufficiently large is essential here.

We now formulate our result.

Theorem 1. Suppose:

(i) a 6= 0 and, if c = 0 then a 6= (2πm/T )2 for all integers m.
(ii) g : R → R is C1, satisfies (2), and g′ is bounded:

(3) |g′(x)| ≤ L for all x ∈ R.

(iii) p : R → R is continuous and T -periodic, and if we define u0 as the
unique T -periodic solution of

(4) u′′ + cu′ + au = p(t)

then the set of critical points of u0 is of measure 0.

Then there exists λ0 ≥ 0 such that for |λ| ≥ λ0 (1) has a unique T -periodic
solution. Assuming c > 0, we have, for |λ| sufficiently large, that this solution
is asymptotically stable if a > 0, and unstable if a < 0.

We now make some remarks about the hypotheses of Theorem 1.

1. The nonresonance assumption (i) cannot be dropped, as can be seen by
looking at the case g ≡ 0.

2. Concerning (ii), a natural question, to which we do not know the an-
swer, is whether the result remains true without (3). The growth as-
sumption (2) on g certainly cannot be dropped: it is known (see [3])
that when g satisfies

lim
|x|→∞

g(x)
x

= ∞

and c = 0, (1) has infinitely many T -periodic solutions for any λ.
3. Concerning assumption (iii) on p, we note that it holds for a dense Gδ

subset in the space of continuous T -periodic functions p, and also that it
automatically holds whenever p is real-analytic and non-constant. The
fact that some restriction on p is necessary for the validity of the result
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can be seen by looking at the case g(x) = sin(x) and p ≡ 1. Given any
integer n > 0, it is easy to see that if we take a suffciently small, (1)
will have at least n T -periodic (in this case constant) solutions for all λ.
Of course in this case u0 ≡ 1/a, so (iii) fails to hold.

The proof of Theorem 1, which is presented in Section 3, makes essential use
of the weak topology in L2[0, T ]. The weak convergence of certain sequences
of functions is proved by means of an elementary asymptotic result, which will
be proved in the next section. We remark that other works have already used
asymptotic results to obtain interesting information on nonlinear boundary value
problems (see [2], [6], [10]), but the way in which the asymptotic result is used
here, as well as the purpose to which it is applied, are entirely different from what
is done in the works cited. Note also that our asymptotic lemmas (Section 2)
pertain to sublinear nonlinearities in general, and not to periodic nonlinearities
or those vanishing at infinity, as in the above-cited works.

In Section 4 we study the asymptotic form of the unique T -periodic solution
as |λ| → ∞ under some additional assumptions on the nonlinearity g.

2. Asymptotic lemmas

Lemma 1. Suppose that g : R → R satisfies (2) and (3). Suppose γ ∈
L1[α, β]. Then

lim
|λ|→∞

∫ β

α

g′(λs)γ(s) ds = 0.

Proof. Assume first that γ is a characteristic function of a subinterval
[α′, β′]. Then, using (2),

lim
|λ|→∞

∫ β

α

g′(λs)γ(s) ds = lim
|λ|→∞

1
λ

(g(λβ′)− g(λα′)) = 0.

The result extends to the case when γ is a step function by linearity. If
γ ∈ L1[α, β] and ε > 0, we may choose a step-function γ̃ with ‖γ̃ − γ‖L1 ≤ ε.
We then have, ∣∣∣∣∣

∫ β

α

g′(λs)γ̃(s) ds−
∫ β

α

g′(λs)γ(s) ds

∣∣∣∣∣ ≤ εL,

so, from the validity of the result for γ̃, we have

lim sup
|λ|→∞

∣∣∣∣∣
∫ β

α

g′(λs)γ(s) ds

∣∣∣∣∣ ≤ εL,

and since ε is arbitrary, we obtain the desired result. �
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Lemma 2. Suppose g : R → R satisfies (2) and (3). Suppose φ ∈ C1[α, β]
and the set of critical points of φ has measure 0, and η ∈ L1[α, β]. Let {λn} ⊂ R
and {θn} ⊂ C1[α, β] be sequences such that

(5) lim
n→∞

|λn| = ∞,

(6) lim
n→∞

‖θn‖C1

λn
= 0.

Then

(7) lim
n→∞

∫ β

α

g′[λnφ(t) + θn(t)]η(t) dt = 0.

Proof. We first prove (7) under the assumption that φ′(t) 6= 0 for all t ∈
[α, β], assuming without loss of generality that φ′(t) > 0. We define hn(t) =
φ(t) + θn(t)/λn, and note that, by the positivity of φ′ and by (6), h′n is positive
in [α, β] for n large, so we can perform the change of variable s = hn(t), obtaining

(8)
∫ β

α

g′[λnφ(t) + θn(t)]η(t) dt =
∫ hn(β)

hn(α)

g′(λns)
η(h−1

n (s))
h′n(h−1

n (s))
ds.

Since hn → φ in C1[α, β] as n →∞, and since g′ is bounded, we have

(9) lim
n→∞

∣∣∣∣∣
∫ hn(β)

hn(α)

g′(λns)
η(h−1

n (s))
h′n(h−1

n (s))
ds−

∫ φ(β)

φ(α)

g′(λns)
η(φ−1(s))
φ′(φ−1(s))

ds

∣∣∣∣∣ = 0.

By Lemma 1 we have

(10) lim
n→∞

∫ φ(β)

φ(α)

g′(λns)
η(φ−1(s))
φ′(φ−1(s))

ds = 0.

Equations (8)–(10) imply (7).
Turning to the case of general φ, we denote

A = {t ∈ (α, β) | φ′(t) 6= 0}.

A is an open set, so it can be decomposed into a countable union of disjoint open
intervals

A =
∞⋃

n=1

In.

We define

Ak =
k⋃

n=1

In.

We fix ε > 0. Since, by our assumption on φ, A is of full measure, we can choose
k0 sufficiently large so that∫

Ak0

|η(t)| dt ≥ ‖η‖L1 − ε.
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For each 1 ≤ n ≤ k0 we may choose a closed subinterval I ′n of In in such a way
that, defining

A′k0
=

k0⋃
n=1

I ′n,

we have ∫
A′

k0

|η(t)| dt ≥ ‖η‖L1 − 2ε,

or, denoting the complement of A′k0
in [α, β] by B′

k0
,

(11)
∫

B′
k0

|η(t)| dt ≤ 2ε.

In each of the intervals I ′n (1 ≤ n ≤ k0) we may apply the previously proved case
of our lemma to conclude that

(12) lim
n→∞

∫
A′

k0

g′[λnφ(t) + θn(t)]η(t) dt = 0.

Since g′ is bounded we also get, using (11),

(13)

∣∣∣∣∣
∫

B′
k0

g′[λnφ(t) + θn(t)]η(t) dt

∣∣∣∣∣ ≤ 2εL

for all n. Combining (12) and (13), we have

lim sup
n→∞

∣∣∣∣∣
∫ β

α

g′[λnφ(t) + θn(t)]η(t) dt

∣∣∣∣∣ ≤ 2εL,

and since ε is arbitrary, we obtain the desired result. �

The following lemma is not used in the proof of Theorem 1, but rather in
the asymptotic analysis of Section 4.

Lemma 3. Suppose g : R → R satisfies (3), and the limits

(14) µ± = lim
x→±∞

g(x)
x

exist. Suppose φ ∈ C1[α, β] and the set of critical points of φ has measure 0,
and let η ∈ L1[α, β]. Define χ : [α, β] → R by χ(t) = µ− when φ(t) < 0 and
χ(t) = µ+ when φ(t) ≥ 0. Then we have

(15) lim
λ→∞

∫ β

α

g′(λφ(t))η(t) dt =
∫ β

α

χ(t)η(t) dt.

Proof. Let g0 : R → R be a C1-function satisfying

(16) lim
x→±∞

g′0(x) = µ±.
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Define g1 = g − g0. From (16) and Lebesgue’s dominated convergence theorem
it follows that

(17) lim
λ→∞

∫ β

α

g′0(λφ(t))η(t) dt =
∫ β

α

χ(t)η(t) dt.

From (16) it follows that

lim
x→±∞

g0(x)
x

= µ±,

hence

lim
x→±∞

g1(x)
x

= 0,

so g1 satisfies all the hypotheses of Lemma 2, hence

(18) lim
λ→∞

∫ β

α

g′1(λφ(t))η(t) dt = 0.

From (17), (18) we obtain (15). �

3. Proof of Theorem 1

Our first step is to write (1) in a different form. Defining u0 as the unique
(by assumption (i)) T -periodic solution of (4) and setting x = λu0 + u, we can
rewrite (1) as

(19) u′′ + cu′ + au + g(λu0 + u) = 0.

T -periodic solutions of (1) correspond to T -periodic solutions of (19), and these
correspond to functions u ∈ C2[0, T ] satisfying (19) and

(20) u(0)− u(T ) = u′(0)− u′(T ) = 0.

We define a linear operator K : L2[0, T ] → C1[0, T ] as follows: for y ∈ L2[0, T ],
K(y) denotes the unique (by assumption (i) of Theorem 1) function u ∈ H2[0, T ]
satisfying

u′′ + cu′ + au = y

almost everywhere in [0, T ] and (20). Since H2[0, T ] is compactly embedded
in C1[0, T ], K is compact. We define a nonlinear operator (depending on the
parameter λ) Gλ : C0[0, T ] → C0[0, T ] by

Gλ(u) = g(λu0 + u).

We can now rewrite (19) in the form

(21) u + K ◦Gλ(u) = 0.
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(21) is an equation in C0[0, T ], but it is immediate that any solution of (21)
is in fact in C2[0, T ], and is T -periodic. We wish to consider (21) in the space
C1[0, T ], so we define Nλ : C1[0, T ] → C1[0, T ] by

Nλ = −K ◦Gλ|C1[0,T ]

so that we may write (21) as

(22) Nλ(u) = u.

Solutions of (22) are in one-to-one correspondence with periodic solutions of (1).
We shall denote by B(r) the closed ball of radius r around the origin in

C1[0, T ], where the spaces C0[0, T ], C1[0, T ] are endowed with the norms

‖u‖C0 = max
t∈[0,T ]

|u(t)|, ‖u‖C1 = ‖u‖C0 + ‖u′‖C0 .

The following lemma plays a key role in the proof of Theorem 1.

Lemma 4. Suppose the assumptions of Theorem 1 hold. Let R : R → [0,∞)
be a function satisfying

(23) lim
|λ|→∞

R(λ)
λ

= 0.

Then

(24) lim
|λ|→∞

sup
‖u‖C1≤R(λ)

‖N ′
λ(u)‖C1,C1 = 0

where N ′
λ is the Gâteaux derivative of Nλ (the norm ‖ · ‖C1,C1 denotes the norm

in the space of linear operators from C1[0, T ] to itself, induced by the C1-norm).

Proof. We assume by way of contradiction that (24) does not hold. Then
there exist sequences {un}, {vn} ⊂ C1[0, T ] and {λn} ⊂ R with |λn| → ∞, and

(25) ‖un‖C1 ≤ R(λn),

(26) ‖vn‖C1 = 1,

(27) ‖K ◦G′
λn

(un)(vn)‖C1 = ‖N ′
λn

(un)(vn)‖C1 ≥ ε > 0

for all n. Since, by (26), {vn} is bounded in C1, we may invoke the Arzela–Ascoli
theorem and assume, by taking a subsequence, that {vn} converges in C0[0, T ],
and denote its limit by v. We have

‖G′
λn

(un)(vn)−G′
λn

(un)(v)‖C0

= ‖g′[λnu0(t) + un(t)](vn(t)− v(t))‖C0

≤‖g′[λnu0(t) + un(t)]‖C0‖vn(t)− v(t)‖C0 .
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The right-hand side goes to 0 as n → ∞ since vn → v in C0[0, T ] and g′ is
bounded. Therefore we have

G′
λn

(un)(vn)−G′
λn

(un)(v) → 0

in C0[0, T ], hence

(28) K ◦G′
λn

(un)(vn)−K ◦G′
λn

(un)(v) → 0

in C1[0, T ]. On the other hand, we have, for all w ∈ L2[0, T ]

(29)
∫ T

0

(G′
λn

(un)(v))(t)w(t) dt =
∫ T

0

g′[λnu0(t) + un(t)]v(t)w(t) dt,

and applying Lemma 2 with φ = u0, θn = un, η = vw, noting that, by (25)
and (23), (6) holds, we obtain that the right-hand side of (29) tends to 0 as
n → ∞, so we have shown that G′

λn
(un)(v) → 0 weakly in L2[0, T ]. Hence by

the compactness of K, K ◦G′
λn

(un)(v) → 0 strongly in C1[0, T ]. Together with
(28), we get that K ◦ G′

λn
(un)(vn) → 0 in C1[0, T ]. But this contradicts (27),

and this contradiction concludes the proof of (24). �

The following lemma gives a λ-dependent a priori bound on solutions of (22).

Lemma 5. Suppose the assumptions of Theorem 1 hold. Then there exists a
function R : R → [0,∞) such that

(30) lim
|λ|→∞

R(λ)
λ

= 0,

and such that for any |λ| sufficiently large, all solutions of (22) are in B(R(λ)).

Proof. We define

M(r) = max
|x|≤r

|g(x)|, m(r) =
M(r)

r
.

Clearly, M is monotone nondecreasing, and from (2) it follows that

(31) lim
r→∞

m(r) = 0.

Assume that there does not exist a function R as in the lemma. Then there
exists a sequence {λn} with

(32) lim
n→∞

|λn| = ∞

and a sequence {un} ⊂ C1[0, T ] such that

(33) Nλn
(un) = un

and

(34) ‖un‖C1 ≥ k|λn|
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for all n, where k > 0. We shall derive a contradiction.
We have, for all n,

‖un‖C1 = ‖Nλn(un)‖C1 ≤ ‖K‖C0,C1M(‖λnu0 + un‖C0)

≤ ‖K‖C0,C1M(‖λnu0 + un‖C1) ≤ ‖K‖C0,C1M(‖λnu0‖C1 + ‖un‖C1)

= ‖K‖C0,C1m(‖λnu0‖C1 + ‖un‖C1)(‖λnu0‖C1 + ‖un‖C1)

and, by (31), we have

(35) lim
n→∞

m(‖λnu0‖C1 + ‖un‖C1) = 0,

so, for n sufficiently large,

‖K‖C0,C1m(‖λnu0‖C1 + ‖un‖C1) <
1
2
.

Then we get

‖un‖C1 ≤ ‖K‖C0,C1m(‖λnu0‖C1 + ‖un‖C1)‖λnu0‖C1 +
1
2
‖un‖C1 ,

or
‖un‖C1 ≤ 2‖K‖C0,C1m(‖λnu0‖C1 + ‖un‖C1)‖u0‖C1 |λn|

for n sufficiently large. Using (35), we obtain

lim
n→∞

‖un‖C1

|λn|
= 0,

contradicting (34), and finishing our proof. �

We are now ready for the

Proof of Theorem 1. We want to show that for |λ| sufficiently large (22)
has a unique solution in C1[0, T ]. The existence, as we noted, is a well-known
result following from Schauder’s fixed point theorem, so we only need to prove
uniqueness.

By Lemma 5 we have that all solutions of (22) are in B(R(λ)), where R : R →
[0,∞) satisfies (30). Hence it sufficies to prove the uniqueness of the solution in
B(R(λ)).

By Lemma 4, we can choose λ0 so that |λ| ≥ λ0 implies that

sup
u∈B(R(λ))

‖N ′
λ(u)‖C1,C1 < 1,

hence by the mean value theorem (e.g., [1, Theorem 1.8]) Nλ is a contraction in
B(R(λ)) when |λ| ≥ λ0, so the fixed point is unique (we note that we have not
shown that B(R(λ)) is invariant under Nλ, so that we have not proven existence,
but this is already known).

To prove the statement on stability, we first recall the result of Ortega ([9,
Section 2.5, Theorem 3]) which says that when c > 0, a periodic solution of (1) is
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asymptotically stable if and only if the corresponding fixed point of the Poincaré
mapping with time 2T is isolated and of index 1.

We now note that since p is also 2T periodic, we may apply the uniqueness
result which has just been proved to conclude that there exists λ′0 such that |λ| ≥
λ′0 implies that (1) has a unique 2T -periodic solution. If |λ| ≥ λ1 = max{λ0, λ

′
0}

then, since the unique T -periodic solution is also 2T periodic, the two coincide.
By a guiding function method it is shown (see [7, p. 55]) that the Poincaré

operator for (1) of time kT (k ≥ 1 an integer) on a sufficiently large disc around
the origin is of index 1 if a > 0 and c 6= 0 and of index −1 if a < 0. Applying
this in the case k = 2 we have, by the uniqueness of the 2T -periodic solution,
that the index of the corresponding fixed point of the time 2T Poincaré operator
is equal to the global index in the disc, hence to 1 if a > 0 and to −1 if a < 0.
The result follows by Ortega’s theorem. �

4. Asymptotics of the solution

Assuming the conditions of Theorem 1 hold, we denote the unique solution
ensured by the theorem by xλ (|λ| ≥ λ0). Our aim now is to characterize the
asymptotic form of xλ as λ →∞ (we will assume λ positive; analogous formulas
hold for λ → −∞). More precisely, we want to find a simple one-parameter
family yλ of T -periodic functions such that

(36) lim
λ→∞

‖xλ − yλ‖C1 = 0.

To obtain our result, we will need the further assumptions that g is bounded
and has well-defined average values at ±∞, that is, the limits

(37) µ± = lim
l→±∞

1
l

∫ l

0

g(x) dx

exist. We note that this holds in some important special cases: when g has
limits at ±∞, in which case µ± are equal to these limits, and in the case when
g is almost periodic, in which case we have µ+ = µ−. In particular, when g is
periodic with period ρ, we have

µ− = µ+ =
1
ρ

∫ ρ

0

g(x) dx.

Of course (37) holds also in the case that g is a sum of the two types of nonlin-
earity mentioned.

Theorem 2. Suppose the assumptions of Theorem 1 hold, and further that

(38) |g(x)| ≤ R0
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for all x ∈ R, and the limits (37) exist. Define χ : [0, T ] → R by: χ(t) = µ− when
u0(t) < 0 and χ(t) = µ+ when u0(t) ≥ 0, where u0 is defined as in Theorem 1.
Let u1 ∈ H2[0, T ] be the unique solution of the linear equation

u′′1 + cu′1 + au1 = −χ(t)

satisfying
u1(0)− u1(T ) = u′1(0)− u′1(T ) = 0.

Let yλ = λu0 + u1. Then (36) holds.

Proof. We denote by zλ the unique solution of (22) for |λ| ≥ λ0, so that

(39) xλ = λu0 + zλ.

Our aim now will be to determine the asymptotic behaviour of zλ. We first note
that, using (38) gives

‖zλ‖C1 = ‖Nλ(zλ)‖C1 ≤ ‖K‖C0,C1R0 ≡ R1.

Using this and the mean value theorem, we have

‖zλ −Nλ(0)‖C1 = ‖Nλ(zλ)−Nλ(0)‖C1 ≤ R1 sup
‖u‖C1≤R1

‖N ′
λ(u)‖C1,C1 .

By Lemma 4 we have that the right-hand side of the above inequality converges
to 0 as |λ| → ∞, hence we have

(40) lim
|λ|→∞

‖zλ −Nλ(0)‖C1 = 0.

This means that we can obtain the asymptotic form of zλ by studying that of
Nλ(0). Recall that

Nλ(0) = −K ◦Gλ(0) = −K(g(λu0(t))).

Let f be a primitive of g. By (37) we have that µ± = limx→±∞ f(x)/x.
Therefore we can apply Lemma 3, with the role of g in that lemma played by
our f and φ = u0 (here it is important that f ′ is bounded), to conclude that

lim
λ→∞

∫ T

0

g(λu0(t))η(t) dt =
∫ T

0

χ(t)η(t) dt

for any η ∈ L1[0, T ]. This implies that Gλ(0) converges weakly in L2[0, T ] to χ.
Therefore Nλ(0) = −K(Gλ(0)) converges strongly in C1 to u1 = −K(χ):

(41) lim
λ→∞

‖Nλ(0)− u1‖C1 = 0.

Combining (39)–(41), we obtain the result. �

We note that the asymptotic behaviour of xλ depends on g only through the
limits µ±, on a, c because of the solutions of the linear equations involved, and
on the forcing term p through the definitions of u0, u1. We also note that yλ is
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simple to calculate, since it involves only the solutions of two linear equations.
The linear equation defining u0 is easy to solve if, e.g., p is a trigonometric
polynomial, and the linear equation defining u1 is always easy to solve, since the
right-hand side is a step function.

It is worthwhile to single out the special case when µ+ = µ− = µ. In this
case u1 does not depend on the forcing term p, in fact we have χ ≡ µ, so

yλ = λu0 −
µ

a
.

As was noted above this case includes the case of g almost periodic, and in
particular of g periodic, in which µ is simply the average of g over a period.

Since unless µ+ = µ−, or u0 has constant sign, u1 will be C1 but not C2, we
cannot replace the C1-norm by the C2-norm in (36).
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