ON A THEOREM OF TVERBERG

Zdzis£aw Dzedzej - Marek Izydorek - Antonio Vidal

1. Introduction

Let Δ^{n} denote the n-dimensional simplex. Any face of Δ^{n} is assumed to be closed. The well-known theorem of Radon (see [6]) can be formulated as follows

Theorem (Radon). For any linear map $f: \Delta^{n+1} \rightarrow \mathbb{R}^{n}$ there exist two disjoint faces σ_{1}, σ_{2} of Δ^{n+1} such that $f\left(\sigma_{1}\right) \cap f\left(\sigma_{2}\right) \neq \emptyset$.

In 1966 the Radon theorem was generalized by Tverberg in the following way (see [20]):

Theorem (Tverberg). For any linear map $f: \Delta^{N} \rightarrow \mathbb{R}^{n}$, where $N=$ $(p-1)(n+1)$, there exist p pairwise disjoint faces $\sigma_{1}, \ldots, \sigma_{p} \subset \Delta^{N}$ such that

$$
\bigcap_{i=1}^{p} f\left(\sigma_{i}\right) \neq \emptyset .
$$

There is a natural question whether the linearity condition for f can be replaced by continuity. The first positive answer was given by Bajmóczy and Bárány in [1] for $p=2$. Next Bárány, Shlosman and Szücs in [3] proved the theorem for p being a prime number. In 1992 Volovikov obtained the positive answer for any number which is a prime power (see [21]). In all papers mentioned above various generalizations of the classical Borsuk-Ulam antipodal theorem

1991 Mathematics Subject Classification. 47H04, 52A20, 55M20, 05C35.
Key words and phrases. Admissible map, Borsuk-Ulam theorem \mathbb{Z}_{p}-action.
The research on this paper was supported by the KBN Grant No. 2 P03A 01711.
was used in an essential way. Recently Sarkaria [16] gave a proof for an arbitrary natural p.

The aim of this paper is to prove Volovikov theorem (see Theorem 1 in [21]) for multivalued maps (cf. [13] for $p=2$). In our considerations we will need an appropriate version of Bourgin-Yang theorem (cf. [10]) which generalizes Borsuk-Ulam theorem (see Theorem 3). We consider also the case when Δ^{N} is replaced by an arbitrary N-dimensional compact and convex polytope in \mathbb{R}^{N} (see Theorem 9).

2. G-spaces and the G-index

We are going to use cohomology of the Čech type. The Čech cohomology theory has a continuity property which says that if a cohomology class vanishes on a closed set, then it vanishes on a neighbourhood of this set as well. Throughout the paper the group \mathbb{Z}_{p} of integers $\bmod p, p$ prime, will be used as a coefficient group in cohomology.

Let G be the Cartesian product of n copies of the group \mathbb{Z}_{p}. We assume that G acts freely on a paracompact space X. We call X a G-space. Any such G space admits an equivariant map $h: X \rightarrow E G$ into a classifying space $E G$; any two such maps are equivariantly homotopic (see [8, Theorems 8.12 and 6.14]). The map h induces a map $\widehat{h}: X / G \rightarrow B G:=E G / G$ on the orbit spaces. Consequently one has a uniquely determined homomorphism

$$
\widehat{h}^{*}: H^{*}\left(B G, \mathbb{Z}_{p}\right) \rightarrow H^{*}\left(X / G, \mathbb{Z}_{p}\right)
$$

Let us recall the definition of the G-index $\operatorname{ind}_{G} X$, for a G-space X (see [21]).
Definition 1. We say that the G-index of X is not less than k, if the homomorphism $\widehat{h}^{k}: H^{k}\left(B G, \mathbb{Z}_{p}\right) \rightarrow H^{k}\left(X / G, \mathbb{Z}_{p}\right)$ is a monomorphism.

Most of the properties of the G-index are immediate consequences of the definition. In particular, monotonicity says:

$$
\begin{aligned}
& \text { if } G \text { acts freely on } X \text { and } Y \text {, and } f: X \rightarrow Y \text { is an equivariant map, then } \\
& \qquad \operatorname{ind}_{G} Y \geq \operatorname{ind}_{G} X .
\end{aligned}
$$

The dimension property:

$$
\text { if } \operatorname{dim} X<m, \text { then } \operatorname{ind}_{G} X<m
$$

where dim denotes the covering dimension.
An important special case of the above says:

$$
\text { if } \operatorname{ind}_{G} X=0 \text {, then } X \neq \emptyset .
$$

As the consequence of the continuity property for the Čech cohomology we obtain the following continuity property for G-index:
let G act freely on $X, A \subset X$ is a compact G-space. Then there is an open neighbourhood U of A in X which is a G-space such that $\operatorname{ind}_{G} U=\operatorname{ind}_{G} A$.

The concept of the G-index was introduced by Yang [24] for $G=\mathbb{Z}_{2}$ and next extended to other more general settings by several authors, notably to actions of compact Lie groups by Fadell and Husseini [9].

3. Multivalued maps

Let X, Y be two spaces. We say that $\varphi: X \rightarrow Y$ is a multivalued map if for every point $x \in X$ a nonempty subset $\varphi(x)$ of Y is given. We associate with φ the graph to be the set

$$
\Gamma_{\varphi}:=\{(x, y) \in X \times Y \mid y \in \varphi(x)\}
$$

The image of a subset $A \subset X$ is the set $\varphi(A):=\bigcup_{x \in A} \varphi(x)$. For a subset $B \subset Y$ we can define two types of a counterimage:

$$
\varphi^{-1}(B):=\{x \in X \mid \varphi(x) \subset B\}, \quad \varphi_{+}^{-1}(B):=\{x \in X \mid \varphi(x) \cap B \neq \emptyset\} .
$$

They both coincide if φ is a singlevalued map.
One defines a composition of $\varphi: X \rightarrow Y$ and $\psi: Y \rightarrow Z$ as a map $\gamma: X \rightarrow Z$ given by $\gamma(x)=\psi(\varphi(x))$.

A multivalued map $\varphi: X \rightarrow Y$ is upper semicontinuous (u.s.c.) provided
(i) for each $x \in X \varphi(x) \subset Y$ is compact,
(ii) for every open subset $V \subset Y$ the set $\varphi^{-1}(V)$ is open in X.

Let us recall some basic properties of u.s.c. maps:
(1) The image of a compact set is a compact set.
(2) The graph Γ_{φ} is a closed subset of $X \times Y$.
(3) The composition of two u.s.c. maps is an u.s.c. map, too.

We would like to remind a class of admissible multivalued maps considered by Górniewicz [11].

We say that a space X is acyclic if $H^{*}(X)=H^{*}$ (point).
A continuous map $p: X \rightarrow Y$ is a Vietoris map if:
(i) $p(X)=Y$,
(ii) p is proper (i.e. $p^{-1}(A)$ is compact whenever $A \subset Y$ is compact),
(iii) for every $y \in Y$ the set $p^{-1}(y)$ is acyclic.

An important feature of Vietoris maps is the famous Vietoris-Begle Mapping Theorem (see [18]) which says that if X, Y are paracompact spaces and $p: X \rightarrow$ Y is a Vietoris map, then it induces an isomorphism on cohomology.

Definition 2. An u.s.c. map $\varphi: X \rightarrow Y$ is admissible provided there exists a space Γ, and two continuous maps $p: \Gamma \rightarrow X, q: \Gamma \rightarrow Y$ such that
(i) p is a Vietoris map,
(ii) for every $x \in X q\left(p^{-1}(x)\right) \subset \varphi(x)$.

We call every such pair (p, q) of maps a selected pair for φ.
The class of admissible maps is very broad. It includes all u.s.c. maps with acyclic values (see [11]), and in particular with convex values, if Y is a normed space. Moreover, a composition of two admissible maps is also admissible ([11]). Many results from topological fixed point theory of singlevalued maps carry onto this class of maps.

4. Borsuk-Ulam type theorems

Our first result is a multivalued version of a Bourgin-Yang type theorem for the group $G=\left(\mathbb{Z}_{p}\right)^{n}$. This is a generalization of a theorem due to Volovikov (see [21]).

Theorem 3. Let G and X be as above and assume that $\operatorname{ind}_{G} X \geq k$. For each admissible map $\varphi: X \rightarrow \mathbb{R}^{m}$ the G-index of the set

$$
A_{\varphi}=\left\{x \in X: \bigcap_{g \in G} \varphi(g x) \neq \emptyset\right\}
$$

is not less than $k-\left(p^{n}-1\right) m$.
Proof. Let's denote by d the order of the group $G, d=p^{n}$. Let $\varphi: X \rightarrow \mathbb{R}^{m}$ be an admissible map. We consider a selected pair $X \stackrel{p}{\longleftrightarrow} \Gamma \xrightarrow{q} \mathbb{R}^{m}$ for φ.

We choose a linear order in the set of all elements of $G, g_{1} \prec g_{2} \prec \ldots \prec g_{d}$. In the Cartesian product of d copies of Γ the coordinates of each point will be indexed by elements of G. This allows us to define an action of G on Γ^{d}. For any $g \in G$ we let $g\left(\gamma_{g_{1}}, \ldots, \gamma_{g_{d}}\right)=\left(\gamma_{g g_{1}}, \ldots, \gamma_{g g_{d}}\right)$ and define a subset $\widetilde{X} \subset \Gamma^{d}$:
$(*) \quad \widetilde{X}=\left\{\left(\gamma_{g_{1}}, \ldots, \gamma_{g_{d}}\right) \in \Gamma^{d}: \exists x \in X p\left(\gamma_{g_{i}}\right)=g_{i} x, i=1, \ldots, d\right\}$.
Notice that for each $\left(\gamma_{g_{1}}, \ldots, \gamma_{g_{d}}\right) \in \widetilde{X}$ there is only one $x \in X$ satisfying the conditions of $(*)$. It is clear that \widetilde{X} is a G-subset of Γ^{d}, and G acts freely on it. Consider the following diagram

where $\pi: \widetilde{X} \rightarrow \Gamma$ is the projection $\pi\left(\gamma_{g_{1}}, \ldots, \gamma_{g_{d}}\right)=\gamma_{g_{1}}$ and $s: \widetilde{X} \rightarrow X$ is the composition $s=p \circ \pi$. One can see that s is a G-equivariant map:

$$
\begin{aligned}
s\left(g\left(\gamma_{g_{1}}, \ldots, \gamma_{g_{d}}\right)\right) & =s\left(\gamma_{g g_{1}}, \ldots, \gamma_{g g_{d}}\right)=p \circ \pi\left(\gamma_{g g_{1}}, \ldots, \gamma_{g g_{d}}\right) \\
& =p\left(\gamma_{g g_{1}}\right)=g g_{1} x=g p\left(\gamma_{g_{1}}\right)=g s\left(\gamma_{g_{1}}, \ldots, \gamma_{g_{d}}\right)
\end{aligned}
$$

For each subset $A \subset X$,

$$
s^{-1}(A)=\left[p^{-1}\left(g_{1} g_{1}^{-1} A\right) \times p^{-1}\left(g_{2} g_{1}^{-1} A\right) \times \ldots \times p^{-1}\left(g_{d} g_{1}^{-1} A\right)\right] \cap \widetilde{X} .
$$

In particular, if $A \subset X$ is compact then $s^{-1}(A)$ is compact and therefore s is a proper map. On the other hand, for every $x \in X$,

$$
s^{-1}(x)=p^{-1}(x) \times p^{-1}\left(g_{2} g_{1}^{-1} x\right) \times \ldots \times p^{-1}\left(g_{d} g_{1}^{-1} x\right)
$$

and thus $s^{-1}(x)$ is an acyclic set as it is a Cartesian product of acyclic sets. Consequently we have shown that $s: \widetilde{X} \rightarrow X$ is a Vietoris map.

Now, we consider the following commutative diagram

where \widehat{s} is a map induced by s on the orbit spaces and vertical arrows denote the natural projections. Since G is a finite group and s is a Vietoris map, it follows that \widehat{s} is also a Vietoris map. Hence the homomorphism $\widehat{s}^{*}: H^{*}(X / G) \rightarrow$ $H^{*}(\widetilde{X} / G)$ is an isomorphism. In the diagram

h is an arbitrary G-equivariant map. By our assumptions $\widehat{h}^{k}: H^{k}\left(B G, \mathbb{Z}_{p}\right) \rightarrow$ $H^{k}\left(X / G, \mathbb{Z}_{p}\right)$ is a monomorphism. The composition $h \circ s: \widetilde{X} \rightarrow E G$ is an equivariant map and $(\widehat{h \circ s})^{k}=\widehat{s}^{k} \circ \widehat{h}^{k}: H^{k}\left(B G, \mathbb{Z}_{p}\right) \rightarrow H^{k}\left(\widetilde{X} / G, \mathbb{Z}_{p}\right)$ is a monomorphism, thus $\operatorname{ind}_{G} \widetilde{X} \geq k$.

Now, applying Volovikov Theorem (see [21]) to the map $f=q \circ \pi: \widetilde{X} \rightarrow \mathbb{R}^{m}$, we find that the index of $A_{f}, \operatorname{ind}_{G} A_{f} \geq k-(d-1) m$. Thus by monotonicity property of the index we obtain

$$
\operatorname{ind}_{G} s\left(A_{f}\right) \geq k-(d-1) m
$$

We check that $s\left(A_{f}\right)$ is a G-subset of A_{φ}. Let's take $x \in s\left(A_{f}\right)$. There is a point $\left(\gamma_{q_{1}}, \ldots, \gamma_{g_{d}}\right) \in \widetilde{X}$ such that $x=s\left(\gamma_{g_{1}}, \ldots, \gamma_{g_{d}}\right)=p\left(\gamma_{g_{1}}\right)$ and $q\left(\gamma_{g_{1}}\right)=q\left(\gamma_{g}\right)$ for
every $g \in G$. On the other hand we have $q\left(\gamma_{g g_{1}}\right) \in q\left(p^{-1}(g x)\right) \subset \varphi(g x)$. Hence

$$
q\left(\gamma_{g_{1}}\right) \in \bigcap_{g \in G} \varphi(g x)
$$

and therefore $x \in A_{\varphi}$. Again by the monotonicity property of the index we obtain the inequality $\operatorname{ind}_{G} A_{\varphi} \geq k-(d-1) m$ which completes the proof.

Our next problem is devoted to a topological generalization of Tverberg theorem (see [3] and [22]). We are going to generalize Theorem 1 in [22] to multivalued maps. We begin with the following:

Proposition 4. Let X be a paracompact G-space such that $X^{G}=\emptyset$. We assume that X is l-acyclic, i.e. $\widetilde{H}^{k}\left(X, \mathbb{Z}_{p}\right)=0$ for $k=0, \ldots, l$. Then $\operatorname{ind}_{G} X \geq$ $l+1$.

For the proof see e.g. [22].
Denote by d the order of a group $G=\mathbb{Z}_{p}^{n}, d=p^{n}$. For $N=(d-1)(m+1)$, we denote by Δ^{N} the N-dimensional simplex and by $\partial \Delta^{N}$ its boundary.

THEOREM 5. Let $\varphi: \partial \Delta^{N} \rightarrow \mathbb{R}^{m}$ be an admissible mapping into an m-dimensional Euclidean space. Then there are d mutually disjoint closed faces of $\Delta^{N}, \sigma_{1}, \ldots, \sigma_{d}$ such that

$$
\bigcap_{i=1}^{d} \varphi\left(\sigma_{i}\right) \neq \emptyset
$$

Proof. In [3] the following $C W$-complex was considered: in the Cartesian product $\left(\Delta^{N}\right)^{d}$ of d copies of the simplex Δ^{N} we choose the set $Y_{N, d}$ of all points $\left(y_{1}, \ldots, y_{d}\right), y_{i} \in \partial \Delta^{N}$ that have mutually disjoint carriers. It was shown in [3] that for all natural numbers N and $d, N>d$, the $C W$-complex $Y_{N, d}$ is $(N-d)$-connected. One can easily define a free action of the group G on $Y_{N, d}$ as follows:

Let $\alpha: G \rightarrow S_{d}$ be an arbitrary monomorphism of G into the permutation group S_{d} of d elements. Since S_{d} acts freely on $Y_{N, d}$ (by permutation of coordinates), the action of G induced by α is also free.

By Hurewicz theorem [18] $Y_{N, d}$ is $(N-d)$-acyclic as it is $(N-d)$-connected. From Proposition 4 we obtain that $\operatorname{ind}_{G} Y_{N, d} \geq N-d+1$.

Let us define an admissible map $\widetilde{\varphi}: Y_{N, d} \rightarrow \mathbb{R}^{m}, \widetilde{\varphi}\left(y_{1}, \ldots, y_{d}\right)=\varphi\left(y_{1}\right)$. By Theorem $2 \operatorname{ind}_{G} A_{\widetilde{\varphi}} \geq N-d+1-(d-1) m=0$ which means in particular that $A_{\tilde{\varphi}} \neq \emptyset$. Thus there is a point $\left(y_{1}, \ldots, y_{d}\right) \in Y_{N, d}$ such that

$$
\bigcap_{g \in G} \widetilde{\varphi}\left(g\left(y_{1}, \ldots, y_{d}\right)\right)=\bigcap_{i=1}^{d} \varphi\left(y_{i}\right) \neq \emptyset .
$$

By definition of $Y_{N, d}$ there are mutually disjoint faces of $\Delta^{N}, \sigma_{1}, \ldots, \sigma_{d}$, with $y_{i} \in \sigma_{i}$ for all $i=1, \ldots, d$. Therefore $\bigcap_{i=1}^{d} \varphi\left(\sigma_{i}\right) \neq \emptyset$ which completes the proof.

In order to formulate a generalization of Theorem 5 we introduce some notation. Given a convex compact set $C \subset \mathbb{R}^{n}$ with nonempty interior and a vector $v \in \mathbb{R}^{n}, v \neq 0$, we write

$$
C(v)=\{x \in C:\langle v, x\rangle=\max \{\langle v, y\rangle, y \in C\}\}
$$

$C(v)$ is called a proper face of C. Clearly, it may happen that two different nonzero vectors define the same face of C. If $C(v)$ consists of one point x, we call it a vertex of C. For a vertex $x \in C$ we define the star of x, denoted by $\operatorname{st}(x)$, to be the union of all proper faces of C containing x. If $x \in C$ then the carrier of x is the minimal face containing x.

Definition 6. Let C be a compact and convex subset of \mathbb{R}^{n} with nonempty interior. We say that C has a property (Δ), if there exists a homeomorphism $f: \Delta^{n} \rightarrow C$ such that the image of every face of Δ^{n} by f is a sum of faces in C.

The following theorem is an easy consequence of Theorem 4.
Theorem 7. Let C be a compact convex subset of \mathbb{R}^{N} with nonempty interior, where $N=(d-1)(m+1), d=p^{n}$ for some prime p, and n, m are natural numbers. We assume that C has property (Δ). Then for every admissible map $\varphi: \partial C \rightarrow \mathbb{R}^{m}$ there are pairwise disjoint faces A_{1}, \ldots, A_{d} of C such that

$$
\bigcap_{i=1}^{d} \varphi\left(A_{i}\right) \neq \emptyset
$$

Proof. By our assumptions there is a homeomorphism $f: \Delta^{N} \rightarrow C$ sending each face of Δ^{N} onto a sum of faces in C. Define $h: \partial \Delta^{N} \rightarrow \partial C, h(x)=f(x)$. We consider the composition $\psi:=\varphi \circ h: \partial \Delta^{N} \rightarrow \mathbb{R}^{m}$, which is an admissible map. In view of Theorem 5 there exist points x_{1}, \ldots, x_{d} in $\partial \Delta^{N}$ with mutually disjoint carriers such that

$$
\bigcap_{i=1}^{d} \psi\left(x_{i}\right)=\bigcap_{i=1}^{d} \varphi\left(h\left(x_{i}\right)\right) \neq \emptyset .
$$

Since the carriers of the points $h\left(x_{i}\right), i=1, \ldots, d$ are mutually disjoint, the proof is complete.

THEOREM 8. Every compact and convex polytope $C \subset \mathbb{R}^{n}$ with nonempty interior has the property (Δ).

Proof. We proceed by induction with respect to the dimension of C. If $n=0$, then our theorem is obvious.

We assume that the theorem holds for $n=k$ and consider a compact and convex polytope $C \subset \mathbb{R}^{k+1}$ with nonempty interior. We choose any vertex $x_{0} \in C$. Since C has nonempty interior, there is a vector $v \in \mathbb{R}^{k+1}$ at x_{0} such that $-v$ is directed inward C and $\left\{x_{0}\right\}=C(v)$. Let H be a hyperplane through x_{0} in \mathbb{R}^{k+1} which is orthogonal to v. Then the orthogonal projection π of st $\left(x_{0}\right)$ into H is a homeomorphism onto its image. Moreover, the set $\pi\left(\operatorname{st}\left(x_{0}\right)\right)$ is star-shaped with the center at x_{0}.

We say that $B \subset \pi\left(\operatorname{st}\left(x_{0}\right)\right)$ is $a \pi$-face in $\pi\left(\operatorname{st}\left(x_{0}\right)\right)$ if it is an image of a face of C (contained in st $\left.\left(x_{0}\right)\right)$.

Let p_{1}, \ldots, p_{m} be the π-vertices in $\pi\left(\operatorname{st}\left(x_{0}\right)\right)$ which are joined with x_{0} by a 1 dimensional π-face and let $D=\operatorname{conv}\left\{p_{1}, \ldots, p_{m}\right\}$. Thus $D \subset H$ is a polytope of dimension k with nonempty interior (in H). The projection along rays (starting at $\left.x_{0}\right)$ from ∂D onto $\partial \pi\left(\operatorname{st}\left(x_{0}\right)\right)$ can be extended radially to a homeomorphism $f_{1}: D \rightarrow \pi\left(\operatorname{st}\left(x_{0}\right)\right)$ such that the image of every face of D by f_{1} is a sum of π-faces in $\pi\left(\operatorname{st}\left(x_{0}\right)\right)$. In particular $f_{1}\left(x_{0}\right)=x_{0}$.

By induction there is a homeomorphism $f_{0}: \Delta^{k} \rightarrow D$ such that the image of every face in Δ^{k} by f_{0} is a sum of faces in D.

Let $\Delta^{k+1}=\operatorname{conv}\left\{w_{0}, \ldots, w_{k+1}\right\}$. Simplex Δ^{k} is considered as a face of $\Delta^{k+1}, \Delta^{k}=\operatorname{conv}\left\{w_{0}, \ldots, w_{k}\right\}$. Notice that $\partial \Delta^{k}$ is equal to the boundary of $\operatorname{st}\left(w_{k+1}\right)$ which allows us to define a map $\widetilde{f}_{2}: \partial \operatorname{st}\left(w_{k+1}\right) \cup\left\{w_{k+1}\right\} \rightarrow D$ putting

$$
\widetilde{f}_{2}(x)= \begin{cases}f_{0}(x) & \text { if } x \in \partial \operatorname{st}\left(w_{k+1}\right)=\partial \Delta^{k}, \\ x_{0} & \text { if } x=w_{k+1} .\end{cases}
$$

Now we extend it radially to a homeomorphism $f_{2}: \operatorname{st}\left(w_{k+1}\right) \rightarrow D$. One can see that the composition

$$
h_{1}=\pi^{-1} \circ f_{1} \circ f_{2}: \operatorname{st}\left(w_{k+1}\right) \rightarrow \operatorname{st}\left(x_{0}\right),
$$

is a homeomorphism such that the image of every simplex in $\operatorname{st}\left(w_{k+1}\right)$ by h_{1} is a sum of faces in st $\left(x_{0}\right)$.

Let us also notice that the sets $\overline{\partial \Delta^{k+1} \backslash \operatorname{st}\left(w_{k+1}\right)}=\Delta^{k}$ and $\overline{\partial C \backslash \operatorname{st}\left(x_{0}\right)}$ are homeomorphic to each other since they are both homeomorphic to a closed disc of dimension k. In our case h_{1} defines a homeomorphism $h_{2}: \Delta^{k} \rightarrow \overline{\partial C \backslash \operatorname{st}\left(x_{0}\right)}$. Hence we have a homeomorphism $h: \partial \Delta^{k+1} \rightarrow \partial C$ defined by

$$
h(x)= \begin{cases}h_{1}(x) & \text { if } x \in \operatorname{st}\left(w_{k+1}\right), \\ h_{2}(x) & \text { otherwise },\end{cases}
$$

which obviously maps every simplex in $\partial \Delta^{k+1}$ onto a sum of faces in ∂C.
Finally, h can be extended to a homeomorphism $f: \Delta^{k+1} \rightarrow C$ and therefore C has the property (Δ).

As a direct consequence of Theorems 7 and 8 we obtain

Theorem 9. Let C be a compact and convex polytope in \mathbb{R}^{N} with nonempty interior, where $N=(d-1)(m+1)$ and $d=p^{n}$ for some prime p and $n, m \in \mathbb{N}$. Then for any admissible map $\varphi: \partial C \rightarrow \mathbb{R}^{m}$ there are pairwise disjoint faces A_{1}, \ldots, A_{d} of C such that

$$
\bigcap_{i=1}^{d} \varphi\left(A_{i}\right) \neq \emptyset .
$$

It is obvious that compact and convex polytopes are not the only sets with property (Δ). For example the following is true.

Proposition 10. Let C be a compact, convex subset of \mathbb{R}^{n} with nonempty interior. If we assume that for some vertex $x_{0} \in \partial C$ there is an open neighbourhood U of x_{0} in ∂C consisting of vertices only then C has the property (Δ).

Proof. Let $\Delta^{n}=\operatorname{conv}\left(w_{0}, \ldots, w_{n}\right)$. We consider an arbitrary injection $h_{1}: \operatorname{st}\left(w_{n}\right) \rightarrow U$. It is a homeomorphism onto its image and the image of every simplex in $\operatorname{st}\left(w_{n}\right)$ by h_{1} is a sum of faces (0 -dimensional faces) in C.

Now, any extension of h_{1} to a homeomorphism $h: \Delta^{n} \rightarrow C$ maps each face of Δ^{n} onto a sum of faces in C, which completes the proof.

The analysis of many concrete examples suggests the following
Conjecture. Every compact and convex subset of \mathbb{R}^{n} with nonempty interior has the property (Δ).

References

[1] E. G. Bajmóczy and I. BÁrány, On a common generalization of Borsuk's and Radon's theorem, Acta Math. Hungar. 34 (1979), 347-350.
[2] I. BÁrány, Geometric and combinatorial applications of Borsuk's theorem, New Trends in Discrete and Computational Geometry, Springer-Verlag, Berlin, 1993; Algorithms and Combinatorics No. 10, 235-249.
[3] I. BÁrány, S. B. Shlosman and Szücs, On a topological generalization of a theorem of Tverberg, J. London Math. Soc. 33 (1981), 158-164.
[4] K. Borsuk, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. 20 (1933), 177-190.
[5] D. G. Bourgin, On some separation and mapping theorems, Comment. Math. Helv. 29 (1955), 199-214.
[6] L. Danzer, B. Grünbaum and V. Klee, Helly's theorem and its relatives, Convexity, Proc. of Symp. in Pure Math., vol. 7, AMS Providence, 1963.
[7] T. том Dieck, Transformation Groups and Representation Theory; Springer Lecture Notes in Math., vol. 766, Springer-Verlag, 1979.
\qquad , Transformation Groups, vol. 8, Walter de Gruyter Studies in Math., Berlin New York, 1987.
[9] E. Fadell and S. Husseini, An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems, Ergod. Theory Dynam. Systems 8* (1988), 73-85.
[10] K. Gęba and L. Górniewicz, On the Bourgin-Yang theorem for multivalued maps I, Bull. Polish Acad. Sci. Math 34 (1986), 315-322.
[11] L. Górniewicz, Homological methods in fixed point theory of multivalued maps, Dissertationes Math. 129 (1976), 1-71.
[12] Wu Yi Hsiang, Cohomology Theory of Topological Transformation Groups; Ergebnisse der Mathematik und ihrer Grenzgebierte, vol. 85, Springer-Verlag, 1975.
[13] A. Idzik, Borsuk-Ulam type theorems, Discuss. Math. 15 (1995), 187-190.
[14] M. Izydorek, Remarks on Borsuk-Ulam theorem for multivalued maps, Bull. Polish Acad. Sci. 15 (1987), 501-504.
[15] , Nonsymmetric version of Bourgin-Yang Theorem for multivalued maps and free \mathbb{Z}_{p}-actions, J. Math. Anal. Appl. 137(2) (1989), 349-353.
[16] K. S. Sarkaria, Sierksma's Dutch Cheese Problem, MSRI Preprint no. 1997-025.
[17] W. Segiet, Nonsymmetric Borsuk-Ulam theorem for multivalued mappings, Bull. Polish Acad. Sci. 32 (1984), 113-119.
[18] E. H. Spanier, Algebraic Topology, McGraw Hill, New York, 1966.
[19] H. Steinlein, Borsuk's antipodal theorem and its generalizations and applications: A survey, Meth. Topol. en Anal. Non Lineaire, Sém. Math. Sup., vol. 95, Presses Univ. Montréal, Montreal, Quebeck, 1985, pp. 166-235.
[20] H. Tverberg, A generalization of Radon's theorem, J. London Math. Soc. 41 (1966), 123-128.
[21] A. Ju. Volovikov, Bourgin-Yang type theorem for a \mathbb{Z}_{p}^{n}-action, Mat. Sb. 183 (1992), 115-144. (Russian)
[22] , On a topological generalization of the Tverberg theorem, Mathematical Notes 59 (1996), 324-326.
[23] G. W. Whitehead, Elements of Homotopy Theory, Springer-Verlag, 1978.
[24] C. T. Yang, On theorems of Borsuk-Ulam, Kakutani, Yamabe, Yujobô and Dyson I, Ann. of Math. 60 (1954), 262-282.

ZdZISEAW DZEDZEJ
Institute of Mathematics
Gdańsk University
ul. Wita Stwosza 57
80-952 Gdańsk, POLAND
E-mail address: zdzedzej@ksinet.univ.gda.pl
Marek Izydorek
Institute of Mathematics
Polish Academy of Sciences
ul. A. Abrahama 17
Sopot, POLAND
E-mail address: izydorek@mifgate.pg.gda.pl

Antonio Vidal
Universidad de La Laguna
La Laguna, SPAIN
E-mail address: avidal@ull.es
TMNA : Volume $12-1998-\mathrm{N}^{\mathrm{o}} 1$

