
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 11, 1998, 351–360

ON JULIUSZ SCHAUDER’S PAPER ON LINEAR
ELLIPTIC DIFFERENTIAL EQUATIONS

Manfred König

Dedicated, with admiration, to Jürgen Moser

In what follows by Ω we denote a bounded domain in Rn with n ≥ 2, ∂Ω ∈
C2,α and 0 < α < 1. We let

Lu(x) =
n∑

i,k=1

ai,k(x) · uxixk
(x) +

n∑
i=1

ai(x) · uxi
(x) + a(x) · u(x) = f(x)

to be a linear elliptic differential equation of second order with coefficients aik,
ai, a, f ∈ C0,α(Ω) and a(x) ≤ 0 for all x ∈ Ω.

The paper of J. Schauder “Über lineare elliptische Differentialgleichungen
zweiter Ordnung” is treating the solvability of Dirichlet’s problem for the above
equation. The main results of Schauder’s work are given in the following theo-
rems.

Theorem 1 (A priori estimate). Let Ω ⊂ Rn, n ≥ 2, be a bounded domain
with ∂Ω ∈ C2,α, 0 < α < 1. There exists a constant k > 0, which depends on Ω,
‖aik‖0,α,Ω, ‖ai‖0,α,Ω, ‖a‖0,α,Ω, so that for all u ∈ C2,α(Ω) is valid the inequality1

‖u‖2,α,Ω ≤ k · {‖Lu‖0,α,Ω + ‖u‖2,α,∂Ω}.
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1Ck,α(Ω) is the Banach space, which is defined as the linear space of k times Hölder
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Theorem 2 (Kellogg’s Theorem)2. Let Ω ⊂ Rn, n ≥ 2, be a bounded domain
with ∂Ω ∈ C2,α, 0 < α < 1. For each (f, g) ∈ C0,α(Ω) × C2,α(∂Ω) there exists
precisely one solution u ∈ C2,α(Ω) to the boundary problem

∆u(x) =
n∑

i=1

uxixi
(x) = f(x), u|∂Ω = g.

Theorem 3 (Continuity Method). For 0 ≤ t ≤ 1 let

Ltu(x) = (1− t) ·∆u(x) + t · Lu(x),

Γ = {t | 0 ≤ t ≤ 1, for all (f, g) ∈ C0,α(Ω)× C2,α(∂Ω) the Dirichlet problem

Ltu(x) = f(x), u|∂Ω = g possesses a solution u(·, t) ∈ C2,α(Ω)}.

If Γ is not empty, then Γ = [0, 1].

Theorem 4 (General Existence Theorem). Let Ω ⊂ Rn, n ≥ 2, be a bounded
domain with ∂Ω ∈ C2,α, 0 < α < 1. For each (f, g) ∈ C0,α(Ω)× C2,α(∂Ω) there
exists precisely one solution u ∈ C2,α(Ω) to the boundary problem

Lu(x) = f(x), u|∂Ω = g.

In order to read the original work of J. Schauder [8] a strong background in
potential theory is required so that the proofs in that paper could only be carried
out by a few of the readers. In the literature, the results of above paper are used
without going into the proofs. For this reason it is often overlooked that not
only do Theorems 1, 3 and 4 stem from Schauder but Theorem 2 as well.

In what follows our aim is to show that Theorem 2 is in fact the principal
result of the Schauder’s paper. If one has Theorem 2 the Theorems 1, 3 and 4
follow with much less work than is necessary in giving a direct proof. This is
a consequence of the following equivalence theorem, which is the main result of
the present note:

Theorem (Equivalence Theorem). The following statements are equivalent.
(A) For every bounded domain Ω ⊂ Rn with ∂Ω ∈ C2,α, 0 < α < 1, the

following statement holds: if

Lu(x) =
n∑

i,k=1

ai,k(x) · uxixk
(x) +

n∑
i=1

ai(x) · uxi(x) + a(x) · u(x)

is an arbitrary elliptic differential operator with coefficients aik, ai, a ∈
C0,α(Ω) and a(x) ≤ 0 for all x ∈ Ω and if (f, g) ∈ C0,α(Ω)× C2,α(∂Ω)

2A partial case of Theorem 2 was proved by O. D. Kellogg in [3], the proof in full generality

was given by J. Schauder in [8].
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is arbitrary, then there exists a function u ∈ C2,α(Ω) which solves the
boundary value problem

Lu(x) = f(x), u|∂Ω = g.

(B) For every bounded domain Ω ⊂ Rn with ∂Ω ∈ C2,α, 0 < α < 1, the
following statement holds: if (f, g) ∈ C0,α({Ω})×C2,α(∂Ω) is arbitrary,
then there exists a function u ∈ C2,α({Ω}) which solves the boundary
value problem

∆u(x) = f(x), u|∂Ω = g.

Proof. The proof that (A) implies (B) is evident. To prove the reverse
implication we need the following inequality

(1) ‖u‖2,α,Ω ≤ k · {‖(1− t) ·∆u + t · Lu‖0,α,Ω + ‖u‖2,α,∂Ω}

with a constant k > 0 independent of t ∈ [0, 1] and all u ∈ C2,α(Ω). The proof
of formula 1 is carried out in two steps.

Step 1. We first show that for each t ∈ [0, 1] there exists a k(t) so that for
all u ∈ C2,α(Ω) the estimate

(2) ‖u‖2,α,Ω ≤ k(t) · {‖(1− t) ·∆u + t · Lu‖0,α,Ω + ‖u‖2,α,∂Ω}

holds. Let t ∈ [0, 1] be given. For y ∈ Ω a family of elliptic operators

Lyϕ =
n∑

i,k=1

{(1− t) · δikϕ + t · aik(y)} · ∂2

∂xi∂xk
ϕ

with constant coefficients is defined. By Lemma 1 of the Appendix it follows
that for each x̂ ∈ Ω there exists a constant c(x̂), so that for all v ∈ C2,α(Ω) the
estimate

‖v‖2,α,Ω ≤ c(x̂) · {‖L
bxv‖0,α,Ω + ‖v‖2,α,∂Ω}

holds, where c(x̂) depends on the choice of t. Let

P (x̂) = c(x̂) ·
n∑

i.k=1

‖aik‖0,α,Ω,

O(x̂) = {x |x ∈ Rn, ‖x− x̂‖α < (2 · P (x̂))−1}.

The sets {O(x̂)}
bx∈Ω form an open covering of Ω. By compactness, Ω is covered

by a finite family {O(xj)}j=1,... ,M . Let now ϕj ∈ C∞
0 (Rn) (j = 1, . . . , M) with

supp ϕj ⊂ O(xj) be a subordinated partition of unity. Let j ∈ {1, . . . , M} be
given. From

Lxj (ϕj · u) = t ·
n∑

i,k=1

(aik(xj)− aik(x)) · (ϕj · u)xixk
+ Lx(ϕj · u)
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we have the estimates

‖ϕju‖2,α,Ω ≤ k(xj) ·
{∥∥∥∥t ·

n∑
i,k=1

(aik(xj)− aik(x)) · (ϕju)xixk
+ Lx(ϕju)

∥∥∥∥
0,α,Ω

+ ‖ϕju‖2,α,∂Ω

}
,

and

‖ϕju‖2,α,Ω ≤ k(xj) ·
{

(2 · P (xj))−1 ·
n∑

i,k=1

‖aik‖0,α,Ω · ‖ϕju‖2,α,Ω

+ 2 ·
n∑

i,k=1

‖aik‖0,α,Ω · ‖ϕju‖2,o,Ω + ‖Lx(ϕju)‖0,α,Ω‖ϕju‖2,α,∂Ω

}
.

Next from the Corollary to Ehrling’s Lemma (see Appendix, corollary to
Lemma 2) we get for a given ε > 0 an estimate

(3) ‖w‖k,0,Ω ≤ ε · ‖w‖k,α,Ω + C(ε) · ‖w‖0,0,Ω

for all w ∈ Ck,α(Ω). Furthermore, using the estimate

(4) ‖ϕju‖0,0,Ω ≤ const · {‖Lx(ϕju)‖0,0,Ω + ‖ϕju‖0,0,∂Ω},

which follows from the maximum-minimum principle, we find

‖ϕju‖2,α,Ω ≤ c(xj) · {‖Lx(ϕju)‖0,α,Ω + ‖ϕju‖2,α,∂Ω},

where c(xj) is a suitable constant depending on xj . Now summing up over j

from 1 to M we obtain

‖u‖2,α,Ω =
∥∥∥∥ M∑

j=1

ϕju

∥∥∥∥
2,α,Ω

≤
M∑

j=1

‖ϕju‖2,α,Ω(5)

≤
M∑

j=1

c(xj) · {‖Lx(ϕju)‖0,α,Ω + ‖ϕju‖2,α,∂Ω}.

By differentiating each of ϕju and using triangle inequality, it follows from (5)
that with suitable constants k1 and k2 we get the estimate which follows:
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‖u‖2,α,Ω ≤ k1 · {‖(1− t) ·∆u + t · Lu‖0,α,Ω}+ k2 ·
{ n∑

i,k=1

‖aik‖2,α,Ω · ‖u‖2,0,Ω

+
( n∑

i=1

‖ai‖0,α,Ω + ‖a‖0,α,Ω

)
· ‖u‖1,α,Ω + ‖u‖2,α,∂Ω.

}
From the last inequality in view of (3) and (4), the inequality (2) follows.

Step 2. Now we show the existence of a constant k independent of t ∈ [0, 1],
so that for all u ∈ C2,α(Ω) the inequality

‖u‖2,α,Ω ≤ k · {‖(1− t) ·∆u + t · Lu‖0,α,Ω + ‖u‖2,α,∂Ω}

is valid. To this end let u ∈ C2,α(Ω) be given. By Step 1 we know that for each
t0 ∈ [0, 1] there exists a constant k(t0), so that

‖u‖2,α,Ω ≤ k(t0) · {‖(1− t0) ·∆u + t0 · Lu‖0,α,Ω + ‖u‖2,α,∂Ω}

holds. Consequently, for all t with

|t− t0| ≤
[
2 · k(t0) ·

{
n +

n∑
i,k=1

‖aik‖0,α,Ω +
n∑

i=1

‖ai‖0,α,Ω + ‖a‖0,α,Ω

}]−1

,

we get the inequalities

‖u‖2,α,Ω ≤ k(t0) · {|t− t0| · ‖∆u− Lu‖0,α,Ω + ‖(1− t) ·∆u

+ t · Lu‖0,α,Ω + ‖u‖2,α,∂Ω}

‖u‖2,α,Ω ≤ 1
2
· ‖u‖2,α,Ω + k(t0) · {‖(1− t) ·∆u + t · Lu‖0,α,Ω + ‖u‖2,α,∂Ω}

and therefore

‖u‖2,α,Ω ≤ 2 · k(t0) · {‖(1− t) ·∆u + t · Lu‖0,α,Ω + ‖u‖2,α,∂Ω}.

Now we observe that the sets

O(τ) =
{

t

∣∣∣∣ |t− τ | <
[
2 · k(τ) ·

{
n +

n∑
i,k=1

‖aik‖0,α,Ω

+
n∑

i=1

‖ai‖0,α,Ω + ‖a‖0,α,Ω

}]−1}
,

where τ ∈ [0, 1], form an open covering of the interval [0, 1], so by the compact-
ness there exists a finite family {O(τj)}j∈{1,... ,s}, which covers [0, 1].
Let k = 2 · maxj∈{1,... ,s} k(τj). Since for each t ∈ [0, 1], there is a τ0 with
t ∈ O(τ0), we obtain

‖u‖2,α,Ω ≤ 2 · k(τ0) · {‖(1− t) ·∆u + t · Lu‖0,α,Ω + ‖u‖2,α,∂Ω}.

Consequently, by definition of k, we get the desired inequality

‖u‖2,α,Ω ≤ k · {‖(1− t) ·∆u + t · Lu‖0,α,Ω + ‖u‖2,α,∂Ω}.
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Now to prove that statement (A) follows from statement (B), one must show
that for each (f, g) ∈ C0,α(Ω)×C2,α(∂Ω) there exists a function u ∈ C2,α(Ω) with
Lu(x) = f(x), u|∂Ω = g. This proof is carried out by means of the continuity
method. For this we need the inequality (1).

Let (f, g) ∈ C0,α(Ω) × C2,α(∂Ω) be arbitrary but fixed. For t ∈ [0, 1] we
define the following family of uniformly elliptic differential operators

Ltϕ = (1− t) ·∆ϕ + t · Lϕ.
Let

Γ = {t | t ∈ [0, 1] and for all (f, g) ∈ C0,α(Ω)× C2,α(∂Ω) the problem

Ltu(x) = f(x), u|∂Ω = g possesses a solution u(◦, t) ∈ C2,α(Ω)}.

Observe that t = 0 ∈ Γ. Let t0 ∈ Γ and k be the constant derived from the
estimate (1) and

ε = [2 · k · n · (n + 3) · max
i,k∈{1,... ,n}

{1, ‖aik‖0,α,Ω, ‖ai‖0,α,Ω, ‖a‖0,α,Ω}]−1.

Then all t ∈ [0, 1] with |t−t0| < ε belong to Γ because for t ∈ [0, 1] and |t−t0| < ε

and for each u ∈ C2,α(Ω) one has

f̂(ϕ, t) = (t− t0) · (∆u− Lu) + f ∈ C0,α(Ω)

and the problem Lt0v = f̂(◦, t), v|∂Ω = g has precisely one solution v ∈ C2,α(Ω)
since t0 belongs to Γ.

By u → v a mapping Tt0 : C2,α(Ω) → C2,α(Ω) is defined. For arbitrary u1

and u2 in C2,α(Ω) the function Tt0u1−Tt0u2 is a solution to the boundary value
problem

Lt0(Tt0u1 − Tt0u2) = (t− t0) · [∆(u1 − u2)− L(u1 − u2)],

(Tt0u1 − Tt0u2)|∂Ω = 0.

Thus, applying (1) to Tt0u1 − Tt0u2 we obtain the inequality

‖Tt0u1 − Tt0u2‖2,α,Ω ≤ k · |t− t0| · {‖∆(u1 − u2)‖0,α,Ω + ‖L(u1 − u2)‖0,α,Ω},

‖Tt0u1 − Tt0u2‖2,α,Ω ≤ 1
2
· ‖u1 − u2‖2,α,Ω,

i.e. the mapping Tt0 is contracting. Consequently, by the Banach Fixed Point
Theorem, there exists a solution u ∈ C2,α(Ω) to the equation Tt0u = u, i.e. t

belongs to Γ. Since ε does not depend on t0, it follows also that [0, 1] ⊆ Γ. There
exists, therefore for all (f, g) ∈ C0,α(Ω) × C2,α(∂Ω) a solution u ∈ C2,α(Ω) to
the problem Lu(x) = f(x), u|∂Ω = g.
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Remark

J. Schauder makes the following remark on page 281 of his paper [8]3:

Ich möchte hier noch folgende vielleicht interessante Bemerkung machen. Nehmen

wir an, es wäre bereits gelungen, den Existenzbeweis der Lösung für elliptische Differ-

entialgleichungen auf irgendeine Art und Weise zu erledigen. Weiter setzen wir voraus,

daß die qualitative Eigenschaft, die die Hölderstetigkeit der zweiten Ableitungen D2u
bis auf den Rand des Gebietes behauptet, falls die Randwerte zweimal α-H-stetig dif-

ferenzierbar sind, auch als richtig erkannt wurde. Dann bin ich imstande, daraus die

qualitative Abschätzung (48) (Anmerkung: a priori Abschätzung) zu folgern. Denn

zuerst beweise ich durch Anwendung eines Satzes aus der Theorie der Funktional-

operationen4 die Existenz einer Abschätzungskonstante C. Weiter schließe ich durch

Anwendung der sukzessiven Approximationen und Kontinuitätsbetrachtungen von der

aus S. 277 vorkommenden Art, daß die Konstante C nur von M abhängt.

We see that with the help of the Equivalence Theorem, one can sharpen the
remark of J. Schauder in that one does not have to demand the solvability of
the Dirichlet problem for the general elliptic differential equation in the class
C2,α(Ω) but only the solvability of the Laplace equation in the class C2,α(Ω).

The existence of a solution to the Dirichlet problem for the Laplace equation
one can show by the method of O. Perron [5] in the class C0,0(Ω) ∩ C2,0(Ω) or
by potential theoretic methods, J. Schauder [7], N. M. Günther [1] in the class
C1,α(Ω) ∩ C2,0(Ω).

Together with the paper of E. Hopf [2] it follows then that the solution is in
C0,0(Ω) ∩ C2,α(Ω) or C1,α(Ω) ∩ C2,α(Ω) as the case may be.

To show that the solution belongs to the class C2,α(Ω) it remains only to in-
vestigate the behaviour of the solution near the boundary. For that see the paper
[4] of the author. In this way it is possible to obtain the results of J. Schauder
with the Equivalenz Theorem essential simpler.

Comments

The results of Schauder’s paper are significant not only for the Dirichlet
problem for an elliptic differential equation, but together with subsequent works
of J. Schauder and J. Leray [6], [9] on the existence of fixed points for completely
continuous mappings in Banach spaces, they play a key role in existence proofs

3At this point I would like to make the following remark. Suppose in some way we had
been able to give an existence proof for the solution to an elliptic differential equation. Let us

further require that the Hölder continuity of the second derivatives holds up to the boundary

when the boundary values are twice differentiable and satisfy a Hölder condition. Then I am in
the position to obtain the qualitative estimate (48) (Remark of the writer: a priori estimate).

For I first prove the existence of a constant C for the estimate by applying a theorem from
the theory of functional analysis. Then I conclude by the method of successive approximation
and continuity considerations of the kind occuring on page 277 that the constant depends only
on M .

4S. Banach, Studia Math. 1 (1929), 223–239, insbesondere Satz 7 und J. Schauder, Studia
Math. 2 (1930), 1–8.
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for solutions u to the Dirichlet problem for nonlinear elliptic differential equa-
tions. We elaborate this by means of an example for the quasi-linear elliptic
differential equation:

n∑
i,k=1

aik(x, ux, u) · uxixk
(x) = f(x, ux, u), x ∈ Ω.

By means of the Schauder fixed point theorem the existence of solutions to
nonlinear problems can be proven in the following way:

1. Find a suitable Banach space B, which contains the desired solution u.
2. In this Banach space define a mapping T : B → B so that a fixed

point of the mapping T is a solution to the nonlinear problem under
consideration.

3. If one can prove that T satisfies the hypotheses of the Schauder fixed
point theorem, the existence proof for the solution to the original prob-
lem will be complete.

How does one translate this program to solving the Dirichlet problem for a
quasi-linear elliptic equation?

With the help of Theorem 4 we find by the following consideration a suitable
Banach space B and a mapping T : B → B. For that we begin by requiring
that the functions aik and f are at least in C0,α(Ω × Rn × R). If we now take
as Banach space B = C2,α(Ω), then for each v ∈ C2,0(Ω) ⊂ C2,α(Ω) the linear
Dirichlet problem

n∑
i,k=1

aik(x, vx, v) · uxixk
(x) = f(x, vx, v), x ∈ Ω,

u|∂Ω = g,

has by Theorem 4 a solution u ∈ C2,α(Ω). Hence a mapping T̂ : C2,0(Ω) →
C2,α(Ω) is defined by v → u. Since the natural embedding I : C2,α(Ω) →
C2,0(Ω) is completely continuous the mapping T = T̂ ◦ I : C2,α(Ω) → C2,α(Ω)
is completely continuous. From the construction of T we see immediately that
a fixed point of T is a solution to the original problem.

Thus, only the third step remains to be verified, that is the proof that T

satisfies the hypotheses of the Leray–Schauder fixed point theorem. We have
already verified the compactness requirement. To prove that a bounded, convex
subset of the Banach space C2,α(Ω) is mapped into itself by T , one makes use of
the a priori estimate

‖Tv‖2,α,Ω ≤ C(Ω, ‖aik‖0,α,Ω) · {‖f(x, vx, v)‖0,α,Ω + ‖g‖2,α,∂Ω}

from Theorem 1. The work remaining consists now in finding suitable assump-
tions on the coefficients aik and on the function f so that for all λ ∈ [0, 1] the
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norms ‖v‖0,0,Ω, ‖v‖1,0,Ω and ‖v‖1,α,Ω are uniformly bounded for all solutions v

to the problem
n∑

i,k=1

aik(x, λ · vx, λ · v) · vxixk
(x) = f(x, λ · vx, λ · v), x ∈ Ω and 0 ≤ λ ≤ 1,

v|∂Ω = g.

Appendix

Lemma 1. Suppose statement (B) holds and let

L0ϕ =
n∑

i,k=1

bik ·
∂2

∂xi∂xk
ϕ

be an elliptic differential operator in Ω whose coefficients bik are constant. For
all (f, g) ∈ C0,α(Ω) × C2,α(∂Ω) the boundary value problem L0u(x) = f(x),
u|∂Ω = g possesses one and only one solution u ∈ C2,α(Ω). Furthermore the
estimate

‖u‖2,α,Ω ≤ k · {‖f‖0,α,Ω + ‖g‖2,α,∂Ω}
holds. The constant k depends upon Ω and the coefficients bik, but not on f

and g.

Proof. Since the operator L0 is elliptic, there exists a nonsingular linear
mapping Y : Rn → Rn, Y (Ω) = Q, so that the boundary value problem L0u =
f , u|∂Ω = g can be transformed into the boundary value problem ∆v = f̂ ,
v|∂Q = ĝ. Since Q, however, is again a bounded domain with ∂Q ∈ C2,α, there
exists by hypothesis and the maximum-minimum principle precisely one solution
v ∈ C2,α(Ω). Thus there exists a unique solution u ∈ C2,α(Ω) to the original
problem. By (f, g) → u a linear mapping T : C0,α(Ω) × C2,α(∂Ω) → C2,α(Ω)
is defined. T is one-to-one. The inverse T−1 : C2,α(Ω) → C0,α(Ω) × C2,α(∂Ω),
defined by u → (L0u, u|∂Ω), is continuous. By the Theorem of Banach, T is then
continuous. Since T is linear, there exists a constant k of the type stated in the
assertion

Lemma 2 (Ehrling’s Lemma). Let

1. X1, X2, X3 be Banach spaces with corresponding norm ‖ ◦ ‖j, j ∈
{1, 2, 3}.

2. K : X1 → X2 be a linear compact map.
3. T : X2 → X3 be a linear continuous map which is one-to-one.

Then for each ε > 0 there exists a constant c(ε) such that the inequality

‖Kx‖2 ≤ ε · ‖x‖1 + c(ε) · ‖(T ◦K)x‖3

holds for all x ∈ X1.
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This Lemma is well known, so that we do not prove it here.

Corollary. Let l be an integer, 0 < α < 1, X1 = Cl,α(Ω), X2 = Cl,0(Ω)
and X3 = C0,0(Ω). Let the mappings K : Cl,α(Ω) → Cl,0(Ω) and T : Cl,0(Ω) →
C0,0(Ω) be the natural embeddings, i.e. Ku = u and Tu = u. Then for each
ε > 0 and for all u ∈ Cl,α(Ω) there exists a constant c(ε) such that the inequality

‖u‖l,0,Ω ≤ ε · ‖u‖l,α,Ω + c(ε) · ‖u‖0,0,Ω

holds.

Proof. T and K are continuous, linear, one-to-one maps and K is compact.
Therefore the claim follows from Lemma 2.
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