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ON SCHRÖDINGER EQUATION
WITH PERIODIC POTENTIAL

AND CRITICAL SOBOLEV EXPONENT

Jan Chabrowski — Jianfu Yang

1. Introduction

The main purpose of this paper is to establish the existence of a solution of
the semilinear Schrödinger equation

(1) −∆u+ V (x)u = K(x)|u|2
∗−2u+ f(x, u) in RN ,

involving a critical Sobolev exponent 2∗ = 2N/(N − 2) with N ≥ 4 and a
subcritical nonlinearity f : RN × R → R.

Throughout this paper it is assumed that

(A) The coefficients V andK are continuous and 1-periodic functions in each
variable xi, i = 1, . . . , N . Moreover, we assume that K ≥ 0 on RN .

In this case it is known that the operator −∆ + V on L2(RN ) has a purely
continuous spectrum consisting of closed disjoint intervals. In this paper we
consider the case:

(B) 0 is in the spectral gap of the operator −∆ + V .

There are many existence results in the case K ≡ 0 on RN and we refer to
the papers [4], [5], [9], [10], [13].
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In particular, Kryszewski–Szulkin [5] and Troestler–Willem [13] proved the
existence of a solution using a generalized linking theorem which allowed a de-
composition of H1(RN ) into two infinite dimensional subspaces. This approach
has been simplified by Pankov–Pflüger [9] by using the approximation technique
with periodic functions. In this paper we apply this technique to obtain the ex-
istence result for the equation (1). The crucial point in the approach presented
in our paper lies in the fact that the approximation technique of [9] can be com-
bined with the method developed in our earlier paper [3] to determine the range
of level sets of the energy functional for which the Palais–Smale condition holds.
This allows us to obtain an approximating sequence of solutions by applying the
Linking Theorem of Rabinowitz [10].

We assume that the nonlinearity f satisfies the following conditions:

(f1) f(x, u) is continuous on RN × R and 1-periodic in each variable xi,
i = 1, . . . , N .

(f2) |f(x, u)| ≤ C(1 + |u|p−1) on RN × R for some constants C > 0 and
2 < p < 2N/(N − 2),

(f3) f(x, u) = o(|u|) as u→ 0 uniformly in x ∈ RN ,
(f4) there exists a constant θ > 2 such that

0 < θF (x, u) ≤ uf(x, u)

for all u 6= 0 and x ∈ RN , where F (x, u) =
∫ u
0
f(x, s) dx.

Our main existence result will be based on the following critical point theo-
rem [10]:

Theorem A (Linking Theorem). Let X = Y ⊕ Z be a Banach space with
dimY <∞. Let R > r > 0 and z ∈ Z be such that ‖z‖ = r. Define

M = {u = y + tz : ‖u‖ ≤ R, t ≥ 0, y ∈ Y },
∂M = {u = y + tz : y ∈ Y, ‖u‖ = R and t ≥ 0, or ‖u‖ ≤ R and t = 0},
N = {u ∈ Z : ‖u‖ = r}.

Let I ∈ C1(X,R) be such that

(∗) b = inf
u∈N

I(u) > a = max
u∈∂M

I(u).

If I satisfies the (PS)c condition with

c = inf
γ∈Γ

max
u∈M

I(γ(u)),

where Γ = {γ ∈ C(M,X) : γ|∂M
= id}, then c is a critical point of I.

In this work we always denote in a given Banach space X a weak convergence
by “⇀” and a strong convergence by “→”. The duality pairing between X

and its dual X∗ is denoted by 〈 · , · 〉. We say that a C1-functional F : X →
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R satisfies the Palais–Smale condition (the (PS)c-condition for short) if each
sequence {um} ⊂ X such that F (um) → c and F ′(um) → 0 in X∗ is relatively
compact in X.

2. Existence result in cubes

The existence of solutions of (1) will be obtained by approximating with
solutions in cubes Qk ⊂ RN , with length of edge k, k ∈ N.

Let H1
per(Qk) be the space of H1(Qk)-functions consisting of k-periodic func-

tions in xi, i = 1, . . . , N . For simplicity we write Ek = H1
per(Qk).

To obtain a solution of (1), we first investigate the problem

(1k)

{
−∆u+ V (x)u = K(x)|u|2

∗−2u+ f(x, u) in Qk,

u ∈ Ek.

It is known that the operator −∆ +V on L2
loc(Qk) has a discrete spectrum with

eigenvalues λk,1 ≤ λk,2 ≤ . . . converging to ∞ as k →∞. Moreover, for each k

the following minima

γ(k) = min{i : λk,i > 0}

are finite and every eigenvalue λk,i is contained in the spectrum of −∆ + V in
the whole space L2(RN ). This is a consequence of the Spectral Decomposition
Theorem XIII.97 in [11]. Therefore, if (−α, β), α > 0, β > 0, stands for the
spectral gap around 0, then λk,i /∈ (−α, β) for every k, i ∈ N. We denote by
φk,i the corresponding eigenfunctions. We now observe that every eigenfunction
φ ∈ Ek is, by periodicity, also in Emk for each m ∈ N. Consequently, every
eigenvalue of −∆ + V on L2

per(Qk) is also an eigenvalue of this operator in
L2

per(Qmk), m ∈ N.

To proceed further we define an orthogonal decomposition of Ek, by

Ek = Yk ⊕ Zk, where Yk = {φk,1, . . . , φk,γ(k)−1}.

The solutions of the problem (1k) will be found as critical points of the variational
functional

Jk(u) =
1
2

∫
Qk

(|∇u|2 + V (x)u2) dx− 1
2∗

∫
Qk

K(x)|u|2
∗
dx−

∫
Qk

F (x, u) dx.

By `k : Ek → R we denote the quadratic part of Jk, that is,

`k(u) =
∫
Qk

(|∇u|2 + V (x)u2) dx.
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The quadratic part `k is positive on Zk and negative on Yk. We can define a
new scalar product ( · , · )k on Ek with the corresponding norm ‖ · ‖k such that∫

Qk

(|∇u|2 + V (x)u2) dx = −‖u‖2
k for u ∈ Yk,∫

Qk

(|∇u|2 + V (x)u2) dx = ‖u‖2
k for u ∈ Zk.

Let Pk : Ek → Yk and Tk : Ek → Zk be orthogonal projections of Ek onto
Yk and Zk, respectively. With the aid of these projections we can write the
variational functional Jk in the form

Jk(u) =
1
2
(‖Tku‖2

k − ‖Pku‖2
k)−

1
2∗

∫
Qk

K(x)|u|2
∗
dx−

∫
Qk

F (x, u) dx.

According to our assumptions on f , the functional Jk is C1 and

〈J ′k(u), v〉 = (Tku, v)k − (Pku, v)k −
∫
Qk

K(x)|u|2
∗−2uv dx−

∫
Qk

f(x, u)v dx.

We commence by establishing some technical lemmas.

Lemma 1. The norm ‖ · ‖k is equivalent to the standard norm ‖ · ‖H1 in
H1(Qk), that is,

a‖u‖k ≤ ‖u‖H1 ≤ b‖u‖k
for all u ∈ Ek, and some constants a > 0 and b > 0 independent of k.

For the proof we refer to Lemma 2 in [9].

Lemma 2. There exist constants % > 0 and α > 0 independent of k such
that infu∈Nk

Jk(u) ≥ α, where Nk = {z ∈ Zk : ‖z‖k = ρ}.

Proof. Let z ∈ Zk, then

Jk(z) =
1
2
‖z‖2

k −
1
2∗

∫
Qk

K(x)|z|2
∗
dx−

∫
Qk

F (x, z) dx.

It follows from (f2) and (f3), that for every ε > 0 there exists a constant Cε > 0
such that

|F (x, s)| ≤ εs2 + Cε|s|p

for all s ∈ R. Applying the Sobolev embedding theorem we get that∫
Qk

F (x, z) dx ≤ C(ε‖z‖2
k + Cε‖z‖pk)

for some constant C > 0 independent of k. Consequently,

Jk(z) ≥
1
2
‖z‖2

k −
‖K‖∞

2∗
‖z‖2∗

k − C(ε‖z‖2
k + Cε‖z‖pk),

where ‖K‖∞ = supx∈RN |K(x)|. Choosing ε > 0 and ρ > 0 sufficiently small,
the result readily follows. �
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In the next lemma we find the energy range of the functional Jk for which
the Palais–Smale condition holds.

Lemma 3. Let {un} be a sequence in Ek such that J ′k(un) → 0 and

Jk(un) → ck ∈
(

0,
1
N
‖K‖−(N−2)/2

∞ SN/2
)

as n→∞, where S is the best Sobolev constant. Then {un} is relatively compact
in Ek.

Proof. In the first step of the proof we show that the sequence {un} is
bounded in Ek. Indeed, we have

(2) ck + o(1) =Jk(un)−
1
2
〈J ′k(un), un〉

=
1
N

∫
Qk

K(x)|un|2
∗
dx+

1
2

∫
Qk

unf(x, un) dx −
∫
Qk

F (x, un) dx

≥ 1
N

∫
Qk

K(x)|un|2
∗
dx+

(
1
2
− 1
θ

) ∫
Qk

unf(x, un) dx.

We now use the following estimates for f , that easily follow from assumptions
(f2)–(f4), namely:

|f(x, u)|2 ≤ Cuf(x, u) if |u| ≤ 1 and x ∈ RN ,

|f(x, u)|p
′
≤ C|u|(p−1)(p′−1)|f(x, u)| = Cuf(x, u) if |u| ≥ 1 and x ∈ RN ,

for some constant C > 0. Letting Bn = {x ∈ Qk : |un(x)| ≤ 1} we derive from
these estimates and (2) that

ck ≥
1
N

∫
Qk

K(x)|un(x)|2
∗
dx

+ C

( ∫
Bn

|f(x, un)|2 dx+
∫
Qk−Bn

|f(x, un)|p
′
dx

)
+ o(1)

for some constant C > 0. Hence∫
Bn

|f(x, un)|2 dx ≤
ck
C

and
∫
Qk−Bn

|f(x, un)|p
′
dx ≤ ck

C

for all n. Let yn = Pkun and zn = Tkun. Since 〈J ′k(un), yn〉 = εn‖yn‖k, with
εn → 0, we deduce from the Hölder inequality that

‖yn‖2
k = −

∫
Qk

K(x)|un|2
∗−2unyn dx−

∫
Qk

f(x, un)yn dx+ εn‖yn‖k

≤C1‖K‖1/2∗

∞

( ∫
Qk

K(x)|un|2
∗
dx

)(2∗−1)/2∗

‖yn‖k + εn‖yn‖k

+
(
ck
C

)1/2

‖yn‖L2 +
(
ck
C

)1/p′

‖yn‖Lp
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for some constant C1 > 0. This implies that {‖yn‖k} is bounded. In a similar
manner we show that {‖zn‖k} is bounded. Consequently, {‖un‖k} is bounded
and we may assume that un ⇀ u in Ek. Let vn = un − u. According to
Brézis–Lieb lemma [2] we have

Jk(un) = Jk(u) + Jk(vn) + o(1)

and

〈J ′k(un), un〉 = 〈J ′k(u), u〉+ 〈J ′k(vn), vn〉+ o(1) = o(1).

Hence

(3) ck + o(1) ≥ 1
2

∫
Qk

|∇vn|2 dx−
1
2∗

∫
Qk

K(x)|vn|2
∗
dx.

Since vn → 0 in L2(Qk), applying the Sobolev inequality (see [7, p. 69, for-
mula 2.17]) we get

(4)
∫
Qk

|∇vn|2dx =
∫
Qk

K(x)|vn|2
∗
dx+ o(1) ≤ ‖K‖∞

(
S−1

∫
Qk

|∇vn|2 dx
)2∗/2

.

If
∫
Qk

|∇vn|2 dx→ l > 0, then we deduce from (4) that

l ≥ ‖K‖−(N−2)/2
∞ SN/2,

which combined with (3) and (4) gives

ck ≥
l

N
≥ ‖K‖−(N−2)/2

∞

N
SN/2

which is impossible. Therefore l = 0 and the result follows. �

To verify condition (∗) of Theorem A we use a truncated Talenti function
(see [12]). Let

ψε(x) =
(√

N(N − 2)ε
ε2 + |x|2

)(N−2)/2

, ε > 0.

Let B(x◦, 2r) ⊂ Q1, where x◦ is the centre of the cube Q1. By ζ ∈ C1
◦(RN ) we

denote the function that satisfies ζ(x) = 1 in B(x◦, r) and ζ(x) = 0 on RN −
B(x◦, 2r) and 0 ≤ ζ(z) ≤ 1 on RN . We set ϕ̃ε(x) = ζ(x)ψε(x) and extending as
a periodic function we have ϕ̃ε ∈ H1

per(Qk). For ϕε(x) = (1/kN )ϕ̃ε(x) we define

Qk(ε) = {y + tTkϕε : y ∈ Yk, t ≥ 0}.
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Lemma 4. There exists ε◦ > 0 such that Tkϕε 6≡ 0 for 0 < ε ≤ ε◦.

The proof is identical to that of Lemma 5 in [3].
In the sequel we need the following asymptotic estimates of norms of ϕε:

‖∇ϕε‖2
2 = SN/2 +O(εN−2),(5)

‖ϕε‖2∗

2∗ = SN/2 +O(εN ),(6)

‖ϕε‖2
2 =

{
K1ε

2 +O(εN−2) if N ≥ 5,

K1ε
2| log ε2|+O(ε2) if N = 4,

(7)

‖ϕε‖1 ≤ K2ε
(N−2)/2,(8)

and

‖ϕε‖2∗−1
2∗−1 ≤ K3ε

(N−2)/2,(9)

for some constants K1 > 0, K2 > 0 and K3 > 0 (see [1]).
To proceed further we introduce two additional assumptions:

(K) 0 < K(x◦) = maxx∈Q1 K(x) and K(x) = K(x◦)+O(|x−x◦|) for x near
x◦ and K(x) is bounded from below on Q1 by a positive constant.

(f5) there exists a function f such that

f(x, u) ≥ f(u) a.e. for x ∈ ω and u ≥ 0,

where ω is some nonempty open set in Q1 and the function F (u) =∫ u
0
f(s) dx satisfies

lim
ε→0

εmin((N+2)/2,p(N−2)/2)

∫ ε−1

0

F

[(
ε−1/2

1 + s2

)(N−2)/2]
sN−1 dx = ∞.

If F (s) = |s|p, then this condition is satisfied.
The assumption (K) will be only used in the proof of Lemma 5 below. The

fact that K attains its maximum at the centre of the cube Q1 is not essential.
We introduce it to have a simple construction of a periodic cut-off function φε.

Lemma 5. We have

sup
u∈Qk(ε)

Jk(u) <
1
N
‖K‖−(N−2)/2

∞ SN/2.

Proof. We follow some ideas from the paper [3] (see Lemma 6). First we
observe that if u ∈ Ek with u 6≡ 0, then

Jk(su) =
s2

2

∫
Qk

(
|∇u|2 + V (x)u2

)
dx− s2

∗

2∗

∫
Qk

K(x)|u|2
∗
dx−

∫
Qk

F (x, su) dx

≤ s2

2

∫
Qk

(
|∇u|2 + V (x)u2

)
dx− s2

∗

2∗

∫
Qk

K(x)|u|2
∗
dx.
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From this estimate we deduce that lims→∞ Jk(su) = −∞. Hence there exists
sε ≥ 0 such that

Jk(sεu) = sup
t≥0

Jk(tu).

We may assume that sε > 0 and it satisfies

sε

∫
Qk

(
|∇u|2 + V u2

)
dx− s2

∗−1
ε

∫
Qk

K|u|2
∗
dx−

∫
Qk

uf(x, sεu) dx = 0.

This equation implies that

sε ≤
(∫

Qk
(|∇u|2 + V u2) dx∫
Qk
K|u|2∗ dx

)(N−2)/4

= A.

Since the function

s→ s2

2

∫
Qk

(|∇u|2 + V u2) dx− s2
∗

2∗

∫
Qk

K|u|2
∗
dx

is increasing in the interval [0, A] we see that

(10) Jk(su) ≤
1
N

[∫
Qk

(|∇u|2 + V u2) dx

(
∫
Qk
K|u|2∗ dx)2/2∗

]N/2
−

∫
Qk

F (x, sεu) dx.

For simplicity we may assume that K(0) = maxx∈Q1 K(x), as Jk is translation
invariant. For u = u− + tTkφε ∈ Qk(ε), with u− = Pku and ‖u‖2∗,K = 1, we
write ∫

Qk

(|∇u|2 + V u2) dx = − ‖u−‖2
k +

‖∇
(
tTkϕε

)
‖2
2

‖tTkϕε‖2
2∗,K

‖tTkϕε‖2
2∗,K

+ t2
∫
Qk

V (Tkϕε)2 dx.

(11)

As in [3] (see formula (20) there) we have the following estimate∣∣∣∣ ∫
Qk

K(|Tkϕε|2
∗
− |ϕε|2

∗
) dx

∣∣∣∣ ≤ C2ε
N−2

for some constant C2 > 0. Using this, (K) and (6) we get

(12) ‖Tkϕε‖2
2∗,K = (‖Tkϕε‖2∗

2∗,K)2/2
∗

= (‖ϕε‖2∗

2∗,K +O(εN−2))(N−2)/N

= (K(0)SN/2 +O(ε) +O(εN−2))(N−2)/N

= K(0)(N−2)/NS(N−2)/2 +O(ε(N−2)/N ).

As in [3] (see p. 288) we can derive the following estimate

(13)
∣∣∣∣ ∫
Qk

|∇ϕε|2 dx−
∫
Qk

|∇(Tkϕε)|2 dx
∣∣∣∣ = O(εN−2).
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Inserting (12) and (13) into (11) and using (5) we get

(14)
∫
Qk

(|∇u|2 + V u2) dx = − ‖u‖2
k + (K(0)−(N−2)/NS

+O(εN−2))‖tTkϕε‖2
2∗,K + t2

∫
Qk

V (Tkϕε)2 dx.

As in [3] (see (25), (26) and (27) there) we derive the estimate

(15) 1 = ‖u‖2∗

2∗,K

≥ ‖tTkϕε‖2∗

2∗,K +
1
2
‖u−‖2∗

2∗,K − C4t
2∗ε(N−2)N/(N+2)

≥ t2
∗
‖ϕε‖2∗

2∗,K − C3t
2∗εN−2 − C4t

2∗ε(N−2)N/(N+2) +
1
2
‖u−‖2∗

2∗,K

for some constants C3 > 0 and C4 > 0. This estimate implies that t is bounded.
We now distinguish two cases:

(i) ‖u−‖2∗

2∗,K ≤ 2C4t
2∗ε(N−2)N/(N+2) or

(ii) ‖u−‖2∗

2∗,K > 2C4t
2∗ε(N−2)N/(N+2).

In the first case we have (see [3] p. 289 formula (26))

(16) ‖tTkϕε‖2
2∗,K ≤ 1 + C5ε

N−2

for some constant C5 > 0. If the case (ii) prevails, then by the first part of the
inequality (15) we have

(17) ‖tTkϕε‖2∗

2∗,K ≤ 1.

Since sε satisfies∫
Qk

(|∇(u− + tTkϕε)|2 + V (x)(u− + tTkϕε)2) dx

− s2
∗−2
ε

∫
Qk

K(x)|u− + tTkϕε|2
∗
dx

−
∫
Qk

(u− + tTkϕε)f(x, sε(u− + tTkϕε))
sε

dx = 0

we get that

lim
ε→0

∫
Qk

|∇(u− + tTkϕε)|2 + V (x)|u− + tTkϕε|2 dx ≥ lim
ε→0

s2
∗−2
ε .

In both cases (16) and (17) we deduce from (14) that

lim
ε→0

s2
∗−2
ε ≤ K(0)−(N−2)/NS
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and sε is bounded for small ε > 0. We now estimate the integral involving F :

(18)
∣∣∣∣ ∫
Qk

F (x, u−+ tTkϕε) dx−
∫
Qk

F (x, u−) dx−
∫
Qk

F (x, tTkϕε) dx
∣∣∣∣

=
∣∣∣∣ ∫
Qk

[∫ tTkϕε

0

f(x, u− + s) ds−
∫ tTkϕε

0

f(x, s) ds
]
dx

∣∣∣∣
≤C6

[ ∫
Qk

|(tTkϕε)|(1 + |u− + tTkϕε|p−1
)
dx

+
∫
Qk

|(tTkϕε)|(1 + |tTkϕε|p−1) dx
]

≤C6

[ ∫
Qk

(|u−|p−1|tTkϕε|+ |tTkϕε|+ |tTkϕε|p) dx
]
.

We deduce from the condition ‖(u− + tTkϕε)‖2∗,K = 1 that ‖u−‖∞ is uniformly
bounded. As in [3] (see formula (20) there) we have∣∣∣∣ ∫

Qk

(|Tkϕε|p − |ϕε|p) dx
∣∣∣∣ ≤ C7(‖ϕε‖p−1

p−1‖Pkϕε‖∞ + ‖Pkϕε‖pp)

≤ (εN−(N−2)(p−1)/2ε(N−2)/2 + εp(N−2)/2)

= O(ε(N−2)/2).

Therefore it follows from (18) that∣∣∣∣ ∫
Qk

[F (x, u)− F (x, u−)− F (x, tTkϕε)] dx
∣∣∣∣ ≤ C8(ε(N−2)/2 + εN−p(N−2)/2).

Consequently,

(19)
∫
Qk

F (x, sε(u− + tTkϕε)) dx

≥
∫
Qk

F (x, sεu−) dx+
∫
Qk

F (x, sεtTkϕε) dx+O(ε(N−2)/2).

It then follows from (14) and (19) (taking into account both cases (16) and (17))
that

Jk(sε(u− + tTkϕε))(20)

≤ 1
N
K(0)−(N−2)/2SN/2

+O(ε(N−2)/2) +O(εN−p(N−2)/2)−
∫
Qk

F (x, sεu) dx



On Schrödinger Equation 255

≤ 1
N
K(0)−(N−2)/2SN/2 +O(ε(N−2)/2) +O(εN−p(N−2)/2)

−
∫
Qk

F (x, sεu−) dx−
∫
Qk

F (x, sεtTkϕε) dx

≤ 1
N
K(0)−(N−2)/2SN/2 +O(ε(N−2)/2)

+O(εN−p(N−2)/2)−
∫
Qk

F (x, sεtTkϕε) dx.

We now observe that

(21)
∣∣∣∣ ∫
Qk

(F (x, sεtTkϕε)− F (x, sεtϕε)) dx
∣∣∣∣

≤
∫
Qk

∣∣∣∣ ∫ sεtTkϕε

sεtϕε

f(x, s) ds
∣∣∣∣ dx ≤ C(‖Tkϕε‖2

2 + ‖Tkϕε‖pp) = o(ε(N−2)/2).

Therefore by (20), (21) and with the aid of assumption (f5) we get

Jk(s(u− + tTkϕε)) ≤
1
N
K(0)−(N−2)/2SN/2 +O(ε(N−2)/2)

+O(εN−p(N−2)/2)−
∫
Qk

F (sεtϕε) dx

≤K(0)−(N−2)/2SN/2 +O(ε(N−2)/2) +O(εN−p(N−2)/2)

−
∫
B(0,R)

F

(
Aε(N−2)/2

(ε2 + |x|2)(N−2)/2

)
dx.

We now observe that assumption (f5) implies that

lim
ε→0

1
ε(N−2)/2

∫
B(0,R)

F

(
Aε(N−2)/2

(ε2 + |x|2)(N−2)/2

)
dx = ∞

and

lim
ε→0

1
εN−p(N−2)/2

∫
B(0,R)

F

(
Aε(N−2)/2

(ε2 + |x|2)(N−2)/2

)
dx = ∞.

From this we deduce that

Jk(s(u− + tTkϕε)) <
SN/2

N
K(0)−(N−2)/2. �

3. Main existence result

First we establish the existence result for the problem (1k).

Lemma 6. Let Mk(ε) = {y + tTkϕε : ‖y + tTkϕε‖k ≤ R, t ≥ 0, y ∈ Yk},
then for R > 0 sufficiently large

ck = inf
h∈Γk

sup
u∈Mk(ε)

Jk(h(u))

are critical values of Jk.
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Proof. Let ρ be a constant from Lemma 2. We claim that for R > ρ

sufficiently large supu∈∂Mk(ε) Jk(u) = 0. If u ∈ ∂Mk(ε) and t = 0, then Jk(u) ≤
0. So let R = ‖y + tTkϕε‖k, with t > 0. It follows from assumptions (f2)–(f4)
that for every η > 0 there exists Cη > 0 such that

F (x, u) ≥ −ηu2 + Cη|u|θ

with 2 < θ < 2∗. This implies that∫
Qk

F (x, y + tTkϕε) dx ≥ −η‖y‖2
2 − ηt2‖Tkϕε‖2

2 + Cη‖y + tTkϕε‖θθ.

By the Sobolev inequality [7] we have

Jk(y + tTkϕε) ≤ − 1
2
‖y‖2

k + ηC‖y‖2
k +

1
2
t2‖Tkϕε‖2

k + Cηt2‖Tkϕ‖2
k

− Cη‖y + tTkϕε‖θθ −
m

2∗
‖y + tTkϕε‖2∗

2∗ ,

for some constant C > 0 and m = infx∈RN K(x). We now observe that Xk =
Yk ⊕RTkϕε is continuously embedded in Lq(Qk) for 2 ≤ q ≤ 2∗ and there exists
a continuous projection Πk : Xk → RTkϕε such that

‖tTkϕε‖q ≤ ‖Πk‖q‖y + tTkϕε‖q and ‖Πk‖q ≥ 1.

Choosing η so that ηC = 1/4 we get

Jk(y + tTkϕε) ≤ −1
4
‖y‖2

k +
3
4
‖tTkϕε‖2

k − C1(tθ‖Tkϕε‖θθ + t2
∗
‖Tkϕε‖2∗

2∗),

where C1 > 0 is a constant depending on ‖Πk‖q, ‖Πk‖2∗ , m, N and Cη. Con-
sequently, we see that Jk(y + tTkϕε) → −∞ as ‖y + tTkϕε‖k → ∞ and our
claim follows. We now observe that, by Lemma 5, ck < (SN/2/N)‖K‖−(N−2)/2

∞

and by the virtue of Lemma 3 the Palais–Smale condition holds at the level ck.
Therefore the result follows from Theorem A. �

According to Lemma 6 for each k ≥ 1 we obtain a solution uk ∈ H1
per(Qk).

Since

ck ≤ ck−1 ≤ c1 <
1
N
‖K‖−(N−2)/2

∞ SN/2

we can repeat the argument of the proof of Lemma 3 to establish a uniform
bound for the norms ‖uk‖k.

Lemma 7. Critical points uk of Jk with Jk(uk) = ck satisfy the estimate
‖uk‖k ≤ C for some constant independent of k.
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Lemma 8. There exists ε1 > 0 independent of k such that ‖uk‖k ≥ ε1 and
‖u‖H1 ≥ ε1 hold for every nontrivial critical points uk of Jk and u of J . Fur-
thermore, there exists ε2 > 0 independent k such that Jk(uk) ≥ ε2 and J(u) ≥ ε2
for every nontrivial critical points uk of Jk and u of J .

Proof. As in Lemma 4 in [9] we check that |`k(uk)| ≥ C‖uk‖2
k and ‖uk‖2

k ≥
C1 for some constants C > 0 and C1 > 0 independent of k. Since

Jk(uk) ≥
1
2
lk(uk)−

1
θ

∫
Qk

f(x, uk)uk dx−
1
2∗

∫
Qk

K|u|2
∗
dx

=
1
2

(
lk(uk)−

∫
Qk

f(x, uk)uk dx−
∫
Qk

K|uk|2
∗
dx

)
+

(
1
2
− 1
θ

) ∫
Qk

f(x, uk)uk dx+
(

1
2
− 1

2∗

) ∫
Qk

K|uk|2
∗
dx

≥ s`k(uk) ≥ sC‖uk‖2
k,

where s = min(1/2 − 1/θ, 1/N) and the assertion concerning Jk follows. The
same argument applies to J . �

We need the following modification of the Concentration–Compactness Lem-
ma [6], whose proof can be found in [9] (see Lemma 5 there).

Lemma 9. Let Qn be the cube of the edge length ln →∞ as n→∞ centred
at the origin, and Kr(ξ) be the closed cube with the edge length r centred at the
point ξ. Let {un} ⊂ H1

loc(RN ) be sequence of ln-periodic periodic functions such
that ‖un‖H1(Qn) ≤ C for some constant C > 0 independent of n. Suppose that
there exists r > 0 such that

lim inf
n→∞

sup
ξ

∫
Kr(ξ)

|un|2 dx = 0.

Then ‖un‖Lq(Qn) → 0 as n→∞ for q ∈ (2, 2N/(N − 2)).

Lemma 10. Let {uk} ⊂ Ek be a sequence such that

Jk(uk) = ck <
1
N
‖K‖−(N−2)/2

∞ SN/2

and J ′k(uk) → 0 as k →∞. Then the following alternative holds: either

(i) ‖uk‖k → 0 as k →∞, or
(ii) there exist numbers r, η > 0 and a sequence of points {ξk} ⊂ RN such

that
lim
k→∞

∫
Kr(ξk)

u2
k dx ≥ η.

Proof. Suppose that (ii) does not hold. Then by virtue of Lemma 9 we
have that

(22) ‖uk‖Lq(Qk) → 0 as k →∞
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for 2 < q < 2N/(N − 2). Therefore, by (f2) and (f3) we have

(23)
∫
Qk

f(x, uk)uk dx→ 0 and
∫
Qk

F (x, uk) dx→ 0

as k →∞. As in Lemma 3 we show that {uk} is uniformly bounded in H1-norm.
First we claim that

(24)
∫
Qk

V u2
k dx→ 0 as k →∞.

In fact, we have Qk =
⋃kN

i=1Q
i
k, Q

i
k∩Q

j
k = ∅ if i 6= j, where Qik, i = 1, . . . , kN are

cubes with the length of edges 1. Since V is 1-periodic, we have V |Qi
k

= V |Qj
k
,

i, j = 1, . . . , kN . Therefore it follows from the Hölder inequality that

∣∣∣∣ ∫
Qk

V (x)u2
k dx

∣∣∣∣ ≤ kN∑
i=1

∣∣∣∣ ∫
Qi

k

V (x)u2
k dx

∣∣∣∣
≤

kN∑
i=1

( ∫
Qi

k

|V |p/(p−2) dx

)(p−2)/p( ∫
Qi

k

|uk|p dx
)2/p

=
( ∫

Q1
k

|V |p/(p−2) dx

)(p−2)/2 kN∑
i=1

( ∫
Qi

k

|uk|p dx
)2/p

,

where 2 < p < 2∗. Since (see [7, p. 66 formula 2.10])

‖uk‖Lp(Qi
k) ≤ A‖uk‖1−σ

L2(Qi
k)
‖uk‖σH1(Qi

k),

where σ = N(p− 2)/2p, 0 < σ < 1 and a constant A > 0 depends only on p and
N , we have

( ∫
Qi

k

|uk|p dx
)2/p

≤ A2‖uk‖2(1−σ)

L2(Qi
k)
‖uk‖2σ−2

H1(Qi
k)

∫
Qi

k

(|∇uk|2 + u2
k) dx

≤ A2 sup
k

( ∫
Q1(ψk)

u2
k

)1−σ

sup
k
‖uk‖2σ−2

H1(Qk)

∫
Qi

k

(|∇uk|2 + u2
k) dx,

where Q1(ψk) is a cube with centre at ψk and the length of edge 1. Consequently,

kN∑
i=1

( ∫
Qi

k

|uk|p dx
)2/p

≤ A2 sup
k

( ∫
Q1(ψk)

u2
k dx

)1−σ

‖uk‖2
H1(Qk) sup

k
‖uk‖2σ−2

H1(Qk).
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The right hand side of this inequality goes to 0 by the assumption and the fact
that ‖uk‖H1(Qk) is bounded uniformly in k. Thus (24) readily follows. Since

∫
Qk

|uk|2 dx =
kN∑
i=1

∫
Qi

k

|uk|2 dx

≤
kN∑
i=1

|Qik|(p−2)/2

( ∫
Qi

k

|uk|2 dx
)2/p

=
kN∑
i=1

( ∫
Qi

k

|uk|p dx
)2/p

,

we see that uk → 0 in L2(Qk) as k →∞. Next we prove that

(25)
∫
Qk

K(x)|uk|2
∗
dx→ 0 as k → 0.

Argueing by contradiction suppose that
∫
Qk
K|uk|2

∗
dx → ` as k → ∞. Since

uk satisfies (1k) and (23), (24) hold we see that

(26)
∫
Qk

|∇uk|2 dx =
∫
Qk

K(x)|uk|2
∗
dx+ o(1)

and consequently

(27) ck =
1
N

∫
Qk

K(x)|uk|2
∗
dx.

Since ‖uk‖L2(Qk) → 0 as k →∞, by the Sobolev embedding theorem we have∫
Qk

|∇uk|2 dx+ o(1) ≥ S‖uk‖2
2∗ ≥ S‖K‖−2/2∗

∞ (K(x)|uk|2
∗
dx)2/2

∗
.

Combining this with (26) we derive that

` ≥ SN/2‖K‖−(N−2)/2
∞ .

This and (27) imply that limk→∞ ck ≥ (1/N)‖K‖−(N−2)/2
∞ SN/2 which is impos-

sible. From the fact that uk satisfies (1k) we deduce that

(28) ‖zk‖2
k =

∫
Qk

K(x)|uk|2
∗−2ukzk dx+

∫
Qk

f(x, uk)zk dx

and

(29) ‖yk‖2
k = −

∫
Qk

K(x)|uk|2
∗−2ukyk dx−

∫
Qk

f(x, uk)yk dx,

where zk = Tkuk, yk = Pkuk. Using (23), (24) and (25) we deduce from (28)
and (29) that |uk‖k → 0, that is (i) holds. �

We are now in a position to establish the main existence result.
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Theorem B. Suppose that (f1)–(f2), (A), (B) and (K) hold. Then prob-
lem (1) has a nontrivial solution.

Proof. Let {uk} be the sequence obtained in Lemma 6. By virtue of Lem-
mas 7 and 8 the sequence of norms ‖uk‖k is bounded uniformly from above and
below by positive constants. Then by Lemma 10, we have

‖uk‖2
L2(Kr(ξk)) ≥

η

2
.

Hence we can find a sequence {bk} ⊂ ZN and a number s > 0 such that the
sequence {ũk} defined by ũk(x) = uk(x+ bk) satisfies

(30) ‖ũk‖L2(Ks(0)) ≥
η

2
.

Since V , K and f are translation invariant, we have Jk(ũk) = Jk(uk) and
‖Jk′(ũk)‖ = ‖Jk′(uk)‖. By virtue of Lemma 7 {ũk} is uniformly bounded in
H1
k - norm. Therefore, we can assume that ũk ⇀ v in H1

loc(RN ). We then have
for any test function ϕ ∈ C∞◦ (RN ) that

〈J ′(u), ϕ〉 =
∫

RN

[∇u∇ϕ+ +V (x)uϕ−K(x)|u|2
∗−2uϕ− f(x, u)ϕ] dx

= lim
k→∞

∫
RN

[∇ũkϕ+ V (x)ũkϕ−K(x)|ũk|2
∗−2ũkϕ− f(x, ũk)ϕ] dx

= 0,

which means that u is a weak solution of (1) and by (30) u 6≡ 0. �

References
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