Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 12, 1998, 245-261

ON SCHRODINGER EQUATION
WITH PERIODIC POTENTIAL
AND CRITICAL SOBOLEV EXPONENT

JAN CHABROWSKI — JIANFU YANG

1. Introduction

The main purpose of this paper is to establish the existence of a solution of
the semilinear Schrodinger equation

(1) —Au+V(z)u=K(@)|u* 2u+ f(z,u) inRY,

involving a critical Sobolev exponent 2* = 2N/(N —2) with N > 4 and a
subcritical nonlinearity f : RY x R — R.
Throughout this paper it is assumed that

(A) The coefficients V and K are continuous and 1-periodic functions in each
variable z;, i = 1,... , N. Moreover, we assume that X > 0 on R".

In this case it is known that the operator —A + V on L?(R") has a purely
continuous spectrum consisting of closed disjoint intervals. In this paper we
consider the case:

(B) 0 is in the spectral gap of the operator —A + V.

There are many existence results in the case K = 0 on RY and we refer to
the papers [4], [5], [9], [10], [13].
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In particular, Kryszewski-Szulkin [5] and Troestler—Willem [13] proved the
existence of a solution using a generalized linking theorem which allowed a de-
composition of H!(R") into two infinite dimensional subspaces. This approach
has been simplified by Pankov—Pfliiger [9] by using the approximation technique
with periodic functions. In this paper we apply this technique to obtain the ex-
istence result for the equation (1). The crucial point in the approach presented
in our paper lies in the fact that the approximation technique of [9] can be com-
bined with the method developed in our earlier paper [3] to determine the range
of level sets of the energy functional for which the Palais—Smale condition holds.
This allows us to obtain an approximating sequence of solutions by applying the
Linking Theorem of Rabinowitz [10].

We assume that the nonlinearity f satisfies the following conditions:

(f1) f(x,u) is continuous on RY x R and 1-periodic in each variable ;,
i=1,....N.
(f2) |f(z,u)] < C(1 + |u/P~!) on RY x R for some constants C > 0 and
2<p<2N/(N —2),
(f3) f(x,u) = o(|u|) as u — 0 uniformly in z € RV,
(f4) there exists a constant 6 > 2 such that
0 < O0F(z,u) <uf(x,u)

for all u # 0 and z € RY, where F(z,u) = [;' f(z, s) dz.
Our main existence result will be based on the following critical point theo-
rem [10]:
THEOREM A (Linking Theorem). Let X =Y @® Z be a Banach space with
dimY < oo. Let R>r >0 and z € Z be such that ||z|| = r. Define
M=A{u=y+tz:|Ju| <R, t>0, yeY}
OM ={u=y+tz:y€Y, |Ju/|=R andt >0, or |lu]| <R and t =0},
N ={ueZ:||u|=r}
Let I € CY(X,R) be such that

(%) b= ulngv I(u) >a= max I(u).

If I satisfies the (PS). condition with

= inf max [
¢= inf max (v(w)),

where I' = {y € C(M, X) : v,,, = id}, then c is a critical point of I.
In this work we always denote in a given Banach space X a weak convergence

by “—” and a strong convergence by “—”. The duality pairing between X
and its dual X* is denoted by (-, -). We say that a C'-functional F : X —
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R satisfies the Palais—Smale condition (the (PS).-condition for short) if each
sequence {u,} C X such that F(uy,) — ¢ and F'(u,,) — 0 in X* is relatively
compact in X.

2. Existence result in cubes

The existence of solutions of (1) will be obtained by approximating with
solutions in cubes Qi C RY, with length of edge k, k € N.

Let H,.(Q) be the space of H'(Q)-functions consisting of k-periodic func-
tions in z;, i = 1,... , N. For simplicity we write Fj = ngr(Qk).

To obtain a solution of (1), we first investigate the problem
(1x) { ~Au+V(ayu = K(@)ul® *ut f(z,u) in Qs

u € Fy.

It is known that the operator —A 4V on LIQOC(Qk) has a discrete spectrum with
eigenvalues Ap 1 < Ap o < ... converging to oo as k — oo. Moreover, for each k
the following minima

(k) = min{i : A\ ; > 0}

are finite and every eigenvalue )\ ; is contained in the spectrum of —A + V' in
the whole space L2(RY). This is a consequence of the Spectral Decomposition
Theorem XII1.97 in [11]. Therefore, if (—a,3), @ > 0, 3 > 0, stands for the
spectral gap around 0, then Ay ; ¢ (—a, ) for every k,i € N. We denote by
®r,; the corresponding eigenfunctions. We now observe that every eigenfunction
¢ € Ej is, by periodicity, also in F,,; for each m € N. Consequently, every
eigenvalue of —A + V on L2 (Qy) is also an eigenvalue of this operator in
L}%er(ka)v m € N.

To proceed further we define an orthogonal decomposition of Ey, by
Ey =Yy © Zx, where Yy = {¢r1,..-, Ppy(k)=1}

The solutions of the problem (1;) will be found as critical points of the variational
functional

1

To(u) = 5/ (|Vu|2+V(x)u2)dx—21*/Q K()ul? do — [ Frwan

By ¢i : E;, — R we denote the quadratic part of J, that is,

zk(u):/Q (Vul? + V(2)a?) da.
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The quadratic part ¢ is positive on Z; and negative on Y. We can define a
new scalar product (-, - )i on Fjy with the corresponding norm || - ||x such that

/ (|Vul? + V(z)u?)dx = —||lu||? for u € Yy,

k

/ (|Vul? + V(z)u?)dr = ||ul|2  for u € Zj.
Qk

Let P, : Ey — Y and Ty : Er — Zi be orthogonal projections of Ej onto
Y, and Zj, respectively. With the aid of these projections we can write the
variational functional Jj in the form

1 1 .
) = STl — IPel?) = 5 [ K@l do = [ Fla e
k k
According to our assumptions on f, the functional Jj is C! and

(Ji(w),v) = (Trpu,v) — (Pru,v)g — K (2)|u)? ~2uv dz — flz,u)vde.
Qk Qk

We commence by establishing some technical lemmas.

LEMMA 1. The norm || - ||k is equivalent to the standard norm || - ||g1 in
HY(Qy), that is,
allully < fJullpr < bljullx

for all uw € Ey, and some constants a > 0 and b > 0 independent of k.
For the proof we refer to Lemma 2 in [9].

LEMMA 2. There exist constants o > 0 and o > 0 independent of k such
that inf,en, Ji(u) > a, where N, = {z € Zy : |||k = p}.

Proor. Let z € Zi, then
1 1 x
W) = 5lelf - 57 [ K@l do - [ Flade
Qr Qk

It follows from (f3) and (f3), that for every € > 0 there exists a constant C. > 0
such that
|F(x,8)| <es? + C.|sP

for all s € R. Applying the Sobolev embedding theorem we get that

| Faz)de < Cll + Culal)

k
for some constant C' > 0 independent of k. Consequently,
1K oo
2*

where || K| o = sup,cpn [K(x)|. Choosing € > 0 and p > 0 sufficiently small,

1 .
Je(2) = 5|l2lk - 1217 = CCell2llk + Cell=l17),

the result readily follows. O
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In the next lemma we find the energy range of the functional J; for which
the Palais—Smale condition holds.

LEMMA 3. Let {u,} be a sequence in Ej such that Jj (u,) — 0 and
1
Tun) = cx € (0 L IRIZN-225%2)

asn — oo, where S is the best Sobolev constant. Then {u,} is relatively compact
m Ek.

PROOF. In the first step of the proof we show that the sequence {u,} is
bounded in Ej. Indeed, we have

(2) e 0(1) = Julun) = 5w u0)

1 * 1

= K(z)|u,|? dm—i—f/ Un f (2, up,) dx —/ F(z,uy) dz
N Quk 2 Qk Qk

>3 [ K@l dos (5= 5) [ unfeund
— x)|u x - —= Un f (2, up) dz.

We now use the following estimates for f, that easily follow from assumptions
(£) (), namely:
|f(z,u)]? < Cuf(z,u) if jul <1 and 2z € RY,
|f(z, )P < Clu|P D@D f(z,u)| = Cuf(z,u) if |ul>1and z € RV,
for some constant C' > 0. Letting B, = {z € Q : |un(x)| < 1} we derive from

these estimates and (2) that

1 X
cp > — K(ar;)|un(a:)|2 dx
N Qk

+c</Bn |f(x,un)|2dx+/Qk_Bn |f (2, un) P dm) +0o(1)

for some constant C > 0. Hence

J T O i VA

Qr—Bn
for all n. Let y, = Pyu, and z, = Tpu,. Since (J;(upn),Yn) = €nllynlls, with
en — 0, we deduce from the Holder inequality that

||ynHi: —/Q K($)|un|2*72unyndx_ o F (@, un)yn dx + e l|ynllx
k k

(2*—1)/2*
<KL ( /Q K@) un? d:c) il + nllvale
k

1/2 1/p
Ck Ck
#(2) e+ (2) 7 Il
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for some constant C; > 0. This implies that {||yn||x} is bounded. In a similar
manner we show that {||z,|x} is bounded. Consequently, {|lun||r} is bounded
and we may assume that u, — w in Ey. Let v, = u, — u. According to
Brézis—Lieb lemma [2] we have

Ji(un) = Jp(u) + Ji(vn) + o(1)

and
(Ji(un), un) = (Jp(u),u) + (i (vn), vn) + 0(1) = o(1).

Hence

(3) ¢k +o(1) > %/ \Vun|2dx—2i*/ K(m)|vn|2* dx.
Qk

k

Since v, — 0 in L?(Q4), applying the Sobolev inequality (see [7, p. 69, for-
mula 2.17]) we get

2* /2
(4)/ |an|2dx:/ K(@)|oa]? dz+ o(1) < ||K||Oo(51/ |an|2dac> .
k Qk o

Qk

If [y, [Vvn|?dz — 1> 0, then we deduce from (4) that
> HKH;(N_Q)/QSN/27

which combined with (3) and (4) gives

! | K Hgo(Nﬂ)/Q N,
> > = 9 /2
k=N = N
which is impossible. Therefore [ = 0 and the result follows. O

To verify condition (*) of Theorem A we use a truncated Talenti function
(see [12]). Let

N(N —2)e\V-2/2
7,[15(13) = <g2_~_$|2> , €2> 0.
Let B(zo,2r) C Q1, where x, is the centre of the cube Q;. By ¢ € CL(RY) we
denote the function that satisfies ((z) = 1 in B(xo,7) and ((z) = 0 on RY —
B(w,,2r) and 0 < ¢(z) <1 on RY. We set ¢.(z) = ((2)-(z) and extending as
a periodic function we have @. € Hl, (Q). For p.(z) = (1/kV)p.(x) we define

per

Qr(e) ={y +tThp: 1y € Yy, t >0}
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LEMMA 4. There exists €, > 0 such that Tip. Z0 for 0 < e <e,.

The proof is identical to that of Lemma 5 in [3].
In the sequel we need the following asymptotic estimates of norms of ¢.:

(5) V. |2 = SN2 4 0(eN-2),

(6) el = V2 1 0(),

(7) loll2 = Kye? + 0N ™?) if N > 5,
ell2 Kie2|loge?| + O(e?) if N =4,

(8) ”906”1 < ]"(25-?(1\[72)/27

and

9) lpel2e} < KyeW=2/2,

for some constants K7 > 0, K3 > 0 and K3 > 0 (see [1]).
To proceed further we introduce two additional assumptions:
(K) 0 < K(zo) = maxzeq, K(z) and K(z) = K(z,)+O(|Jx —zo|) for z near
xo and K (x) is bounded from below on @1 by a positive constant.

(f5) there exists a function f such that
flx,u) > f(u) a.e. for x € w and u > 0,

where w is some nonempty open set in @ and the function F(u) =
u g .
Jo f(s)dx satisfies

—1

—1/2 \ (N—=2)/2
lim emin((N+2)/2,p(N-2)/2) : 7 e/ N1 dr — 0o,
e—0 0 1 —+ 52

If F'(s) = |s|?, then this condition is satisfied.

The assumption (K) will be only used in the proof of Lemma 5 below. The
fact that K attains its maximum at the centre of the cube () is not essential.
We introduce it to have a simple construction of a periodic cut-off function ¢..

LEMMA 5. We have

1
Sup () < LDV,
u€EQ(¢)

ProOF. We follow some ideas from the paper [3] (see Lemma 6). First we
observe that if u € Ej, with u # 0, then

2 2*
Ji(su) = %/ (|Vul]? + V(2)u?) dz — 32* /Q K(x)|u* dz — / F(z,su)dx
k k k
2 2*
< %/ (IVu]* + V(2)u?) dz — 82* / K(x)|u* dz.
Qk Qk
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From this estimate we deduce that lims_, Ji(su) = —oo. Hence there exists
s > 0 such that

Ji(seu) = sup Ji (tu).
>0

We may assume that s. > 0 and it satisfies
ss/ (IVul? + Vu?) do — s* 7! / Klu)? dx — / uf(x, s.u) dr = 0.
k Qk Qr

This equation implies that

- Jo, IVul? + Vu?) da (N=2)/4 N
56-( Jou K[ul dz ) -

Since the function

o*

2 s

s—>%/ (|Vul? + Vu?) do —

. Ku|* dx
k 2 Qk

is increasing in the interval [0, A] we see that

(10) Ju(su) < 1 {f@k(|Vu|2+Vu2)dx]N/2 / -
k = 7r * * - ) O€ .
N (ka Klul? dx)2/2 Qk

For simplicity we may assume that K(0) = max,eq, K(x), as Ji is translation
invariant. For u = u~ + tTp¢e € Qk(e), with u~ = Pru and ||u

write

2.5 = 1, we

IV (tThe:) 13

tThe
[t Tepe 13- 5 :

) [ (VP4 VaRyde = - u |+ b
Qk
+t2/ V(Tre.)? d.
k
As in [3] (see formula (20) there) we have the following estimate

K(‘Tk@sﬁ* - |906|2*) dx| < O2€N72

A
for some constant Cy > 0. Using this, (K) and (6) we get

(12)  NTepell3- e = (I Tkeell3e )** = (lloell3e s + OV 2) N2

= (K(0)SN2 1 0(e) + O(eN2))(N=2)/N
— K(O)(N—Q)/NS(N—2)/2 + O(E(N_Q)/N).

As in [3] (see p. 288) we can derive the following estimate

(13) ] [ 1vepas [ 9] < 0,

Qk
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Inserting (12) and (13) into (11) and using (5) we get
(14) / (Va2 + Vi) de = — |[ul2 + (K(0)-N-2/Ng
Qk
FOE Mgl + [ V(T do.

k

As in [3] (see (25), (26) and (27) there) we derive the estimate

(15) 1 = [lul3- &
* 1, _ o . 3
> [tTepe 3 i + 5lu 12 — Cat? e N=DN/(N+2)
) : - - 1 .
> e o o

for some constants C3 > 0 and Cy > 0. This estimate implies that ¢ is bounded.
We now distinguish two cases:

(i) lum |3 5 < 2Cut> NN/ (N+2) op
(i) [lu~||3" g > 20482 eN-DN/(N+2),

In the first case we have (see [3] p. 289 formula (26))

(16) [ Thpe

ek S1+CseN 72

for some constant C5 > 0. If the case (ii) prevails, then by the first part of the
inequality (15) we have

(17) ||tTk(,05

k<L
Since s, satisfies
L (V6 4 T 4 V) + i) de
k
— 522 K(x)|u™ + tTrp|* dz

)
Qk

[ st e,

Se

we get that

lirr(lJ IV(u™ + tTipe)|? + V(x)|u™ + tThp|* do > lir% 522,
E— Qk E—

In both cases (16) and (17) we deduce from (14) that

lim 52" ~2 < K(0)"(V-2/Ng

e—0
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and s, is bounded for small € > 0. We now estimate the integral involving F':

(18) ‘/ F(m7u*+tTkgas)dx—/ F(x,u*)dac—/ F(z,tType) dx

_ ‘/ [/Otwe Fla,u= +s)ds — /OtTWE f(@,s) ds] dz

<Cy [ / ((tTipe)|(1+ [u™ + (ThpeP ™) da
Qk

+ [ 1Tl T
Qk

e [ | (P Tl + 16Tl + 1Tl dx].
k

We deduce from the condition ||(u™ 4+ tTk@e)||2+, xk = 1 that ||u™ || is uniformly
bounded. As in [3] (see formula (20) there) we have

\ [ (et = oo da
k

< C?(H‘PEHZZi | Prepelloo + ”Pk@e”g)
< (EN*(N*Q)(P*U/Q(C:(N*Q)/Q + 5P(N*2)/2)

=072,
Therefore it follows from (18) that

‘ / [F(z,u) — F(z,u”) — F(x, tThe: )| dz| < Cg(eW=2)/2 4 N=P(N=2)/2)
k

Consequently,

(19) F(z,se(u™ + tTrepe)) da
Qk

> F(z,scu™)dx + F(x, s:tThe. ) dz + O(eN=2/2),
Qr Qk

It then follows from (14) and (19) (taking into account both cases (16) and (17))
that

(20) Ji(se(u™ +tTrpe))
1
< —(N=-2)/2 aN/2
< NK(O) S

+ O(eW=2/2) 4 O(eN-PIN=2)/2) _ F(z,scu)dx
Qk
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< S E(0) Y AI2GNI2 4 (V212 4 (N BN D12
—/ F(ac,sgu_)da:—/ F(z, sctTyep:) dx
Qk Qrk
< K(O)_(N_2)/2SN/2 +O(€(N_2)/2)

+ ==

O(é.pr(N—Z)/Z) - / F(I7SEtTk§05) dll:

k

We now observe that

(21) ‘/Q (F(z, setTpe) — F(x, sctee)) de

setThpe
< / / f(a,5) ds

etpe
Therefore by (20), (21) and with the aid of assumption (f5) we get

dz < C(|Tipe |3 + | Tip:|2) = o(e™=272).

Je(s(u™ + tTrpe)) < iK(O)_(N_Z)/?LS'N/2 +0(eN-2/2)

Qr
(0)_(N_2)/25N/2+O(€(N_2)/2)+O(5N_p(N_2)/2)

o As(N—2)/2
_/ F( 2 - 2 (N—2 2)071:.
B(0,R) (2 + |z[2) (V=2

We now observe that assumption (f5) implies that

, 1 _ Ae(N=2)/2
Ly “(N—2)/2 /B(O,R) F<(e2 + |x|2)(N—2)/2> dz = oo

N
+ O(eNPIN=2)/2y _ F(sctp:)dz
K

and

, 1 [ AN-2/2
v (s ) =
From this we deduce that
N/2

Ti(s(u™ + tThepe)) < = K (0)77272, O

3. Main existence result
First we establish the existence result for the problem (1y).

LEMMA 6. Let My(e) = {y + tThpe : |ly +tThpells < R, t >0, y € Y3},
then for R > 0 sufficiently large

c, = inf  sup Jr(h(u
hely u€ My (e) ( ( ))

are critical values of Jy.
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PROOF. Let p be a constant from Lemma 2. We claim that for R > p
sufficiently large sup,conr, (o) Jk(u) = 0. If u € OMj(e) and t = 0, then Jy(u) <
0. Solet R = ||y + tTiwellk, with ¢t > 0. It follows from assumptions (f3)—(fs)
that for every n > 0 there exists C, > 0 such that

F(z,u) > —nu® + Cn|u|9
with 2 < 6 < 2*. This implies that

F(x,y + tTipe) dz > —nlly|13 — nt?(|Teee 13 + Cylly + tThepel|5-
Qk

By the Sobolev inequality [7] we have

1 1
Te(y + tTupe) < = Sylk +nCllyllk + 581 Thee 17 + Cut? | Tl

o
2%

m
= Cylly + tTopellg — o lly + tThepe

for some constant C' > 0 and m = inf, g~y K(2). We now observe that X; =
Y, ® RTj . is continuously embedded in L2(Qy) for 2 < ¢ < 2* and there exists
a continuous projection Il : X — RT,p. such that

”tTk‘PSHq < ”Hk”q”y"‘tTk@enq and ”Hqu > 1

Choosing 1 so that nC = 1/4 we get

1 3 * -
Ty +Tpe) < = Il + 51Tl = CLE | Tl + 2 I Tepel13),

where C7 > 0 is a constant depending on |[II;||4, ||IIx||2-, m, N and C,. Con-
sequently, we see that Ji(y + tTrp.) — —oo as ||y + tTeee|lr — oo and our
claim follows. We now observe that, by Lemma 5, ¢ < (SN/Q/N)||K||<;)(N72)/2
and by the virtue of Lemma 3 the Palais—Smale condition holds at the level cy.
Therefore the result follows from Theorem A. O

According to Lemma 6 for each k > 1 we obtain a solution ug € HJ,.(Qk).
Since

1 ~(N—
cr<cp—1 <0 < NIIKHN(N 2)/2GN/2

we can repeat the argument of the proof of Lemma 3 to establish a uniform
bound for the norms ||ug||x.

LEMMA 7. Critical points uy, of J, with Ji(ur) = ci satisfy the estimate
luglle < C for some constant independent of k.
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LEMMA 8. There exists e1 > 0 independent of k such that ||ug||r > €1 and
lu|lzr > €1 hold for every nontrivial critical points uy of J, and w of J. Fur-
thermore, there exists €5 > 0 independent k such that Ji(ug) > €2 and J(u) > €2
for every nontrivial critical points uy of Ji and u of J.

PROOF. As in Lemma 4 in [9] we check that [¢;(ug)| > C|luk||? and |jug|/Z >
C for some constants C' > 0 and C; > 0 independent of k. Since

1 1 1 .
Jk(uk) > ilk(uk) — 5 f(x7uk)uk dr — 27/ K|u|2 dzr
Qr Qr

1 .
Q(Zk(uk) — [z, ug)ug dxf/ K|uk|2 dac)
Qk Qk

1 1 1 1 .
+ ( - ) S, ug)ug de + ( - *> / Klug|* dx
2 0 o 2 2 Qn

> sl (ug) > SOHukHiv

where s = min(1/2 — 1/6,1/N) and the assertion concerning Jj follows. The
same argument applies to J. g

We need the following modification of the Concentration—-Compactness Lem-
ma [6], whose proof can be found in [9] (see Lemma 5 there).

LEMMA 9. Let @, be the cube of the edge length l,, — 0o as n — oo centred
at the origin, and K,.(§) be the closed cube with the edge length r centred at the
point €. Let {u,} C HE_(RY) be sequence of l,-periodic periodic functions such
that ||un || g1 (@,) < C for some constant C > 0 independent of n. Suppose that
there exists v > 0 such that

lim inf sup/ |t |? da = 0.
K (&)

n—oo 5

Then ||un||La(q,) — 0 as n — oo for g € (2,2N/(N —2)).

LEMMA 10. Let {ux} C Ey be a sequence such that
1
Ti(ur) = e < S [N 2/2 502

and Jj,(ur) — 0 as k — co. Then the following alternative holds: either

(i) |lugllx — 0 as k — oo, or
(i) there exist numbers r,n > 0 and a sequence of points {&,} C RN such
that
lim u% dx > n.
k=00 J K, (¢x)
PROOF. Suppose that (ii) does not hold. Then by virtue of Lemma 9 we
have that

(22) luelzagn =0 as k — oo
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for 2 < ¢ < 2N /(N — 2). Therefore, by (f2) and (f5) we have

(23) f(z,up)ug de — 0 and / F(z,u;)dx — 0
Qk Qk

as k — oco. As in Lemma 3 we show that {uy} is uniformly bounded in H!-norm.

First we claim that

(24) / Vuider —0 ask — oo.
Qk

In fact, we have Qy, = Uf:l QLN ff =0ifi#j, where Q},i=1,... k" are
cubes with the length of edges 1. Since V is 1-periodic, we have V Qi = V|Q'x7;’
i,j=1,...,kN. Therefore it follows from the Holder inequality that

kN

‘ / V(z)uido| < Z / V(z)ui dx
Qk i=1 1/ Qj
kN (p—2)/p 2/p
<y (/ VP @) d:c) (/ |uk|de>
i1 N/ Q% Qi

(/ o2 (p—2)/2’§: 2/p
= |V|P/P= dx) (/ g | dx) ,
Q3 i Q:

=1 k

where 2 < p < 2*. Since (see [7, p. 66 formula 2.10])

17
el gy < Allull b el o

where 0 = N(p —2)/2p, 0 < 0 < 1 and a constant A > 0 depends only on p and
N, we have

2/ 2 2(1-0)
([ ) <2l

l1—0o
< A%sup (/ ui) sup||uk||§;1_(ék)/‘(\Vuk|2+ui)dx,
k Q1(Yr) k Q5.

|uk”§;1_(é2)/Q (|Vug|* 4+ u3) da
k

where Q1 (1) is a cube with centre at 1 and the length of edge 1. Consequently,

EN 2/p
S ([ )
i=1 QL

1—0
< A%sup (/ ui d:r) ||uk||§{1 sup||uk||§1,"f2 .
k\JQu(wn) @7 S
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The right hand side of this inequality goes to 0 by the assumption and the fact
that ||uk| g1 (@,) is bounded uniformly in k. Thus (24) readily follows. Since

kN
lug|? dor = / lug|? da
/Qlc ; Qi
EN ‘ 2/p kY 2/p
<Yl ( [ ki) =Y ([ apar)
i—1 Qi i

i=1 Qk

we see that uy — 0 in L?(Qy) as k — oo. Next we prove that

(25) K(z)|up|? dz —0 ask — 0.
Qk

Argueing by contradiction suppose that ka K|up|? dz — ¢ as k — oo. Since

uy, satisfies (1) and (23), (24) hold we see that

(26) /Q|Vuk2da:=/Q K (@) [us|? dz + o(1)

and consequently

1

(27) Cr = ——
N Jq,

K (x)|u|? de.
Since ||ug||L2(g,) — 0 as k — oo, by the Sobolev embedding theorem we have

50 2 S|IK[IE? (K (@) lun|* dx)?".

/ Vgl dz + o(1) > Slus

k

Combining this with (26) we derive that
> SN/QHKH;O(N_Q)/Q'

This and (27) imply that limy_o cx > (1/N)]| K|~ 2/28N/2 which is impos-
sible. From the fact that uy satisfies (1;) we deduce that

(28) lzkll? = / K (@) |ug)® ~2upz, do + f(z,ug)zg do
Qk Qk
and
(29) lyelli = = | K@)w Pusynde — [ f(z,u)yy dr,
Qk Qk
where 2z, = Tpug, yr = Pyug. Using (23), (24) and (25) we deduce from (28)
and (29) that |ug||x — 0, that is (i) holds. O

We are now in a position to establish the main existence result.
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THEOREM B. Suppose that (f1)—(f2), (A), (B) and (K) hold. Then prob-
lem (1) has a nontrivial solution.

PRrROOF. Let {ur} be the sequence obtained in Lemma 6. By virtue of Lem-
mas 7 and 8 the sequence of norms ||ug||x is bounded uniformly from above and
below by positive constants. Then by Lemma 10, we have

7
ke e, ey = -

Hence we can find a sequence {b;} C Z" and a number s > 0 such that the
sequence {u} defined by @y (z) = ug(z + by) satisfies

(30) litellz .o = 3-
Since V, K and f are translation invariant, we have Jy(ur) = Ji(ux) and
|76 (x| = || J&'(ug)||. By virtue of Lemma 7 {u} is uniformly bounded in

H}- norm. Therefore, we can assume that @, — v in HL_(RY). We then have
for any test function ¢ € C°(RY) that

(T(.9) = [ [VaTe+ +Vizug = K@l 2up = f(z. 0] da

= lim (Ve + V(2)ine — K (z)[an* ~2une — f(z, ) ¢] do

k—oo JpN
= O7
which means that u is a weak solution of (1) and by (30) u # 0. O
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