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ON PARABOLIC QUASI-VARIATIONAL INEQUALITIES
AND STATE-DEPENDENT SWEEPING PROCESSES

M. Kunze — M. D. P. Monteiro Marques

1. Introduction

In this paper we consider the evolution problems

(1.1) −u′(t) ∈ NC(t,u(t))(u(t)) a.e. in [0, T ], u(0) = u0 ∈ C(0, u0),

in a Hilbert space H. We assume that

(1.2) C(t, u) ⊂ H is nonempty, closed, and convex for t ∈ [0, T ], u ∈ H.

In (1.1), NC(t,u)(x) denotes the normal cone to C(t, u) at x ∈ C(t, u), cf. Section 2
below. We will treat the case of (t, u) 7→ C(t, u) being Lipschitz continuous
w.r. to the Hausdorff distance dH with constants L1, L2 ≥ 0, i.e., we require

(1.3) dH(C(t, u), C(s, v)) ≤ L1|t− s|+ L2|u− v|, t, s ∈ [0, T ], u, v ∈ H.

Note that a solution of (1.1) in particular has to satisfy u(t) ∈ C(t, u(t)) for
t ∈ [0, T ].
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Problems of type (1.1) are generalizations of Moreau’s classical sweeping pro-
cess −u′(t) ∈ NC(t)(u(t)) (cf. e.g. [8] and the references therein) with the moving
convex set being additionally allowed to depend on the state u.

There is a special case of (1.1) which also deserves separate attention, namely
parabolic quasi-variational inequalities of the form

(1.4) find v(t) ∈ Γ(v(t)) : 〈v′(t) + f(t), w − v(t)〉 ≥ 0

for all w ∈ Γ(v(t)), v(0) = v0 ∈ Γ(v0),

where v = v(t) : [0, T ] → H, f : [0, T ] → H is some inhomogeneity, and Γ(v) ⊂ H

is a set of constraints. Written somewhat differently, (1.4) means that

(1.5) −v′(t) ∈ NΓ(v(t))(v(t)) + f(t) a.e. in [0, T ], v(0) = v0 ∈ Γ(v0).

Then, if v is a solution of (1.5), and if we define

(1.6) u(t) = v(t) +
∫ t

0

f(s) ds and C(t, u) = Γ(u−
∫ t

0

f(s) ds) +
∫ t

0

f(s) ds,

it is found that u is a solution of (1.1), with initial value u0 = v0 ∈ C(0, u0).
Thus indeed the quasi-variational inequalities (1.5) are particular cases of (1.1).

When dealing with (1.5), we shall always suppose that

(1.7) Γ(v) ⊂ H is nonempty, closed, and convex for v ∈ H,

and that v 7→ C(v) is Lipschitz with constant L ≥ 0, i.e.,

(1.8) dH(Γ(v),Γ(w)) ≤ L|v − w|, v, w ∈ H.

In case that f ∈ L∞([0, T ];H) in (1.5) (which we will assume for simplicity,
but f ∈ L1([0, T ];H) is sufficient), (1.8) implies that (1.3) holds for C defined
by (1.6), with L1 = (L + 1)|f |L∞([0,T ];H) and L2 = L. This might be a bad
estimate for L1, but it will turn out that it is only the size of L2 which determines
the existence of a solution to (1.1).

There are several concrete examples where state-dependent sweeping pro-
cesses as (1.1) or parabolic quasi-variational inequalities of type (1.5) yield
the correct mathematical description of the underlying practical problem. State-
-dependent sweeping processes of type (1.1) occur, for instance, in the treat-
ment of 2-D or 3-D quasistatical evolution problems with friction, as treated in
[5, Chapter II, III] (see also the account given in [8, pp. 155–161]). In a differerent
context, the state-dependent sweeping process is used in micromechanical dam-
age models (the so-called Gurson-models) for iron materials with memory to de-
scribe the evolution of the plastic strain in presence of small damages; cf. [10], [3].
Examples of evolutionary quasi-variational inequalities may be found in [1] and
the references therein, cf. in particular p. 242 f.



On Parabolic Quasi-Variational Inequalities 181

Our results are as follows. We will see in Example 3.1 below that there
might be no solution of (1.5) in case that L > 1 in (1.8), and hence the same
has to be said for (1.1), when L2 > 1 in (1.3). In addition, Example 3.2 will
show that also the solutions to both problems need not be unique (although we
don’t know this for (1.1) with L2 < 1). This non-existence and non-uniqueness
is in contrast to the situation in the classical state-independent sweeping process
−u′(t) ∈ NC(t)(u(t)), cf. [8], where unique solutions exist if t 7→ C(t) is Lipschitz
continuous, no matter what is the Lipschitz constant.

Next, we prove in Theorem 3.3 that in fact (1.1) has a solution if L2 < 1,
and this transfers to (1.5) in case that L < 1 in (1.8), cf. Theorem 3.5. Then
we will see in the one-dimensional Example 3.6 that one may have no solution
to (1.1) for L2 = 1 in (1.3), and the two-dimensional Example 3.7 shows that
also (1.5) may fail to have solutions for L = 1 in (1.8). Afterwards we point
out a difference between (1.1) and (1.5), because in Theorem 3.8 we obtain
the existence of a solution for (1.5) with L = 1 in the one-dimensional setting.
Thus we have clarified all cases of L2 ≥ 0 in (1.3) resp. L ≥ 0 in (1.8).

Some results about a special problem of type (1.1) can be found in [5], where
a fixed-point technique is used, together with a semi-implicit discretization for
numerical purposes, the latter without proof. By semi-implicit discretization, we
mean an iteration scheme un

i = proj(un
i−1, C(tni , un

i−1)) instead of (3.12) below.
It appears that an approach like this still requires a compactness assumption in
the infinite-dimensional case. Also in [10] the existence issue will be treated for
L2 < 1, with a different assumption on a certain retraction function of C, and
the method used there relies on introducing an artificial time delay which is sent
to zero to obtain finally a solution; cf. e.g. [4] for the method.

We start with some preliminaries before going on to the main subject in
Section 3.

2. Preliminaries

We will always consider a real Hilbert space H with inner product 〈 · , · 〉,
norm | · |, and closed balls Br(x0) = {x ∈ H : |x−x0| ≤ r} for r > 0 and x0 ∈ H.
For a closed convex C ⊂ H, the set NC(x) = ∂δC(x) = {y ∈ H : 〈y, c − x〉 ≤
0 for all c ∈ C}, x ∈ C, denotes the normal cone to C at x. Also, the Hausdorff
distance between C1, C2 ⊂ H is

dH(C1, C2) = max{ sup
x∈C2

dist(x,C1), sup
x∈C1

dist(x, C2)}

with dist(x,C1) = inf {|x − y| : y ∈ C1}. Finally, for a closed convex C ⊂ H

and x ∈ H, y = proj(x, C) will be the unique element of H such that |y − x| =
dist(x, C).
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Solutions of (1.1) (resp. (1.5)) are always understood to be Lipschitz contin-
uous functions such that (1.1) (resp. (1.5)) holds.

The next lemma will be used below to establish the existence of an implicit
discretization scheme for (1.1). There we will need the condition

γ(C(t, A) ∩BR(0)) < γ(A) for t ∈ [0, T ],

A ⊂ H bounded with γ(A) > 0, R > 0,

where γ = α or γ = β is either the Kuratowski or the Hausdorff (ball-)measure
of noncompactness, cf. [6] or [11]. Moreover, C(t, A) =

⋃
u∈A C(t, u). Thus (2.9)

holds in particular in case that C(t, A)∩BR(0) ⊂ H is relatively compact for all
bounded A ⊂ H and R > 0, and this means that condition (2.9) is satisfied in
case that dim H < ∞. Another typical situation where (2.9) holds is the case of
H = L2(Rn) and C(t, A) ⊂ H1(Rn) bounded for bounded A ⊂ L2(Rn).

Lemma 2.1. Let (t, u) 7→ C(t, u) be a multifunction satisfying (1.2), (1.3)
with 0 ≤ L2 < 1, and (2.9). If t ∈ [0, T ] and u ∈ C(s, u) for some s ∈ [0, T ], then
there exists v ∈ H such that v = proj(u, C(t, v)) and |v−u| ≤ L1|t−s|/(1−L2).

Proof. Let r = L1|s − t|/(1 − L2), D = Br(u), and Fv = proj(u, C(t, v))
for v ∈ D. Then by (1.3) for v ∈ D

|Fv − u| = |proj(u, C(t, v))− u| = dist(u, C(t, v)) ≤ dH(C(s, u), C(t, v))

≤ L1|s− t|+ L2|u− v| ≤ L1|s− t|+ L2r = r,

and hence F (D) ⊂ D. In addition, Fv ∈ C(t, v) implies F (A) ⊂ C(t, A)∩BR(0)
with R = |u| + r, and thus γ(F (A)) ≤ γ(C(t, A) ∩ BR(0)) < γ(A) for A ⊂ D

with γ(A) > 0 by (2.9). Moreover, F is continuous as may be seen from (1.3)
and a geometrical inequality of Moreau for projections, cf. [8, Proposition 4.7,
p. 26]. Therefore F is a condensing self-map of D, and consequently has a fixed
point in D by Darbo’s theorem, cf. [6] or [11]. �

Remark 2.2. To establish the discretization scheme, it is necessary to solve
the equation v = proj(u, C(t, v)) w.r. to v for known u. This fixed point problem
cannot be solved by means of e.g. Banach’s fixed point theorem, since only
|proj(u, C(t, v)) − proj(u, C(t, v))| ∼= |v − v|1/2 by (1.3) and the inequality for
projections mentioned above. Thus we have to impose an additional compactness
assumption like (2.9) and to use a more sophisticated fixed-point theorem.

The next lemmas will also be needed later.

Lemma 2.3. Let z ∈ R and I ⊂ R a nonempty closed interval. Then

(2.10) |proj(u + z, I)− u| ≤ max{|z|,dist(u, I)}.
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Proof. We only consider the case of a compact interval I = [a, b]. Let
v = proj(u+ z, I). If u+ z ∈ I, then v = u+ z and (2.10) holds. If u+ z 6∈ I but
v = proj(u, I), then |v−u| = dist(u, I). Finally, if u+ z 6∈ I and proj(u+ z, I) 6=
proj(u, I), then w.l.o.g. u+z < a < u (the case u+z > b > u is treated similarly)
and v = a, so that |v − u| = u− a < |z|. �

Lemma 2.4. If C : [0, T ] → 2R has nonempty closed convex values and is
dH-Lipschitz with constant K ≥ 0, then for every f ∈ L∞([0, T ]) the unique
solution of

(2.11) −u′(t) ∈ NC(t)(u(t)) + f(t) a.e. in [0, T ], u(0) = u0 ∈ C(0),

is Lipschitz with constant max{|f |L∞([0,T ]),K}.

Proof. We assume f ∈ C([0, T ]), the general case follows by approxima-
tion. The solution of (2.11) can be obtained through discretization, as a limit of
(a subsequence) of the step functions

un(t) = un
i for t ∈ [tni , tni+1],

with un
i = proj(un

i−1 − (tni − tni−1)f(tni ), C(tni )) ∈ C(tni ),

cf. also the proof of Theorem 3.3 below. Hence, by Lemma 2.3,

|un
i − un

i−1| = |proj(un
i−1 − (tni − tni−1)f(tni ), C(tni ))− un

i−1|
≤ max{(tni − tni−1)|f(tni )|,dist(un

i−1, C(tni ))}
≤ max{(tni − tni−1)|f |L∞([0,T ]),dH(C(tni−1), C(tni ))}
≤ (tni − tni−1) max{|f |L∞([0,T ]),K}.

This estimate suffices to obtain in the limit that the solution u is Lipschitz
with constant max{|f |L∞([0,T ]),K}, cf. the proof of Theorem 3.3 which requires
similar techniques. �

Remark 2.5. It is a special feature of H = R that an estimate of the form
max{|f |L∞([0,T ]),K} is possible for the solution to (2.11), mainly because there
are “only two directions”. Consider (2.11) e.g. in H = R2 with C(t) = {t}×[0, 1],
f(t) = (0,−1), and u0 = (0, 0). Then K = 1, so that max{|f |L∞([0,T ]),K} = 1,
but the unique solution u(t) = (t, t) is Lipschitz with constant

√
2 > 1. It is

exactly this point that will allow a counterexample for L = 1 in dim H ≥ 2,
whereas (1.5) with L = 1 in (1.8) has a solution in H = R.

3. Existence and nonexistence of solutions

We start with a simple example showing that in general no solution of (1.5)
can be expected for L > 1. Via (1.6), the same is true for (1.1).
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Example 3.1. Let L > 1, H = R, Γ(v) = [Lv, 1] for v ≤ 1/L, and Γ(v) =
[1, Lv] for v > 1/L, v ∈ R. Then v 7→ Γ(v) is dH -Lipschitz with constant L.
In addition, v0 := 0 ∈ Γ(0) = [0, 1], but (1.5) with f(t) = −1, t ∈ [0, 1], has
no solution. Indeed, assume v : [0, 1] → H to be a solution. By continuity,
Lv(t) ≤ 1 for t ∈ [0, δ] with a suitable δ > 0, hence v(t) ∈ Γ(v(t)) = [Lv(t), 1]
and L > 1 imply v(t) ≤ 0 in [0, δ]. On the other hand, for x ≤ 0,

NΓ(x)(x) =

{
]−∞, 0] : x = 0,

{0} : x < 0,
⊂ ]−∞, 0] ,

so that (1.5) yields v′(t) ≥ −f(t) = 1 in [0, δ], but this gives the contradiction
v(t) ≥ t > 0 ≥ v(t) in ]0, δ]. �

Our next example shows that if solutions to (1.5) exist, they need not be
unique. Again this carries over to (1.1) by means of (1.6).

Example 3.2. Let H = R, Γ(v) = [v, 1] for v ≤ 1 resp. Γ(v) = [1, v] for
v > 1, v ∈ R. Define v0 = 0 and f(t) = 0, t ∈ [0, 1]. Since N[x,1](x) =]−∞, 0] for
x < 1 and N{x}(x) = R, all sufficiently regular functions v : [0, 1] → R satisfying
v(0) = 0, v(t) ≤ 1, and v′(t) ≥ 0 for t ∈ [0, 1] are solutions to (1.5). �

Next we give a positive result for (1.1) with L2 < 1.

Theorem 3.3. Let (1.2), (1.3) with some 0 ≤ L2 < 1, and (2.9) hold for C.
If u0 ∈ C(0, u0), then (1.1) has a solution on [0, T ].

Proof. We discretize the problem as follows. For n ∈ N fix partitions
0 = tn0 < tn1 < . . . < tnIn

= T of [0, T ] such that εn = max{tni+1 − tni : 0 ≤ i ≤
In−1} → 0 as n →∞. Let un

0 = u0. Since u0 ∈ C(0, u0), by Lemma 2.1 we find
un

1 with un
1 = proj(un

0 , C(tn1 , un
1 )) and additionally also |un

1−un
0 | ≤ L1t

n
1/(1−L2).

Thus in particular un
1 ∈ C(tn1 , un

1 ), and hence Lemma 2.1 applies again to yield
un

2 such that un
2 = proj(un

1 , C(tn2 , un
2 )) and |un

2 − un
1 | ≤ L1(tn2 − tn1 )/(1 − L2).

Iterating this procedure, for i = 1, . . . , In we find un
i with

(3.12) un
i = proj(un

i−1, C(tni , un
i )) and |un

i − un
i−1| ≤ L1(tni − tni−1)/(1−L2).

Thus inductively

(3.13) |un
i | ≤ |u0|+ L1t

n
i /(1−L2) ≤ |u0|+ L1T/(1−L2), n ∈ N, 0 ≤ i ≤ In.

Next define for n ∈ N the right-continuous step approximations un : [0, T ] → H

through

(3.14) un(t) = ui
n for t ∈

[
tni , tni+1

[
,
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and un(T ) = un
In

. Then

(3.15) sup
n∈N

|un|L∞([0,T ];H) ≤ |u0|+ L1T/(1− L2) =: R

by (3.13). In addition,

var(un) =
In∑
i=1

|un
i − un

i−1| ≤ L1T/(1− L2)

by (3.12), and thus also

sup
n∈N

var(un) ≤ L1T/(1− L2).

Thus we may extract a subsequence (for simplicity not relabeled) such that for
some function u : [0, T ] → H of bounded variation we have un(t) ⇀ u(t) in H for
t ∈ [0, T ], cf. [8, Theorem. 2.1, p. 10], ⇀ denoting weak convergence. By (3.12)
we also obtain

(3.16) |un(t)− un(s)| ≤ L1

1− L2
(|t− s|+ εn), t, s ∈ [0, T ].

Indeed, fix s ∈
[
tni , tni+1

[
and t ∈

[
tnj , tnj+1

[
with j > i. Then

|un(t)− un(s)| = |un
j − un

i | ≤
j−i−1∑
k=0

|un
i+k+1 − un

i+k|

≤ L1

1− L2

j−i−1∑
k=0

(tni+k+1 − tni+k)

=
L1

1− L2
(tnj − tni ) ≤ L1

1− L2
(|t− s|+ εn),

thus showing (3.16). From (3.16) and un(t) ⇀ u(t) we therefore find

|u(t)− u(s)| ≤ lim inf
n→∞

|un(t)− un(s)| ≤ L1

1− L2
|t− s|, t, s ∈ [0, T ],

i.e., u is Lipschitz continuous, and hence differentiable a.e.
We are going to show that u is a solution of (1.1). For this, we first note that

u(0) = u0, because un(0) = u0 for n ∈ N and un(0) ⇀ u(0). Next we will verify
that

(3.17) u(t) ∈ C(t, u(t)), t ∈ [0, T ].

By (3.12) and the definition (3.14) of un,

un(t) = un
i = proj(un

i−1, C(tni , un
i )) ∈ C(tni , un

i ) = C(tni , un(t)), t ∈
[
tni , tni+1

[
,

and as a consequence of (1.3) we thus deduce

(3.18) un(t) ∈ C(t, un(t)) + BL1εn
(0) ⊂ C(t, u(t)) + BL1εn+L2|un(t)−u(t)|(0),
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for t ∈ [0, T ]. We claim that A(t) = {un(t) : n ∈ N} ⊂ H is relatively compact
for every t ∈ [0, T ]. Suppose on the contrary that γ(A(t)) > 0. Then γ(A(t))−
γ(C(t, A(t)) ∩BR+1(0)) ≥ 2δ > 0 for some δ ∈ ]0, 1], according to (2.9), with R

chosen from (3.15). Fix n0 ∈ N such that 2L1εn ≤ δ for n ≥ n0. Then the first
inclusion in (3.18), the properties of γ, and (3.15) imply

γ(A(t)) = γ({un(t) : n ≥ n0}) ≤ γ(C(t, A(t)) ∩BR+1(0)) + 2L1εn

≤ γ(A(t))− 2δ + δ = γ(A(t))− δ,

a contradiction. Therefore every A(t) is relatively compact in H, and together
with the weak convergence un(t) ⇀ u(t) this yields

(3.19) un(t) → u(t) strongly in H for t ∈ [0, T ].

As a consequence of (3.19) and the second inclusion in (3.18),

dist(un(t), C(t, u(t))) → 0 as n →∞,

and thus the closedness of C(t, u(t)) and (3.19) yield (3.17).
Finally we have to show that the inclusion in (1.1) is satisfied. To see this,

first note that

(3.20) 〈un
i − un

i−1, u
n
i − x〉 ≤ 0 for x ∈ C(tni , un

i ), n ∈ N, 1 ≤ i ≤ In

by (3.12) and the properties of a projection. Define the continuous approxima-
tions vn : [0, T ] → H through

vn(t) =
t− tni−1

tni − tni−1

(un
i − un

i−1) + un
i−1, t ∈ [tni−1, t

n
i ].

Then vn(0) = u0 and

|vn(t)− un(t)| ≤ L1

1− L2
εn, t ∈ [0, T ],

due to (3.12); whence we have

vn(t) → u(t) strongly in H for t ∈ [0, T ]

by (3.19). Moreover, vn is differentiable a.e. with derivative

v′n(t) =
un

i − un
i−1

tni − tni−1

, t ∈
]
tni−1, t

n
i

[
,

and therefore
sup
n∈N

|v′n|L∞([0,T ];H) ≤
L1

1− L2

by (3.12). Hence in particular (w.l.o.g) v′n ⇀ w in L2([0, T ];H) for some w ∈
L2([0, T ];H), and this implies u′ = w a.e., thus

(3.21) v′n ⇀ u′ in L2([0, T ];H).
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We claim that for t ∈ [0, T ] \ P where P = {tni : n ∈ N, 0 ≤ i ≤ In}, n ∈ N,
and x ∈ C(t, u(t)) we have

(3.22) 〈v′n(t), un(t)− x〉 ≤ L1

1− L2
rn(t)

with

rn(t) =

(
1 +

2L2

1− L2

)
L1εn + L2|un(t)− u(t)|.

Indeed, choose i with t ∈
]
tni−1, t

n
i

[
. Then by (1.3) there exists x̃ ∈ C(tni , un

i )
with

|x̃− x| ≤ L1εn + L2|un
i − u(t)| = L1εn + L2|un(tni )− u(t)| ≤ rn(t),

the latter by the triangle inequality and (3.16). Hence as a consequence of (3.20)
and (3.12),

〈v′n(t), un(t)− x〉 =
1

tni − tni−1

〈un
i − un

i−1, u
n
i−1 − x〉

=
1

tni − tni−1

〈un
i − un

i−1, u
n
i − x̃〉+

1
tni − tni−1

〈un
i − un

i−1, x̃− x〉

− 1
tni − tni−1

|un
i − un

i−1|
2 ≤ L1

1− L2
rn(t),

as claimed in (3.22). The estimate (3.22) can be used as follows. Choose t0 ∈
[0, T ] \ P and x0 ∈ C(t0, u(t0)). Fix a continuous selection x : [0, T ] → H of
C( · , u(·)) with x(t0) = x0. Then for h > 0 small by (3.22)

(3.23)
∫ t0+h

t0−h

〈v′n(t), un(t)− x(t)〉 dt ≤ L1

1− L2

∫ T

0

rn(t) dt.

Because (3.19), (3.15), and Lebesgue’s convergence theorem imply un → u in
L1([0, T ];H), we have rn → 0 in L1([0, T ]). Since also un → u in L2([0, T ];H),
(3.23) and (3.21) yield as n →∞∫ t0+h

t0−h

〈u′(t), u(t)− x(t)〉 dt ≤ 0

for h small. Dividing by 2h and letting h tend to zero, we therefore find

〈u′(t0), u(t0)− x0〉 ≤ 0

for t0 ∈ [0, T ] outside a fixed set of measure zero and for all x0 in a countable
dense subset of C(t0, u(t0)), hence for all x0 ∈ C(t0, u(t0)). This concludes the
proof that u is a solution of (1.1). �

It should be remarked that according to Lemma 2.1 and the above proof,
(2.9) only needs to hold for R up to some sufficiently large R0 determined through
T , L1, and (1− L2)

−1, but in fact it is not necessary to assume (2.9) for all R > 0.
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Theorem 3.3 also has a local version, in case that C(t, u) is defined only in
a neighbourhood of (0, u0).

Theorem 3.4. Let δ > 0 and [0, δ] × Bδ(u0) 3 (t, u) 7→ C(t, u) be a multi-
function with nonempty closed convex values such that (1.3) holds for

(t, u), (s, v) ∈ [0, δ]×Bδ(u0) with some L2 < 1,

and such that (2.9) is satisfied for t ∈ [0, δ], A ⊂ Bδ(u0), and R > 0. If
u0 ∈ C(0, u0), then (1.1) has a local solution on some time interval [0, T ], with
T depending on δ.

Proof. Analogous to Theorem 3.3. �

According to the remarks in the introduction, Theorem 3.3 in particular
yields an existence result for (1.5). Note that γ(A + x) = γ(A) for A ⊂ H

bounded and x ∈ H, and thus condition (3.24) below implies (2.9) for C(t, u) =
Γ(u−

∫ t

0
f(s) ds) +

∫ t

0
f(s) ds.

Theorem 3.5. Let (1.7) be satisfied, f ∈ L∞([0, T ];H), and suppose that
(1.8) holds with 0 ≤ L < 1. If in addition

(3.24) γ(Γ(A)) < γ(A) for A ⊂ H bounded with γ(A) > 0,

where γ = α or γ = β is either the Kuratowski or the Hausdorff (ball-) measure
of noncompactness, and if v0 ∈ Γ(v0), then (1.5) has a solution on [0, T ].

According to the above results, the picture is clear now both for (1.1) and
(1.5) in the cases 0 ≤ L2 < 1 and L2 > 1 in (1.3) resp. 0 ≤ L < 1 and L > 1
in (1.8). We next give a one-dimensional example showing that (1.1) may have
no solution for L2 = 1.

Example 3.6. Let H = R and C(t, u) = [t + u,∞[ for t ∈ [0, T ] and u ∈ R.
Then u0 = 0 ∈ [0,∞[ = C(0, u0), and (1.3) holds with L1 = L2 = 1. In this
case (1.1) can have no solution, since this requires u(t) ∈ C(t, u(t)) for t > 0,
meaning here that t + u(t) ≤ u(t), a contradiction. �

In case of dim H ≥ 2, it is also possible to give a counterexample to the ex-
istence of solutions to (1.5) with L = 1 in (1.8). Obviously it is enough to find
such an example for dim H = 2.

Example 3.7. Let H = R2 and Γ(u) = {|u|}×[−1, 1] for u ∈ R2, and f(t) =
(0,−1). Take u0 = (0, 0) ∈ C(0), and notice that Γ is 1-Lipschitz. Suppose that
(1.5) has a solution u on some interval [0, T ]. Then u(t) = (u1(t), u2(t)) ∈ Γ(u(t))
implies u1(t) = |u(t)|, and therefore u2(t) = 0 in [0, T ]. For every x = (x1, x2) ∈
Γ(u(t)) we have u′1(t)(x1−u1(t))+(u′2(t)+1)(x2−u2(t)) ≥ 0, and since necessarily
x1 = u1(t), this reduces to x2 ≥ 0 for all x2 ∈ [−1, 1], a contradiction. �
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Nevertheless, contrary to the more general (1.1), (1.5) has a solution for
L = 1 in (1.8) if H = R.

Theorem 3.8. Let H = R, and let (1.7) be satisfied, f ∈ L∞([0, T ]), and
assume that (1.8) holds with 0 ≤ L ≤ 1. If v0 ∈ Γ(v0), then (1.5) has a solution
on [0, T ].

Proof. Let

V = {v : [0, T ] → R : v(0) = v0, |v(t)− v(s)| ≤ K|t− s| for t, s ∈ [0, T ]}

with K = |f |L∞([0,T ]). Then ∅ 6= V ⊂ C([0, T ]) is compact and convex. Define
S : V → C([0, T ]) by letting u = Sv be the unique solution of the inhomogeneous
classical sweeping process with Cv(t) = Γ(v(t)), i.e.,

(3.25) −u′(t) ∈ NCv(t)(u(t)) + f(t) a.e. in [0, T ], u(0) = v0 ∈ Cv(0).

Note that in fact v0 ∈ Cv(0), since v0 ∈ Γ(v0) and v(0) = v0 by definition of V.
Moreover, by (1.8),

dH(Cv(t), Cv(s)) ≤ L|v(t)− v(s)| ≤ LK|t− s| ≤ K|t− s|, t, s ∈ [0, T ],

and thus Lemma 2.4 implies that u = Sv is Lipschitz with constant

max{|f |L∞([0,T ]),K} = |f |L∞([0,T ]) = K,

whence u(0) = v0 yields S(V) ⊂ V. Hence, to find a fixed point of S which will
be a solution of (1.5), it is enough to show that S is continuous. Fix v, v ∈ V
and let u = Sv ∈ V and u = Sv ∈ V. In particular, |u′(t)| ≤ K a.e. and
|u′(t)| ≤ K a.e. Since dH(Cv(t), Cv(t)) ≤ L|v − v|C([0,T ]), we find continuous
functions r1, r2 : [0, T ] → H = R such that u(t) ∈ Cv(t) ⊂ Cv(t) + r1(t) and
u(t) ∈ Cv(t) ⊂ Cv(t) + r2(t), as well as |ri(t)| ≤ L|v − v|C([0,T ]), i = 1, 2.
By (3.25), for u and the corresponding equation for u, we thus obtain

〈u′(t), u(t)− u(t) + r2(t)〉 ≤ 0 and 〈u′(t), u(t)− u(t) + r1(t)〉 ≤ 0.

Hence a.e. in [0, T ]

1
2

d

dt
|u(t)− u(t)|2 = 〈u′(t), u(t)− u(t) + r2(t)〉+ 〈u′(t), u(t)− u(t) + r1(t)〉

− 〈u′(t), r2(t)〉 − 〈u′(t), r1(t)〉 ≤ 2KL|v − v|C([0,T ]).

This in turn yields by integration

|Sv − Sv|C([0,T ]) ≤ (4KLT |v − v|C([0,T ]) + |v − v|2C([0,T ]))
1/2

,

and therefore the continuity of S. �
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The fixed-point approach described in Theorem 3.8 would give an alternative
proof of Theorem 3.3 for 0 ≤ L2 < 1. We want to close with some further
remarks.

Remark 3.9. In some applications there appear quasi-variational inequal-
ities of type (1.5) with a badly behaved moving set v 7→ Γ(v), as there is no
way to show that the dependence is Lipschitz continuous w.r. to dH ; cf. [7] for
a stationary example, where vn → v only implies Γ(vn) → Γ(v) in the sense
of Mosco. A corresponding time-dependent problem was introduced in [9] to
model the evolution of sandpiles. In those cases, the very specific properties of
the underlying PDE model have to be taken into account to prove the existence
of solutions.

Remark 3.10. We have seen in Example 3.7 above that in general there will
be no solution of (1.5) when L = 1 in (1.8). Nevertheless, one can obtain a weak-∗
limit in L∞([0, T ];H) of a sequence (vn)n∈N of approximate solutions obtained
by taking (1 − εn)Γ instead of Γ (which is (1 − εn)-Lipschitz) and by deriving
an L∞-bound for these approximations. Perhaps the corresponding weak-∗ limit
can be interpreted as some kind of weak solution of (1.5). In our last lemma we
show how the L∞-bound is proved (under an additional assumption).

Lemma 3.11. Let (1.7) hold, f ∈ L∞([0, T ];H), and assume that (1.8) is
satisfied with L = 1. In addition, suppose that (3.24) is true, and⋂

v∈H

Γ(v) 6= ∅.

If v0 ∈ Γ(v0), then there are “approximate solutions” vn (in the above sense)
of (1.5) such that supn∈N |vn|L∞([0,T ];H) < ∞.

Proof. Fix a ∈
⋂

v∈H Γ(v). Changing if necessary to ṽ(t) = v(t) − a and
Γ̃(ṽ) = Γ(ṽ + a)− a, we may assume that a = 0. Consider Γn(v) = (1− εn)Γ(v)
with εn → 0+. Then (1.7) and (3.24) hold for Γn, and Γn is dH -Lipschitz with
constant (1− εn) < 1. Hence Theorem 3.4 yields solutions vn : [0, T ] → H of

(3.26) − v′n(t) ∈ NΓn(vn(t))(vn(t)) + f(t)

a.e. in [0, T ], vn(0) = (1− εn)v0 ∈ Γn(v0).

Since a = 0, in particular 0 ∈ Γn(v) for all n ∈ N and v ∈ H. Hence, by (3.26),
for a.e. t ∈ [0, T ]

1
2

d

dt
|vn(t)|2 = 〈v′n(t) + f(t), vn(t)〉 − 〈f(t), vn(t)〉

≤ −〈f(t), vn(t)〉 ≤ |f |L∞([0,T ];H)|vn(t)|.

Therefore
1
2
|vn(t)|2 ≤ 1

2
|vn(0)|2 + |f |L∞([0,T ];H)

∫ t

0

|vn(s)| ds
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yields, cf. [2, Lemme A.5, p. 157],

|vn(t)| ≤ |vn(0)|+ t|f |L∞([0,T ];H) ≤ |v0|+ T |f |L∞([0,T ];H) for n ∈ N, t ∈ [0, T ],

and this concludes the proof. �

References

[1] C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities, John Wi-
ley, New York, 1984.

[2] H. Brezis, Operateurs Maximaux Monotones, North Holland Publ. Company, Am-
sterdam-London, 1973.

[3] W. Brocks, S. Hao and D. Steglich, Micromechanical modelling of the damage and

toughness behaviour of nodular cast iron materials, Proc. Euromech-Mecamat, Fontaine-
bleau (1996) (to appear).

[4] M. Brokate, Elastoplastic constitutive laws of nonlinear kinematic hardening type;
preprint (1997).
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