SPATIALLY DISCRETE WAVE MAPS ON ($1+2$)-DIMENSIONAL SPACE-TIME

Stefan Müller - Michael Struwe

Dedicated to Professor Jürgen Moser on the occasion of his 70th birthday

1. Introduction

Let N be a smooth, compact manifold without boundary of dimension k. By Nash's embedding theorem we may assume $N \subset \mathbb{R}^{n}$ isometrically for some n. A wave map $u=\left(u^{1}, \ldots, u^{n}\right): \mathbb{R} \times \mathbb{R}^{2} \rightarrow N \hookrightarrow \mathbb{R}^{n}$ by definition is a stationary point for the action integral

$$
\mathcal{A}(u ; Q)=\int_{Q} \mathcal{L}(u) d z, \quad Q \subset \mathbb{R} \times \mathbb{R}^{2}
$$

with Lagrangian

$$
\mathcal{L}(u)=\frac{1}{2}\left(|\nabla u|^{2}-\left|u_{t}\right|^{2}\right)
$$

with respect to compactly supported variations u_{ε} satisfying the "target constraint" $u_{\varepsilon}\left(\mathbb{R} \times \mathbb{R}^{2}\right) \subset N$. Equivalently, a wave map is a solution to the equation

$$
\begin{equation*}
\square u=u_{t t}-\Delta u=A(u)(D u, D u) \perp T_{u} N, \tag{1}
\end{equation*}
$$

where A is the second fundamental form of $N, T_{p} N \subset T_{p} \mathbb{R}^{n}$ is the tangent space to N at a point $p \in N$, and " \perp " means orthogonal with respect to the standard inner product $\langle\cdot, \cdot\rangle$ on \mathbb{R}^{n}.

We denote points on Minkowski space as $z=(t, x)=\left(x^{\alpha}\right)_{0 \leq \alpha \leq 2} \in \mathbb{R} \times \mathbb{R}^{2}$ and let $D u=\left(u_{t}, \nabla u\right)=\left(\partial_{\alpha} u\right)_{0 \leq \alpha \leq 2}$ denote the vector of space-time derivatives.

1991 Mathematics Subject Classification. Primary 54C40, 14E20; Secondary 46E25, 20C20.
Key words and phrases. Special maps, coverings, tangent spaces.

Moreover, we raise and lower indeces with the Minkowski metric $\eta=\left(\eta_{\alpha \beta}\right)=$ $\left(\eta^{\alpha \beta}\right)=\operatorname{diag}(-1,1,1)$. A summation convention is used; thus, $\square u=-\partial^{\alpha} \partial_{\alpha} u$. Finally, we abbreviate

$$
A(u)(D u, D u)=A(u)\left(\partial^{\alpha} u, \partial_{\alpha} u\right)
$$

Recall that locally, near any point $p_{0} \in N$, letting $\nu_{k+1}, \ldots, \nu_{n}$ be a smooth orthonormal frame for the normal bundle $T N^{\perp}$ near p_{0}, that is, vector fields such that $\left(\nu_{l}(p)\right)_{k<l \leq n}$ is an orthonormal basis for the normal space $T_{p} N^{\perp}$ at any $p \in N$ near p_{0}, we have

$$
A(p)(v, w)=A^{l}(p)(v, w) \nu_{l}(p)
$$

at any such p, where

$$
A^{l}(p)(v, w)=\left\langle v, d \nu_{l}(p) w\right\rangle
$$

is the second fundamental form of N with respect to ν_{l}.
Given $u_{0}: \mathbb{R}^{2} \rightarrow N, u_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{n}$ satisfying the condition $u_{1}(x) \in T_{u_{0}(x)} N$ for all $x \in \mathbb{R}^{2}$, that is, $\left(u_{0}, u_{1}\right): \mathbb{R}^{2} \rightarrow T N$, we consider the Cauchy problem for wave maps u with initial data

$$
\begin{equation*}
\left(u, u_{t}\right)_{\left.\right|_{t=0}}=\left(u_{0}, u_{1}\right): \mathbb{R}^{2} \rightarrow T N \tag{2}
\end{equation*}
$$

of finite energy

$$
E_{0}=\frac{1}{2} \int_{\mathbb{R}^{2}}\left(\left|u_{1}\right|^{2}+\left|\nabla u_{0}\right|^{2}\right) d x
$$

Specifically, in the present paper we study the relation between solutions u of (1), (2) on $\mathbb{R} \times \mathbb{R}^{2}$ and their spatially discrete counterparts $u^{h}: \mathbb{R} \times M_{h} \rightarrow N \hookrightarrow \mathbb{R}^{n}$, where \mathbb{R}^{2} is replaced by a uniform square lattice $M_{h}=(h \mathbb{Z})^{2}$ of mesh-size $h \rightarrow 0$.

In a previous paper [12], jointly with Vladimir Šverák, we studied the timeindependent case and showed that a weakly convergent family of harmonic maps $u^{h} \in H^{1}\left(T_{h} ; N\right)$ on a periodic lattice $T_{h}=(h \mathbb{Z})^{2} / \mathbb{Z}^{2}$ as $h \rightarrow 0$ accumulates at a harmonic map u on the 2-torus $T^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$.

Here we extend this result to the time dependent case; see our main result Theorem 4.1 below. Since the Cauchy problem for wave maps on a spatially discrete domain is equivalent to an initial value problem for a system of ordinary differential equations which can be solved globally for any mesh-size h in view of the uniform energy bounds available, as a corollary we reobtain our existence result from [11] for global weak solutions to the Cauchy problem (1), (2) for wave maps on $(1+2)$-dimensional Minkowski space; see Theorem 5.1. The methods we use are similar to the methods of [12]. We essentially rely on our previous weak compactness results [7], [8] with Freire and exploit the equivalent formulation of (1) as a Hodge system as in [3] or [9] to which compensation techniques may be applied in a way similar to the work of Hélein [9], [10], Evans [5], and Bethuel [1] on weakly harmonic maps, that is, time independent solutions of (1). (See [7]
for further references and a detailed comparison of the elliptic and hyperbolic cases.)

2. Technical framework

Whenever possible, we use the same notations as in [12] regarding difference calculus, discrete Hodge theory, interpolation and discretization. For the reader's convenience we recall the definition at each first appearance of a symbol.
2.1. Differential forms. For $h>0$ with $h^{-1} \in \mathbb{N}$ let $M_{h}=(h \mathbb{Z})^{2}, T_{h}=$ $\left(h \mathbb{Z}^{2}\right) / \mathbb{Z}^{2}$ with generic point $x=x_{h}=\left(x_{h}^{1}, x_{h}^{2}\right)$, and let $S^{1}=\mathbb{R} / \mathbb{Z}$ with generic point $t=x^{0}=x_{h}^{0}$. Differential forms on $\mathbb{R} \times M_{h}$ or $S^{1} \times T_{h}$ may be most conveniently expressed in terms of the standard basis $d x^{\alpha}, d x^{\alpha} \wedge d x^{\beta}, 0 \leq \alpha<$ $\beta \leq 2$, and $d t \wedge d x^{1} \wedge d x^{2}=d z$. In particular, for a 1 -form φ^{h} we have $\varphi^{h}=$ $\varphi_{\alpha}^{h} d x^{\alpha}$, and a 2-form b^{h} may be written in the standard form

$$
b^{h}=b_{0}^{h} d x^{1} \wedge d x^{2}-b_{1}^{h} d x^{0} \wedge d x^{2}+b_{2}^{h} d x^{0} \wedge d x^{1}=b_{\hat{\alpha \beta}}^{h} d x^{\alpha} \wedge d x^{\beta}
$$

with real-valued functions $\varphi_{\alpha}^{h}, b_{\alpha}^{h}$.
The Hodge $*_{g}$-operator with respect to either the Euclidean metric $g=$ eucl or the Minkowski metric $g=\eta$ in terms of this basis is defined as

$$
\begin{aligned}
*_{g} 1 & =d z, *_{g} d z=1 \\
*_{g} \varphi^{h} & =g^{00} \varphi_{0}^{h} d x^{1} \wedge d x^{2}-\varphi_{1}^{h} d x^{0} \wedge d x^{2}+\varphi_{2}^{h} d x^{0} \wedge d x^{1} \\
*_{g} b^{h} & =g^{00} b_{0}^{h} d x^{0}+b_{1}^{h} d x^{1}+b_{2}^{h} d x^{2}
\end{aligned}
$$

where $\left(g^{\alpha \beta}\right)=g^{-1}=\operatorname{diag}(\pm 1,1, \ldots, 1)$ and $\varphi^{h}=\varphi_{\alpha}^{h} d x^{\alpha}$, etc., as above.
From this definition we immediately deduce that $*_{g} \circ *_{g}=$ id and, moreover,

$$
\begin{aligned}
\varphi^{h} \wedge *_{g} \varphi^{h} & =\left(*_{g} \varphi^{h}\right) \wedge \varphi^{h}=g^{\alpha \beta} \varphi_{\alpha}^{h} \varphi_{\beta}^{h} d z \\
b^{h} \wedge *_{g} b^{h} & =\left(*_{g} b^{h}\right) \wedge b^{h}=g^{\alpha \beta} b_{\alpha}^{h} b_{\beta}^{h} d z
\end{aligned}
$$

for any 1-form φ^{h} or 2-form b^{h} as above.
Finally, two forms φ^{h}, ψ^{h} of the same degree may be contracted by letting

$$
\varphi^{h} \cdot{ }_{g} \psi^{h} d z=\varphi^{h} \wedge *_{g} \psi^{h}=g^{\alpha \beta} \varphi_{\alpha}^{h} \psi_{\beta}^{h} d z
$$

Spatially discrete differential and co-differential are defined as follows.
For $u^{h}: \mathbb{R} \times M_{h} \rightarrow \mathbb{R}, h \neq 0$, we let $d^{h} u^{h}=\partial_{\alpha}^{h} u^{h} d x^{\alpha}$ with components

$$
\partial_{0}^{h} u^{h}=\partial_{t}^{h} u^{h}=\partial_{t} u^{h}=u_{t}^{h}, \quad \partial_{\alpha}^{h} u(z)=\frac{u\left(z+h \underline{e}_{\alpha}\right)-u(z)}{h}, \quad \alpha=1,2
$$

where $\left(\underline{e}_{\alpha}\right)_{1 \leq \alpha \leq 2}$ is the standard basis for \mathbb{R}^{2}. For a 1 -form $\varphi^{h}=\varphi_{\alpha}^{h} d x^{\alpha}$ then

$$
d^{h} \varphi^{h}=\partial_{\alpha}^{h} \varphi_{\beta}^{h} d x^{\alpha} \wedge d x^{\beta}
$$

and for a 2-form b^{h} as above, $d^{h} b^{h}=\partial_{\alpha}^{h} b_{\alpha}^{h} d z$. The co-differential (with respect to g) is

$$
\delta_{g}^{h}=-*_{g} \circ d^{-h} \circ *_{g}
$$

Explicitly, for $\varphi^{h}=\varphi_{\alpha}^{h} d x^{\alpha}, h \neq 0$, we have

$$
\delta_{g}^{h} \varphi^{h}=-g^{\alpha \beta} \partial_{\alpha}^{-h} \varphi_{\beta}^{h}=-\partial_{2}^{-h} \varphi_{2}^{h}-\partial_{1}^{-h} \varphi_{1}^{h}-g^{00} \partial_{0}^{-h} \varphi_{0}^{h}
$$

and similarly for forms of higher degree. Clearly, we have $d^{h} \circ d^{h}=0, \delta^{h} \circ \delta^{h}=0$ for all $h \neq 0$.

Finally, for $h>0$, we let

$$
\square^{h}=\square^{-h}=d^{h} \delta_{\eta}^{h}+\delta_{\eta}^{h} d^{h}=d^{-h} \delta_{\eta}^{-h}+\delta_{\eta}^{-h} d^{-h}
$$

denote the spatially discrete wave operator, acting on forms on $\mathbb{R} \times M_{h}$. Explicitly, we have

$$
\begin{aligned}
\square^{h} u^{h}=\delta_{\eta}^{h} d^{h} u^{h} & =\left(\partial_{t}^{2}-\Delta^{h}\right) u^{h}, & \square^{h}\left(\varphi_{\alpha}^{h} d x^{\alpha}\right) & =\left(\square^{h} \varphi_{\alpha}^{h}\right) d x^{\alpha}, \\
\square^{h}\left(b_{\hat{\alpha \beta}}^{h} d x^{\alpha} \wedge d x^{\beta}\right) & =\left(\square^{h} b_{\hat{\alpha \beta}}^{h}\right) d x^{\alpha} \wedge d x^{\beta}, & \square^{h}\left(f^{h} d z\right) & =\left(\square^{h} f^{h}\right) d z,
\end{aligned}
$$

where $\Delta^{h}=\Delta^{-h}$ is the discrete (5-point) Laplace operator on T_{h}; that is, \square^{h} acts as a diagonal operator with respect to the standard basis of forms.

Also note the product rule

$$
\begin{align*}
\partial_{\alpha}^{h}\left(u^{h} v^{h}\right) & =\partial_{\alpha}^{h} u^{h} v^{h}+\tau_{\alpha}^{h} u^{h} \partial_{\alpha}^{h} v^{h} \tag{3}\\
& =\partial_{\alpha}^{h} u^{h} \tau_{\alpha}^{h} v^{h}+u^{h} \partial_{\alpha}^{h} v^{h}=\partial_{\alpha}^{h} u^{h} m_{\alpha}^{h} v^{h}+m_{\alpha}^{h} u^{h} \partial_{\alpha}^{h} v^{h}
\end{align*}
$$

and

$$
\delta_{g}^{-h}\left(\varphi^{h} f^{h}\right)=-g^{\alpha \beta} \partial_{\alpha}^{h}\left(\varphi_{\beta}^{h} f^{h}\right)=-g^{\alpha \beta}\left[\left(\partial_{\alpha}^{h} \varphi_{\beta}^{h}\right) f^{h}+\tau_{\alpha}^{h} \varphi_{\beta}^{h} \partial_{\alpha}^{h} f^{h}\right] ;
$$

in particular, we have

$$
\delta_{g}^{-h}\left(\tau_{\alpha}^{-h} \varphi_{\alpha}^{h} d x^{\alpha} \cdot f^{h}\right)=-g^{\alpha \beta}\left[\left(\partial_{\alpha}^{-h} \varphi_{\beta}^{h}\right) f^{h}+\varphi_{\beta}^{h} \partial_{\alpha}^{h} f^{h}\right]=\left(\delta_{g}^{h} \varphi^{h}\right) f^{h}-\varphi^{h} \cdot{ }_{g} d^{h} f
$$

Here and in the following we denote

$$
\begin{aligned}
\tau_{0}^{ \pm h} u^{h} & =m_{0}^{ \pm h} u^{h}=u^{h}, \tau_{\alpha}^{ \pm h} u^{h}=u^{h}\left(\cdot \pm h \underline{e}_{\alpha}\right) \\
m_{\alpha}^{ \pm h} u^{h} & =\left(u^{h}+\tau_{\alpha}^{ \pm h} u^{h}\right) / 2, \quad \alpha=1,2
\end{aligned}
$$

2.2. Dirichlet's integral. For $u^{h}: \mathbb{R} \times M_{h} \rightarrow \mathbb{R}$ we let

$$
\begin{equation*}
e_{h}\left(u^{h}\right)=\frac{1}{4} \sum_{0 \leq \alpha \leq 2}\left(\left|\partial_{\alpha}^{h} u^{h}\right|^{2}+\left|\partial_{\alpha}^{-h} u^{h}\right|^{2}\right) \tag{4}
\end{equation*}
$$

be the energy density and let

$$
E_{h}\left(u^{h}(t)\right)=\int_{M_{h}} e_{h}\left(u^{h}(t)\right):=h^{2} \sum_{x_{h} \in M_{h}} e_{h}\left(u^{h}\left(t, x_{h}\right)\right)
$$

be the energy of u^{h} at any time t. If $h^{-1} \in \mathbb{N}$ and if u^{h} has period one in each variable, we regard u^{h} as a map $u^{h}: S^{1} \times T_{h} \rightarrow \mathbb{R}$. Then we define

$$
D_{h}\left(u^{h}\right)=\int_{S^{1} \times T_{h}} e_{h}\left(u^{h}\right):=\int_{0}^{1} h^{2} \sum_{x_{h} \in T_{h}} e_{h}\left(u^{h}\right)\left(t, x_{h}\right) d t
$$

and similarly for forms of degree ≥ 1.
Note that the first variation of D_{h} at u^{h} in direction v^{h} is given by

$$
\begin{aligned}
\left\langle d D_{h}\left(u^{h}\right), v^{h}\right\rangle & =\left.\frac{d}{d \varepsilon} D_{h}\left(u^{h}+\varepsilon v^{h}\right)\right|_{\varepsilon=0} \\
& =\frac{1}{2} \sum_{\alpha} \int_{S^{1} \times T_{h}}\left(\partial_{\alpha}^{h} u^{h} \partial_{\alpha}^{h} v^{h}+\partial_{\alpha}^{-h} u^{h} \partial_{\alpha}^{-h} v^{h}\right) \\
& =\sum_{\alpha} \int_{S^{1} \times T_{h}} \partial_{\alpha}^{h} u^{h} \partial_{\alpha}^{h} v^{h}=-\int_{S^{1} \times T_{h}} \Delta_{3}^{h} u^{h} v^{h},
\end{aligned}
$$

where $-\Delta_{3}^{h}=\delta_{\text {eucl }}^{h} d^{h}+d^{h} \delta_{\text {eucl }}^{h}=-\partial_{t}^{2}-\Delta^{h}$ is the spatially discrete Laplace operator, acting on forms on $S^{1} \times T_{h}$.

Similarly, for $u^{h}: \mathbb{R} \times M_{h} \rightarrow \mathbb{R}^{n}$ the spatially discrete Lagrangian of u^{h} is

$$
\mathcal{L}_{h}\left(u^{h}\right)=\frac{1}{4} \eta^{\alpha \beta}\left(\left\langle\partial_{\alpha}^{h} u^{h}, \partial_{\beta}^{h} u^{h}\right\rangle+\left\langle\partial_{\alpha}^{-h} u^{h}, \partial_{\beta}^{-h} u^{h}\right\rangle\right)
$$

The action integral over any spatially discrete domain $Q \subset \mathbb{R} \times M_{h}$ then is

$$
\mathcal{A}_{h}\left(u^{h} ; Q\right)=\int_{Q} \mathcal{L}_{h}\left(u^{h}\right)
$$

and u^{h} is stationary for \mathcal{A}_{h} with respect to compactly supported variations if and only if

$$
\begin{align*}
\left\langle d \mathcal{A}_{h}\left(u^{h}\right), v^{h}\right\rangle & =\left.\frac{d}{d \varepsilon} \mathcal{A}_{h}\left(u^{h}+\varepsilon v^{h}\right)\right|_{\varepsilon=0} \tag{5}\\
& =\int_{\mathbb{R} \times M_{h}} \eta^{\alpha \beta}\left\langle\partial_{\alpha}^{h} u^{h}, \partial_{\beta}^{h} v^{h}\right\rangle=\int_{\mathbb{R} \times M_{h}} \square^{h} u^{h} v^{h}=0
\end{align*}
$$

for any $v^{h} \in C_{0}^{\infty}\left(\mathbb{R} \times M_{h}\right)$; that is, if and only if $\square^{h} u^{h}=0$.
2.3. Hodge decomposition. Analogous to the continuous case or the case of a planar lattice, we have the following result on Hodge decomposition of forms on $S^{1} \times T_{h}$.

Proposition 2.1. Any 1 -form $\varphi^{h}=\varphi_{\alpha}^{h} d x^{\alpha}$ on $S^{1} \times T_{h}$ may be decomposed uniquely as

$$
\begin{equation*}
\varphi^{h}=d^{h} a^{h}+\delta_{\text {eucl }}^{h} b^{h}+c^{h} \tag{6}
\end{equation*}
$$

where a^{h} and b^{h} are normalized to satisfy

$$
\begin{equation*}
\int_{S^{1} \times T_{h}} a^{h}=\int_{S^{1} \times T_{h}} b_{\widehat{\alpha \beta}}^{h}=0 \quad \text { for } 0 \leq \alpha<\beta \leq 2, d^{h} b^{h}=0 \tag{7}
\end{equation*}
$$

and $d^{h} c^{h}=0, \delta_{\text {eucl }}^{h} c^{h}=0$.
Proof. Let a^{h}, b^{h} be the unique solutions to the equations

$$
-\Delta_{3}^{h} a^{h}=\delta_{\text {eucl }}^{h} \varphi^{h}, \quad-\Delta_{3}^{h} b^{h}=d^{h} \varphi^{h}
$$

normalized by (7), obtained, for instance, by minimizing the integral

$$
F_{h}\left(a^{h}\right)=\int_{S^{1} \times T_{h}}\left\{e_{h}\left(a^{h}\right)-a^{h} \delta_{\mathrm{eucl}}^{h} \varphi^{h}\right\}
$$

among functions $a^{h}: S^{1} \times T_{h} \rightarrow \mathbb{R}$ satisfying (7), and similarly for b^{h}. The remainder $c^{h}=\varphi^{h}-d^{h} a^{h}-\delta_{\text {eucl }}^{h} b^{h}$ then satisfies

$$
d^{h} c^{h}=d^{h} \varphi^{h}+\Delta_{3}^{h} b^{h}=0, \quad \delta_{\mathrm{eucl}}^{h} c^{h}=\delta_{\mathrm{eucl}}^{h} \varphi^{h}+\Delta_{3}^{h} a^{h}=0
$$

as desired.
Via the Euclidean Hodge *-operator, we obtain an analogous decomposition of 2-forms. Observe that the decomposition (6) is L^{2}-orthogonal and hence we have

$$
\begin{equation*}
\int_{S^{1} \times T_{h}}\left|\varphi^{h}\right|^{2}=\int_{S^{1} \times T_{h}}\left(\left|d^{h} a^{h}\right|^{2}+\left|\delta_{\text {eucl }}^{h} h^{h}\right|^{2}+\left|c^{h}\right|^{2}\right) . \tag{8}
\end{equation*}
$$

2.4. Discretization and interpolation. We discretize a map $u: \mathbb{R} \times \mathbb{R}^{2} \rightarrow$ \mathbb{R} by letting, for each $t \in \mathbb{R}$,

$$
u^{h}\left(t, x_{h}\right)=h^{-2} \int_{Q_{h}^{+}\left(x_{h}\right)} u(t, x) d x, \quad x_{h} \in M_{h}
$$

where for $l \in \mathbb{N}$ the set

$$
Q_{l h}^{+}\left(x_{h}\right)=\left\{x=\left(x^{1}, x^{2}\right) \in \mathbb{R}^{2}: x_{h}^{\alpha} \leq x^{\alpha}<x_{h}^{\alpha}+l h, \alpha=1,2\right\}
$$

is a square with lower left corner x_{h} of size $l h$, and similarly for periodic maps $u: T^{3}=S^{1} \times T \rightarrow \mathbb{R}$, assuming $h^{-1} \in \mathbb{N}$.

Conversely, we interpolate a map $u^{h}: \mathbb{R} \times M_{h} \rightarrow \mathbb{R}$ either trivially, by letting

$$
u^{h}(t, x)=u^{h}\left(t, x_{h}\right) \quad \text { for } x \in Q_{h}^{+}\left(x_{h}\right), x_{h} \in M_{h}
$$

or bilinearly, by letting

$$
\bar{u}^{h}(t, x)=u^{h}\left(t, x_{h}\right)+\sum_{\alpha=1,2} \xi^{\alpha} \partial_{\alpha}^{h} u^{h}\left(t, x_{h}\right)+\xi^{1} \xi^{2} \partial_{1}^{h} \partial_{2}^{h} u^{h}\left(t, x_{h}\right)
$$

whenever $x=x_{h}+\xi \in Q_{h}^{+}\left(x_{h}\right), x_{h} \in M_{h}$, and similarly for maps $u^{h}: S^{1} \times T_{h} \rightarrow$ \mathbb{R}.

Observe that

$$
\partial_{\alpha}^{ \pm h} u^{h}(t, x)=\partial_{\alpha}^{ \pm h} u^{h}\left(t, x_{h}\right)
$$

for all $t \in S^{1}, x \in Q_{h}^{+}\left(x_{h}\right), x_{h} \in T_{h}$; moreover,

$$
\partial_{1} \bar{u}^{h}\left(t, x_{h}+h \xi\right)=\left(1-\xi_{2}\right) \partial_{1}^{h} u^{h}\left(t, x_{h}\right)+\xi_{2} \partial_{1}^{h} u^{h}\left(t, x_{h}+h \underline{e}_{2}\right)
$$

for $t \in S^{1}, x_{h} \in T_{h}, \xi \in Q_{1}^{+}(0)$, and similarly with x^{1} - and x^{2}-directions exchanged.

From this identity the following result is immediate.
Proposition 2.2. For $u^{h}: \mathbb{R} \times M_{h} \rightarrow \mathbb{R}$ with $\sup _{t} E_{h}\left(u^{h}(t)\right)<\infty$ we have $\bar{u}^{h} \in L^{\infty}\left(\mathbb{R} ; H^{1}\left(\mathbb{R}^{2}\right)\right) \cap C^{0}\left(\mathbb{R} \times \mathbb{R}^{2}\right)$, and with a uniform constant C for all $t \in \mathbb{R}$ there holds
(i) $\left\|\left(\bar{u}^{h}-u^{h}\right)(t)\right\|_{L^{\infty}\left(Q_{h}^{+}\left(x_{h}\right)\right)}^{2} \leq C \int_{Q_{2 h}^{+}\left(x_{h}\right)} e_{h}\left(u^{h}(t)\right)$ for all $x_{h} \in M_{h}$;
(ii) $\left\|\left(\bar{u}^{h}-u^{h}\right)(t)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2} \leq C h^{2} E_{h}\left(u^{h}(t)\right)$;
(iii) $C^{-1} E_{h}\left(u^{h}(t)\right) \leq E\left(\bar{u}^{h}(t)\right) \leq C E_{h}\left(u^{h}(t)\right)$.

Moreover, by comparing u^{h} and \bar{u}^{h}, using Proposition 2.2(i), it is clear that the Poincaré inequality

$$
\|\left(u^{h}-u_{r, x_{0}}^{h}(t) \|_{L^{2}\left(Q_{r}\left(x_{0}\right)\right)}^{2} \leq C r^{2} E_{h}\left(u^{h}(t) ; Q_{r+h}\left(x_{0}\right)\right)\right.
$$

holds for every $\left(t, x_{0}\right) \in \mathbb{R} \times M_{h}$, any $r=k h, k \in \mathbb{N}$, where

$$
Q_{r}\left(x_{0}\right)=\left\{x=\left(x^{1}, x^{2}\right):\left|x^{\alpha}-x_{0}^{\alpha}\right|<r, \alpha=1,2\right\}
$$

and where

$$
u_{r, x_{0}}^{h}(t)=\int_{Q_{r}\left(x_{0}\right)} u^{h}(t, x)
$$

is the mean value.
Similar results hold true if we also take time dependence into account.
For $z_{0}=\left(x_{0}^{\alpha}\right)_{0 \leq \alpha \leq 2}, r>0$, let

$$
\left.P_{r}\left(z_{0}\right)=\prod_{\alpha=0}^{2}\right] x_{0}^{\alpha}-r, x_{0}^{\alpha}+r[
$$

and let $u^{h}: \mathbb{R} \times M_{h} \rightarrow \mathbb{R}$ with locally finite energy as above. For $z \in \mathbb{R} \times M_{h}$, $r=k h, k \in \mathbb{N}$, we also let

$$
u_{r, z}^{h}=f_{P_{r}(z)} u^{h}
$$

denote the average of u^{h} on $P_{r}(z)$.
Proposition 2.3. For any $z=(t, x) \in \mathbb{R} \times M_{h}, 0<h \leq r=k h, k \in \mathbb{N}$, $\alpha \in\{1,2\}$, with an absolute constant C there holds
(i) $\left|\left(\tau_{\alpha}^{h} u^{h}-u^{h}\right)(z)\right|^{2} \leq C h^{-1} \int_{P_{2 h}(z)} e_{h}\left(u^{h}\right)$,
(ii) $\left\|u^{h}-u_{r, z}^{h}\right\|_{L^{2}\left(P_{r}(z)\right)}^{2} \leq C r^{2} \int_{P_{r+h}(z)} e_{h}\left(u^{h}\right)$.

Proof. (i) Integrating in time, for any $s \in] t-h, t+h[$ we obtain

$$
\left|\left(\tau_{\alpha}^{h} u^{h}-u^{h}\right)(t, x)\right| \leq\left|\left(\tau_{\alpha}^{h} u^{h}-u^{h}\right)(s, x)\right|+\int_{t-h}^{t+h}\left(\left|\partial_{t}\left(\tau_{\alpha}^{h} u^{h}\right)\right|+\left|\partial_{t} u^{h}\right|\right) d s
$$

Squaring and averaging with respect to s, in view of Proposition 2.2(i) we find

$$
\begin{aligned}
\left|\left(\tau_{\alpha}^{h} u^{h}-u^{h}\right)(z)\right|^{2} \leq & h^{-1} \int_{t-h}^{t+h}\left|\left(\tau_{\alpha}^{h} u^{h}-u^{h}\right)(s, x)\right|^{2} d s \\
& +C h \int_{t-h}^{t+h}\left(\left|\partial_{t} \tau_{\alpha}^{h} u^{h}\right|^{2}+\left|\partial_{t} u^{h}\right|^{2}\right) d s \\
\leq & C h^{-1} \int_{P_{2 h}(z)} e_{h}\left(u^{h}\right)
\end{aligned}
$$

(ii) The asserted inequality is immediate from Proposition $2.2(\mathrm{i})$ and the usual Poincaré inequality, applied to the function \bar{u}^{h}.

If we consider the trivial extensions of a function $u^{h}: \mathbb{R} \times M_{h} \rightarrow \mathbb{R}$ and its energy density $e_{h}\left(u^{h}\right)$ to $\mathbb{R} \times \mathbb{R}^{2}$, Proposition 2.3(ii) remains valid for all $z \in \mathbb{R} \times \mathbb{R}^{2}$ and $0<h \leq r$.

Regarding a function $u^{h}: S^{1} \times T_{h} \rightarrow \mathbb{R}$ as a periodic function on $\mathbb{R} \times M_{h}$, the above results also hold for $u^{h}: S^{1} \times T_{h} \rightarrow \mathbb{R}$. In addition, by integrating in time, from Proposition 2.2 (iii) we obtain the following result.

Proposition 2.4. For $u^{h}: S^{1} \times T_{h} \rightarrow \mathbb{R}$ with $D_{h}\left(u^{h}\right)<\infty$ we have $\bar{u}^{h} \in$ $H^{1}\left(T^{3}\right)$ and with a uniform constant C there holds

$$
C^{-1} D_{h}\left(u^{h}\right) \leq D\left(\bar{u}^{h}\right)=\frac{1}{2} \int_{T^{3}}\left(\left|u_{t}^{h}\right|^{2}+\left|\nabla u^{h}\right|^{2}\right) d z \leq C D_{h}\left(u^{h}\right) .
$$

In view of Proposition 2.4 we will say that $u^{h} \rightharpoondown u$ weakly in $H^{1}\left(T^{3}\right)$ as $h \rightarrow 0$, if $\bar{u}^{h} \rightharpoondown u$ weakly in $H^{1}\left(T^{3}\right)$, or, equivalently, if $u^{h} \rightharpoondown u$ and $d^{h} u^{h} \rightharpoondown d u$ weakly in $L^{2}\left(T^{3}\right)$, where $u^{h}, d^{h} u^{h}$ denote the trivial extensions of $u^{h}, d^{h} u^{h}$ to T^{3}, defined above.

3. Spatially discrete wave maps

In analogy with the continuous case a map $u^{h}: \mathbb{R} \times M_{h} \rightarrow N \hookrightarrow \mathbb{R}^{n}$ is a spatially discrete wave map if and only if u^{h} is stationary for \mathcal{A}_{h} among maps $u_{\varepsilon}^{h}: \mathbb{R} \times M_{h} \rightarrow N$ such that $u_{\varepsilon}^{h}=u^{h}$ at $\varepsilon=0$ and outside some compact set $Q \subset \mathbb{R} \times M_{h} ;$ in particular, then

$$
\left.\frac{d}{d \varepsilon} \mathcal{A}_{h}\left(\pi_{N}\left(u^{h}+\varepsilon v^{h}\right)\right)\right|_{\varepsilon=0}=0
$$

for all $v^{h} \in C_{0}^{\infty}\left(\mathbb{R} \times M_{h} ; \mathbb{R}^{n}\right)$, where $\pi_{N}: U_{\delta}(N) \rightarrow N$ is the smooth map projecting a point p in a tubular neighbourhood of N of sufficiently small width $\delta>0$ to its nearest neighbour $\pi_{N}(p) \in N$.

Computing the first variation using (5), we deduce that u^{h} satisfies the equation

$$
d \pi_{N}\left(u^{h}\right) \square^{h} u^{h}=0 ;
$$

that is,

$$
\begin{equation*}
\square^{h} u^{h} \perp T_{u^{h}} N \tag{9}
\end{equation*}
$$

Hence, letting $\nu_{k+1}, \ldots, \nu_{n}$ be a local frame for $T N^{\perp}$ as above, we have

$$
\square^{h} u^{h}=\lambda^{l} \nu_{l} \circ u^{h}
$$

where λ^{l} may be computed as
(10) $\lambda^{l}=\left\langle\square^{h} u^{h}, \nu_{l} \circ u^{h}\right\rangle=-\eta^{\alpha \beta} \partial_{\beta}^{h}\left\langle\partial_{\alpha}^{-h} u^{h}, \nu_{l} \circ u^{h}\right\rangle+\eta^{\alpha \beta}\left\langle\partial_{\alpha}^{h} u^{h}, \partial_{\beta}^{h}\left(\nu_{l} \circ u^{h}\right)\right\rangle$.

Observe that for $\alpha=0, \beta=0$ the first term vanishes because $\left\langle\partial_{t} u^{h}, \nu_{l} \circ u^{h}\right\rangle=0$.
In view of this representation of (9), for $h>0$ equation (9) is equivalent to a system of ordinary differential equations of the form

$$
\begin{equation*}
U_{t t}^{h}=F\left(U^{h}, U_{t}^{h}\right) \tag{11}
\end{equation*}
$$

for $U^{h}(t)=\left(u^{h}\left(t, x_{h}\right)\right)_{x_{h} \in M_{h}}$, with coupling involving only neighbouring lattice sites.

Given $\left(u_{0}^{h}, u_{1}^{h}\right): M_{h} \rightarrow T N$ with finite energy

$$
\begin{equation*}
E_{h}\left(u^{h}(0)\right):=\frac{1}{2} \int_{M_{h}}\left(\left|u_{1}^{h}\right|^{2}+\left|d^{h} u_{0}^{h}\right|^{2}\right) \tag{12}
\end{equation*}
$$

we therefore expect to obtain a unique global solution u^{h} of the initial value problem for (9) with initial data

$$
\begin{equation*}
\left.\left(u^{h}, u_{t}^{h}\right)\right|_{t=0}=\left(u_{0}^{h}, u_{1}^{h}\right) \tag{13}
\end{equation*}
$$

In fact, we have the following result.
Theorem 3.1. For any $h>0$, any $\left(u_{0}^{h}, u_{1}^{h}\right): M_{h} \rightarrow N$ with $E_{h}\left(u^{h}(0)\right)<\infty$ there exists a unique global solution $u^{h}: \mathbb{R} \times M_{h} \rightarrow N$ of the Cauchy problem (9), (13), and $E_{h}\left(u^{h}(t)\right)=E_{h}\left(u^{h}(0)\right)$ for all t.

The proof is achieved by combining the local existence and uniqueness results for systems of ordinary differential equations with the a priori bounds on solutions resulting from the following energy inequality.
3.1. Energy inequality. For $u^{h}: \mathbb{R} \times M_{h} \rightarrow N$ let $e_{h}\left(u^{h}\right)$ be the energy density defined in (4), and for $\alpha=1,2$ let

$$
g_{\alpha}^{ \pm h}\left(u^{h}\right)=\left\langle\partial_{\alpha}^{ \pm h} u^{h}, u_{t}^{h}\right\rangle
$$

be the momentum of u^{h} in direction α.
For a solution of (9) then we have

$$
\begin{equation*}
0=\left\langle\square^{h} u^{h}, u_{t}^{h}\right\rangle=\frac{d}{d t} e_{h}\left(u^{h}\right)-\frac{1}{2} \sum_{\alpha=1,2}\left(\partial_{\alpha}^{h} g_{\alpha}^{-h}\left(u^{h}\right)+\partial_{\alpha}^{-h} g_{\alpha}^{h}\left(u^{h}\right)\right) \tag{14}
\end{equation*}
$$

In particular, the total energy is conserved; that is,

$$
\begin{equation*}
E_{h}\left(u^{h}(t)\right)=\int_{M_{h}} e_{h}\left(u^{h}(t)\right)=E_{h}\left(u^{h}(0)\right) \quad \text { for all } t . \tag{15}
\end{equation*}
$$

For the proof of Theorem 3.1 and for our later purposes, we also need a local version of this result. Observe that in the discrete case (9) cannot exhibit finite propagation speed. However, as $h \rightarrow 0$ equation (9) approximates a system of wave equations. Therefore we expect the (essential) domains of influence and dependence of any given point to approach the light cone through that point; in particular, in the limit $h \rightarrow 0$, on any bounded region of space-time the discrete evolution should essentially be determined by the data on a finite region of the hyperplane $t=0$.

Below we verify this behavior in detail. Because in the discrete case we are working on a quadratic lattice, we prove the local energy inequality on squares, not on circles.
3.2. Local energy inequality. For any function φ, upon multiplying (14) by the discretized function φ^{h} we obtain

$$
\begin{aligned}
0= & \frac{d}{d t}\left(e_{h}\left(u^{h}\right) \varphi^{h}\right)-\frac{1}{2} \sum_{\alpha=1,2}\left[\partial_{\alpha}^{h}\left(g_{\alpha}^{-h}\left(u^{h}\right) \varphi^{h}\right)+\partial_{\alpha}^{-h}\left(g_{\alpha}^{h}\left(u^{h}\right) \varphi^{h}\right)\right]-e_{h}\left(u^{h}\right) \partial_{t} \varphi^{h} \\
& +\frac{1}{2} \sum_{\alpha=1,2}\left[\left(g_{\alpha}^{-h}\left(u^{h}\right) \partial_{\alpha}^{-h} \varphi^{h}\right)\left(\cdot+h e_{\alpha}\right)+\left(g_{\alpha}^{h}\left(u^{h}\right) \partial_{\alpha}^{h} \varphi^{h}\right)\left(\cdot-h e_{\alpha}\right)\right] .
\end{aligned}
$$

Now let $\psi: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
\psi(s)= \begin{cases}e^{-h^{-1 / 3} s} & s \geq 0 \\ 2-e^{h^{-1 / 3} s} & s<0\end{cases}
$$

and choose

$$
\begin{equation*}
\varphi(t, x)=\inf _{1 \leq \alpha \leq 2} \psi\left(\left|x^{\alpha}\right|+t\right)=\psi\left(\sup _{\alpha}\left|x^{\alpha}\right|+t\right) \tag{16}
\end{equation*}
$$

satisfying

$$
\left(\partial_{t} \varphi^{h}+\max _{\alpha}\left\{\left|\partial_{\alpha}^{h} \varphi^{h}\right|,\left|\partial_{\alpha}^{-h} \varphi^{h}\right|\right\}\right)\left(t, x_{h}\right) \leq\left(\psi^{\prime}(s)+\max \left\{\left|\partial^{h} \psi(s)\right|,\left|\partial^{-h} \psi(s)\right|\right\}\right)
$$

for $x_{h} \in M_{h}$, where $s=\sup _{\alpha}\left|x_{h}^{\alpha}\right|+t$.
Integrating in spatial direction and shifting coordinates in the last two terms, we then find that

$$
\begin{aligned}
\frac{d}{d t} & \left(\int_{M_{h}} e_{h}\left(u^{h}\right) \varphi^{h}\right) \\
& \leq \int_{M_{h}}\left(e_{h}\left(u^{h}\right) \partial_{t} \varphi^{h}+\frac{1}{2} \sum_{\alpha=1,2}\left(\left|g_{\alpha}^{-h}\left(u^{h}\right)\right|\left|\partial_{\alpha}^{-h} \varphi^{h}\right|+\left|g_{\alpha}^{h}\left(u^{h}\right)\right|\left|\partial_{\alpha}^{h} \varphi^{h}\right|\right)\right) \\
& \leq \int_{M_{h}} e_{h}\left(u^{h}\right)\left(\partial_{t} \varphi^{h}+\max _{1 \leq \alpha \leq 2}\left\{\left|\partial_{\alpha}^{h} \varphi^{h}\right|,\left|\partial_{\alpha}^{-h} \varphi^{h}\right|\right\}\right)
\end{aligned}
$$

Remark that at any point $\left(t, x_{h}\right)$ at most two of the terms $\partial_{\alpha}^{ \pm h} \varphi^{h} \neq 0$; hence in the Cauchy-Schwarz inequality we may replace the Euclidean norm of $\partial_{\alpha}^{ \pm h} \varphi^{h}$ by the maximum norm. Let

$$
\rho(s)=\psi^{\prime}(s)+\max \left\{\left|\partial^{h} \psi(s)\right|,\left|\partial^{-h} \psi(s)\right|\right\}
$$

We distinguish the cases $s \leq-h, s \geq h,-h \leq s \leq 0$, and $0 \leq s \leq h$.
If $s \leq-h$, we have

$$
\begin{aligned}
\rho(s) & =\left(-h^{-1 / 3}+\max \left\{\frac{e^{h^{2 / 3}}-1}{h}, \frac{1-e^{-h^{2 / 3}}}{h}\right\}\right) e^{h^{-1 / 3} s} \\
& =h^{-1 / 3} e^{h^{-1 / 3} s}\left(\frac{e^{h^{2 / 3}}-1}{h^{2 / 3}-1}\right) .
\end{aligned}
$$

By Taylor's formula

$$
\frac{e^{h^{2 / 3}}-1}{h^{2 / 3}}-1=\frac{1}{2} h^{2 / 3}+O\left(h^{4 / 3}\right) \leq h^{2 / 3}
$$

for $h \leq h_{0}$. Hence for such h and s we conclude

$$
\rho(s) \leq h^{1 / 3} e^{h^{-1 / 3} s} \leq h^{1 / 3} \leq h^{1 / 3} \psi(s) .
$$

Similarly, if $s \geq h$, for $h \leq h_{0}$ we find

$$
\rho(s)=h^{-1 / 3} e^{-h^{-1 / 3} s}\left(\frac{e^{h^{2 / 3}}-1}{h^{2 / 3}}-1\right) \leq h^{1 / 3} e^{-h^{-1 / 3} s}=h^{1 / 3} \psi(s) .
$$

If $-h \leq s \leq 0$ we only need to check that

$$
\begin{aligned}
\psi^{\prime}(s)+\left|\partial^{h} \psi(s)\right| & \leq-h^{-1 / 3} e^{h^{-1 / 3} s}+\frac{2-e^{h^{-1 / 3} s}-e^{-h^{-1 / 3}(s+h)}}{h} \\
& \leq h^{-1 / 3} e^{h^{-1 / 3} s}\left(-1+\frac{2 e^{-h^{-1 / 3} s}-1-e^{-h^{2 / 3}} e^{-2 h^{-1 / 3} s}}{h^{2 / 3}}\right) \\
& \leq C h^{1 / 3} e^{h^{-1 / 3} s} \leq C h^{1 / 3} \leq C h^{1 / 3} \psi(s)
\end{aligned}
$$

with an absolute constant C, if $h \leq h_{0}$. The estimate $\psi^{\prime}(s)+\left|\partial^{-h} \psi(s)\right| \leq$ $h^{1 / 3} \psi(s)$ for $h \leq h_{0}$ is obtained as in the case $s \leq-h$.

Similarly, for $0 \leq s \leq h \leq h_{0}$, we have

$$
\psi^{\prime}(s)+\left|\partial^{-h} \psi(s)\right| \leq C h^{1 / 3} \psi(s)
$$

The remaining estimate

$$
\psi^{\prime}(s)+\left|\partial^{h} \psi(s)\right| \leq h^{1 / 3} \psi(s), h \leq h_{0},
$$

is obtained as in the case $s \geq h$.
Thus, we conclude that with the above choice of φ for $h \leq h_{0}$ there holds

$$
\partial_{t} \varphi^{h}+\max _{\alpha}\left\{\left|\partial_{\alpha}^{h} \varphi^{h}\right|,\left|\partial_{\alpha}^{-h} \varphi^{h}\right|\right\} \leq C h^{1 / 3} \varphi^{h}
$$

with an absolute constant C, and hence also

$$
\frac{d}{d t} \int_{M_{h}} e_{h}\left(u^{h}\right) \varphi^{h} \leq C h^{1 / 3} \int_{M_{h}} e_{h}\left(u^{h}\right) \varphi^{h}
$$

We may shift the argument of φ by an arbitrary vector $\left(t_{0}, x_{0}\right)$ and integrate in time to obtain the following result.

Lemma 3.2. There exist constants $h_{0}>0, C$ such that for any $h \leq h_{0}$, any solution u^{h} of (9), any $z_{0}=\left(t_{0}, x_{0}\right) \in \mathbb{R} \times M_{h}$, if $0 \leq t \leq t_{0}$ there holds

$$
\int_{\{t\} \times M_{h}} e_{h}\left(u^{h}\right) \varphi_{z_{0}}^{h} \leq e^{C h^{1 / 3} t} \int_{\{0\} \times M_{h}} e_{h}\left(u^{h}\right) \varphi_{z_{0}}^{h},
$$

where $\varphi_{z_{0}}(t, x)=\varphi\left(t-t_{0}, x-x_{0}\right)$ is given by (16).
Proof of Theorem 3.1. We first consider initial data $\left(u_{0}^{h}, u_{1}^{h}\right): M_{h} \rightarrow T N$ having compact support in the sense that $u_{0}^{h} \equiv$ const, $u_{1}^{h} \equiv 0$ outside some compact set. Then for sufficiently large $K \in \mathbb{N}$ the support of $d^{ \pm h} u_{0}^{h}, u_{1}^{h}$ is strictly contained in the square of edge-length $2 K h$ centered at (0,0). Extending u_{0}^{h}, u_{1}^{h} periodically with period $2 K h$ in the x^{1} - and x^{2}-directions, we may regard u_{0}^{h}, u_{1}^{h} alternatively as maps $\left(u_{0}^{h}, u_{1}^{h}\right): M_{h} /(2 K h \mathbb{Z})^{2}=: M_{h, K} \rightarrow T N$ or as periodic maps on M_{h}.

The Cauchy problem for equation (9) now reduces to an initial value problem for a finite-dimensional system (11) of ordinary differential equations, which in view of the uniform a-priori bound on the energy

$$
\begin{equation*}
E_{h, K}\left(u_{K}^{h}(t)\right)=\int_{M_{h, K}} e_{h}\left(u_{K}^{h}(t)\right) \equiv E_{h, K}\left(u_{K}^{h}(0)\right)=E_{h}\left(u^{h}(0)\right) \tag{17}
\end{equation*}
$$

of a solution u_{K}^{h}, which results from integrating (14) over $M_{h, K}$, can be solved uniquely for all time.

Moreover, regarding $u_{K}^{h}: \mathbb{R} \times M_{h} \rightarrow N$ as spatially periodic solutions of (9), in view of these uniform energy bounds a subsequence $u_{K}^{h} \rightarrow u^{h}, \partial_{t} u_{K}^{h} \rightarrow \partial_{t} u^{h}$ locally uniformly on $\mathbb{R} \times M_{h}$ as $K \rightarrow \infty$, where u^{h} satisfies (9). Combining (17), Lemma 3.2, and (15) we conclude that $E_{h}\left(u^{h}(t)\right) \equiv$ const. Indeed, given $t>0$, $z_{0}=\left(t_{0}, x_{0}\right)$, by exponential decay of φ there are constants $K_{0}, C_{1}=e^{C h^{1 / 3} t}$ such that for $L \geq K \geq K_{0}$ there holds

$$
\begin{aligned}
2 C_{1} \int_{M_{h}} e_{h}\left(u^{h}(0)\right) \varphi_{z_{0}}^{h}(0) & \geq C_{1} \int_{M_{h}} e_{h}\left(u_{L}^{h}(0)\right) \varphi_{z_{0}}^{h}(0) \geq \int_{M_{h}} e_{h}\left(u_{L}^{h}(t)\right) \varphi_{z_{0}}^{h}(t) \\
& \geq \int_{\left\{x_{h} \in M_{h} ;\left|x_{h}^{\alpha}\right| \leq K h\right\}} e_{h}\left(u_{L}^{h}(t)\right) \varphi_{z_{0}}^{h}(t)
\end{aligned}
$$

Fixing K and letting $L \rightarrow \infty$, from locally uniform convergence $u_{L}^{h} \rightarrow u^{h}$, $d^{h} u_{L}^{h} \rightarrow d^{h} u^{h}$ we conclude that

$$
\int_{\left\{x_{h} \in M_{h} ;\left|x_{h}^{\alpha}\right| \leq K h\right\}} e_{h}\left(u^{h}(t)\right) \varphi_{z_{0}}^{h}(t) \leq 4 C_{1} E_{h}\left(u^{h}(0)\right) .
$$

Letting $K \rightarrow \infty$ and then $t_{0} \rightarrow \infty$, we deduce that

$$
E_{h}\left(u^{h}(t)\right) \leq 2 C_{1} E_{h}\left(u^{h}(0)\right)<\infty
$$

locally uniformly in time and therefore, in fact, $E_{h}\left(u^{h}(t)\right)=E_{h}\left(u^{h}(0)\right)$ for all t, by (15).

Uniqueness of u^{h} is obtained as follows. Let $u^{h}, v^{h}: \mathbb{R} \times M_{h} \rightarrow N$ be solutions to (9) with $u^{h}(0, \cdot)=v^{h}(0, \cdot)=u_{0}^{h}, u_{t}^{h}(0, \cdot)=v_{t}^{h}(0, \cdot)=u_{1}^{h}$ and such that $E_{h}\left(u^{h}(t)\right)+E_{h}\left(v^{h}(t)\right) \leq C$, uniformly in t. Observe that this also implies that

$$
\left|u_{t}^{h}\left(t, x_{h}\right)\right|^{2}+\left|v_{t}^{h}\left(t, x_{h}\right)\right|^{2} \leq C h^{-2}
$$

uniformly in $\mathbb{R} \times M_{h}$.
Expanding (9) and (10), we deduce that $w^{h}=u^{h}-v^{h}$ satisfies

$$
\begin{aligned}
\left|\square^{h} w^{h}\right| \leq & C \sum_{\alpha=1,2}\left(\left|\partial_{\alpha}^{-h} \partial_{\alpha}^{h} w^{h}\right|+h^{-1}\left|\partial_{\alpha}^{ \pm h} w^{h}\right|+h^{-2}\left|w^{h}\left(\cdot \pm h e_{\alpha}\right)\right|+h^{-2}\left|w^{h}\right|\right) \\
& +C\left(\left|u_{t}^{h}\right|+\left|v_{t}^{h}\right|\right)\left|w_{t}^{h}\right|+C\left(\left|u_{t}^{h}\right|^{2}+\left|v_{t}^{h}\right|^{2}\right)\left|w^{h}\right| \\
\leq & C h^{-2}\left(\sum_{\alpha=1,2}\left|w^{h}\left(\cdot \pm h e_{\alpha}\right)\right|+\left|w^{h}\right|\right)+C h^{-1}\left|w_{t}^{h}\right| .
\end{aligned}
$$

Multiplying by w_{t}^{h} and integrating over M_{h}, we obtain

$$
\begin{align*}
\frac{d}{d t} E_{h}\left(w^{h}(t)\right) & \leq C\left(1+h^{-2}\right) \int_{M_{h}}\left(\left|w^{h}(t)\right|^{2}+\left|w_{t}^{h}(t)\right|^{2}\right) \tag{18}\\
& \leq C\left(1+h^{-2}\right) \int_{M_{h}}\left|w^{h}(t)\right|^{2}+C\left(1+h^{-2}\right) E_{h}\left(w^{h}(t)\right)
\end{align*}
$$

Moreover, by Hölder's inequality, for any $t \geq 0$, any $x \in M_{h}$ we have

$$
\left|w^{h}(t, x)\right|^{2}=\left(\int_{0}^{t} w_{t}^{h}(s, x) d s\right)^{2} \leq t \int_{0}^{t}\left|w_{t}^{h}(s, x)\right|^{2} d s
$$

Hence for $0 \leq t \leq T$ we can estimate

$$
\int_{M_{h}}\left|w^{h}(t)\right|^{2} \leq 2 t \int_{0}^{t} E_{h}\left(w^{h}(s)\right) d s \leq 2 T^{2} \sup _{0 \leq s \leq T} E_{h}\left(w^{h}(s)\right) .
$$

Given $T>0$, we fix $t \in[0, T]$ such that

$$
E_{h}\left(w^{h}(t)\right)=\sup _{0 \leq s \leq T} E_{h}\left(w^{h}(s)\right)
$$

We may assume that $T \leq 1$. Integrating (18) from 0 to t, it then follows that

$$
\begin{equation*}
E_{h}\left(w^{h}(t)\right)=\sup _{0 \leq s \leq T} E_{h}\left(w^{h}(s)\right) \leq C T\left(1+h^{-2}\right) \sup _{0 \leq s \leq T} E_{h}\left(w^{h}(s)\right) . \tag{19}
\end{equation*}
$$

Choosing $T>0$ sufficiently small, we conclude that $w^{h} \equiv 0$ on $[0, T] \times M_{h}$. By iteration therefore $w^{h} \equiv 0$ on $\mathbb{R} \times M_{h}$.

Finally, we may use (18) to remove the assumption that $d^{h} u_{0}^{h}, u_{1}^{h}$ have compact support. Indeed, given data $\left(u_{0}^{h}, u_{1}^{h}\right): M_{h} \rightarrow T N$ of finite energy we may approximate $\left(u_{0}^{h}, u_{1}^{h}\right)$ by data $\left(u_{0, l}^{h}, u_{1, l}^{h}\right): M_{h} \rightarrow T N, l \in \mathbb{N}$, such that $d^{h} u_{0, l}^{h}$, $u_{1, l}^{h}$ have compact support for any l and such that

$$
\int_{M_{h}}\left(\left|d^{h}\left(u_{0, l}^{h}-u_{0}^{h}\right)\right|^{2}+\left|u_{1, l}^{h}-u_{1}^{h}\right|^{2}\right) \rightarrow 0
$$

as $l \rightarrow \infty$. (The proof of this density result is analogous to the proof that maps $u \in H^{1}\left(\mathbb{R}^{2} ; N\right)$ with $\operatorname{supp}(\nabla u) \subset \mathbb{R}^{2}$ are H^{1}-dense in this space; see for instance [13].) Letting $\left(u_{l}^{h}\right)_{l \in \mathbb{N}}$ be the solutions to (9) with data $\left.\left(u_{l}^{h}, \partial_{t} u_{l}^{h}\right)\right|_{t=0}=$ $\left(u_{0, l}^{h}, u_{1, l}^{h}\right)$, from (18), applied to $w^{h}=u_{l}^{h}-u_{m}^{h}$ for large $l, m \in \mathbb{N}$, we obtain convergence of $\left(u_{l}^{h}\right)$ to the unique solution u of (9), (13).

4. Passing to the limit $h \rightarrow 0$

Our aim in this section is to prove the following weak convergence result.
Theorem 4.1. Let $u^{h}: \mathbb{R} \times M_{h} \rightarrow N \hookrightarrow \mathbb{R}^{n}$, $h>0$, be spatially discrete wave maps such that

$$
\begin{equation*}
E_{h}\left(u^{h}(t)\right) \leq C \text { uniformly in } h>0, t \in \mathbb{R} . \tag{20}
\end{equation*}
$$

Then a subsequence $u^{h} \rightarrow u$ locally in $L^{2}\left(\mathbb{R}^{1+2}\right), d^{h} u^{h} \rightharpoondown D u$ weakly-* in $L^{\infty}\left(\mathbb{R} ; L^{2}\left(\mathbb{R}^{2}\right)\right.$) as $h \rightarrow 0$ where $u: \mathbb{R} \times \mathbb{R}^{2} \rightarrow N \hookrightarrow \mathbb{R}^{n}$ is a weak solution of (1) with

$$
E(u(t))=\frac{1}{2} \int_{\mathbb{R}^{2}}|D u(t)|^{2} d x \leq \limsup _{h \rightarrow 0} E_{h}\left(u^{h}(t)\right) \leq C
$$

uniformly in $t \in \mathbb{R}$.
The proof of Theorem 4.1 uses certain compensation properties of Jacobians exhibited by the first order equations equivalent to (1), (9), respectively, as in [7], [8], [12].

To derive these equations we proceed as in [3] or [9]. First suppose that $T N$ is parallelizable and let $\bar{e}_{1}, \ldots, \bar{e}_{k}$ be a smooth orthonormal frame field. For any $h>0$ and any $R^{h}: \mathbb{R} \times M_{h} \rightarrow S O(k)$ then

$$
e_{i}^{h}=R_{i j}^{h}\left(\bar{e}_{j} \circ u^{h}\right), \quad 1 \leq i \leq k,
$$

is a frame field for $\left(u^{h}\right)^{-1} T N$.

4.1. First order equations. Let

$$
\theta_{i, 0}^{h}=\left\langle\partial_{t} u^{h}, e_{i}^{h}\right\rangle, \quad \theta_{i, \alpha}^{h}=\left\langle\partial_{\alpha}^{h} u^{h}, e_{i}^{h}\left(\cdot+h \underline{e}_{\alpha}\right)\right\rangle, \quad \alpha=1,2
$$

observe that the shift is arranged so that the functions

$$
\theta_{i, \alpha}^{-h}=\theta_{i, \alpha}^{h}\left(\cdot-h \underline{e}_{\alpha}\right)=\left\langle\partial_{\alpha}^{-h} u^{h}, e_{i}^{h}\right\rangle, \quad \alpha=1,2
$$

are the coefficients of the representation of $d^{-h} u^{h}$ in terms of the frame $\left(e_{i}^{h}\right)$. Also let

$$
\omega_{i j, 0}^{ \pm h}=\left\langle\partial_{t} e_{i}^{h}, e_{j}^{h}\right\rangle, \quad \omega_{i j, \alpha}^{ \pm h}=\left\langle\partial_{\alpha}^{ \pm h} e_{i}^{h}, m_{\alpha}^{ \pm h} e_{j}^{h}\right\rangle, \quad \alpha=1,2
$$

Clearly, the $\omega_{i j}^{h}$ are a discrete approximation of the connection 1-forms $\omega_{i j}=$ $\left\langle d e_{i}, e_{j}\right\rangle$ of a frame $\left(e_{i}\right)$ in the continuum limit $h=0$. The definition is made to insure anti-symmetry $\omega_{i j}^{h}=-\omega_{j i}^{h}$ also in the discrete case.

Letting $\partial_{t}^{ \pm h}:=\partial_{t}, \underline{e}_{0}=0, m_{0}^{ \pm h}=\mathrm{id}$, we have

$$
\theta_{i, \alpha}^{h}=\left\langle\partial_{\alpha}^{h} u^{h}, e_{i}^{h}\left(\cdot+h \underline{e}_{\alpha}\right)\right\rangle, \quad \theta_{i, \alpha}^{-h}=\left\langle\partial_{\alpha}^{-h} u^{h}, e_{i}^{h}\right\rangle, \quad \omega_{i j, \alpha}^{ \pm h}=\left\langle\partial_{\alpha}^{ \pm h} e_{i}^{h}, m_{\alpha}^{ \pm h} e_{j}^{h}\right\rangle
$$

for all α. Then

$$
\delta_{\eta}^{h} \theta_{i}^{h}=-\eta^{\alpha \beta} \partial_{\alpha}^{-h} \theta_{i, \beta}^{h}=-\eta^{\alpha \beta} \partial_{\alpha}^{h} \theta_{i, \beta}^{-h}=-\left\langle\square^{h} u^{h}, e_{i}^{h}\right\rangle-\eta^{\alpha \beta}\left\langle\partial_{\alpha}^{h} u^{h}, \partial_{\beta}^{h} e_{i}^{h}\right\rangle .
$$

That is, $u^{h}: \mathbb{R} \times M_{h} \rightarrow N$ solves (9) if and only if

$$
\begin{equation*}
\delta_{\eta}^{h} \theta_{i}^{h}=-\eta^{\alpha \beta}\left\langle\partial_{\alpha}^{h} u^{h}, \partial_{\beta}^{h} e_{i}^{h}\right\rangle=-\eta^{\alpha \beta} \theta_{j, \alpha}^{h} \cdot \omega_{i j, \beta}^{h}+\tau_{1 i}^{h} \tag{21}
\end{equation*}
$$

where

$$
\begin{aligned}
\tau_{1 i}^{h}= & -\eta^{\alpha \beta}\left[\theta_{j, \alpha}^{h}\left\langle\frac{e_{j}^{h}\left(\cdot+h \underline{e}_{\alpha}\right)-e_{j}^{h}}{2}, \partial_{\beta}^{h} e_{i}^{h}\right\rangle\right. \\
& \left.+\left\langle\partial_{\alpha}^{h} u^{h}, \nu_{l} \circ u^{h}\left(\cdot+h \underline{e}_{\alpha}\right)\right\rangle\left\langle\nu_{l} \circ u^{h}\left(\cdot+h \underline{e}_{\alpha}\right), \partial_{\beta}^{h} e_{i}^{h}\right\rangle\right]
\end{aligned}
$$

Observe that there exists a constant $C=C(N)$ such that for $p, q \in N$ there holds $\left|\left\langle p-q, \nu_{l}(p)\right\rangle\right| \leq C|p-q|^{2}$. It follows that

$$
\left|\left\langle\partial_{\alpha}^{h} u^{h}, \nu_{l} \circ u^{h}\left(\cdot+h \underline{e}_{\alpha}\right)\right\rangle\right| \leq C h^{-1}\left|u^{h}\left(\cdot+h \underline{e}_{\alpha}\right)-u^{h}\right|^{2}=C h\left|\partial_{\alpha}^{h} u^{h}\right|^{2} .
$$

Moreover, remark that
$\left|\eta^{\alpha \beta} \theta_{j, \alpha}^{h}\left\langle\left(e_{j}^{h}\left(\cdot+h \underline{e}_{\alpha}\right)-e_{j}^{h}\right), \partial_{\beta}^{h} e_{j}\right\rangle\right| \leq h\left|\theta_{j, \alpha}^{h}\right|\left|\partial_{\alpha}^{h} e_{j}^{h}\right|^{2} \leq\left|u^{h}\left(\cdot+h \underline{e}_{\alpha}\right)-u^{h}\right|\left|\partial_{\alpha}^{h} e_{j}^{h}\right|^{2}$.
Thus, we may estimate the error term

$$
\left|\tau_{1 i}^{h}\right| \leq C \sum_{\alpha=1,2}\left|u^{h}\left(\cdot+h \underline{e}_{\alpha}\right)-u^{h}\right|\left(\left|\partial_{\alpha}^{h} u^{h}\right|^{2}+\sum_{j}\left|\partial_{\alpha}^{h} e_{j}^{h}\right|^{2}\right)
$$

Our aim is to pass to the distributional limit in (9) or, equivalently, (21) for a suitable sequence $h \rightarrow 0$. As in [7], [8] we may convert this convergence problem into a problem on a compact domain, as follows. Given $\varphi \in C_{0}^{\infty}\left(\mathbb{R} \times \mathbb{R}^{2}\right)$, let Q
be a cube centered at $(0,0)$ containing the support of φ. Scaling the coordinates suitably, we may assume that $Q=[-1 / 4,1 / 4]^{3}$; moreover, we may suppose that $1 / 4 h \in \mathbb{N}$. We then extend u^{h} by even reflection in the faces of Q to periodic functions v^{h} on $\mathbb{R} \times M_{h}$ of period 1 in each variable, satisfying (9) on the support of φ.

Given a frame $\left(e_{i}\right)$ for $\left(v^{h}\right)^{-1} T N$, then also (21) will hold on the support of φ. Regarding v^{h} as maps $v^{h}: S^{1} \times T_{h} \rightarrow N$ on the compact spatially discrete 3 -torus, moreover, following Hélein [9], we may choose a frame $\left(e_{i}\right)$ which is in minimal Coulomb gauge, defined as follows.
4.2. Gauge condition. Choose $R^{h}=\left(R_{i j}^{h}\right) \in H^{1}\left(S^{1} \times T_{h} ; S O(k)\right)$ such that

$$
D_{h}\left(R^{h}\left(\bar{e} \circ u^{h}\right)\right)=\frac{1}{4} \int_{S^{1} \times T_{h}} \sum_{\alpha, i}\left(\left|\partial_{\alpha}^{h} e_{i}^{h}\right|^{2}+\left|\partial_{\alpha}^{-h} e_{i}^{h}\right|^{2}\right)=\inf _{R} D_{h}\left(R\left(\bar{e} \circ u^{h}\right)\right),
$$

and let $e_{i}^{h}=R_{i j}^{h}\left(\bar{e}_{j} \circ u^{h}\right), 1 \leq i \leq k$. Observe that

$$
\begin{equation*}
D_{h}\left(e_{i}^{h}\right) \leq C \int_{S^{1} \times T_{h}} e_{h}\left(u^{h}\right) \leq C D_{h}\left(u^{h}\right) \tag{22}
\end{equation*}
$$

Moreover, minimality implies

$$
\begin{aligned}
0 & =\left.\frac{d}{d \varepsilon} D_{h}\left((i d+\varepsilon S) e^{h}\right)\right|_{\varepsilon=0} \\
& =\frac{1}{2} \int_{S^{1} \times T_{h}}\left(\left\langle\partial_{\alpha}^{h} e_{i}^{h}, \partial_{\alpha}^{h}\left(S_{i j} e_{j}^{h}\right)\right\rangle+\left\langle\partial_{\alpha}^{-h} e_{i}^{h}, \partial_{\alpha}^{-h}\left(S_{i j} e_{j}^{h}\right)\right\rangle\right) \\
& =-\frac{1}{2} \int_{S^{1} \times T_{h}}\left\{\partial_{\alpha}^{h}\left\langle\partial_{\alpha}^{-h} e_{i}^{h}, m_{\alpha}^{-h} e_{j}^{h}\right\rangle+\partial_{\alpha}^{-h}\left\langle\partial_{\alpha}^{h} e_{i}^{h}, m_{\alpha}^{h} e_{j}^{h}\right\rangle\right\} S_{i j} \\
& =-\int_{S^{1} \times T_{h}} \partial_{\alpha}^{-h} \omega_{i j, \alpha}^{h} S_{i j}
\end{aligned}
$$

for all $S_{i j} \in S O(k)$, where we also used anti-symmetry of S and the discrete product rule (3) to derive the second identity.

Since $\omega_{i j, \alpha}^{h}=-\omega_{j i, \alpha}^{h}$ we conclude

$$
\partial_{\alpha}^{-h} \omega_{i j, \alpha}^{h}=\delta_{\text {eucl }}^{h} \omega_{i j}^{h}=\delta_{\text {eucl }}^{-h} \omega_{i j}^{-h}=0 .
$$

In view of (22) we may assume that, as $h \rightarrow 0$ suitably,

$$
\begin{array}{r}
e_{i}^{h} \rightharpoondown e_{i} \text { weakly in } H^{1}\left(T^{3}\right), \\
\theta_{i}^{h} \rightharpoondown \theta_{i} \text { weakly in } L^{2}\left(T^{3}\right), \\
\omega_{i j}^{h} \rightharpoondown \omega_{i j} \text { weakly in } L^{2}\left(T^{3}\right),
\end{array}
$$

where e_{i} is a frame for $u^{-1} T N$ and $\theta_{i}=\left\langle d u, e_{i}\right\rangle, \omega_{i j}=\left\langle d e_{i}, e_{j}\right\rangle$.
Our aim is to show that

$$
\int_{Q}\left(\theta_{i} \cdot \eta d \varphi+\omega_{i j} \cdot{ }_{\eta} \theta_{j} \varphi\right) d z=0
$$

where $\varphi \in C_{0}^{\infty}\left(\mathbb{R} \times \mathbb{R}^{3}\right)$ with $\operatorname{supp}(\varphi) \subset Q$ is the testing function that we chose above.

In fact, we will show that

$$
\begin{equation*}
\delta_{\eta} \theta_{i}+\omega_{i j} \cdot \eta \theta_{j}=0 \quad \text { in } \mathcal{D}^{\prime}(Q) \tag{23}
\end{equation*}
$$

where we extend u periodically as above and regard Q as part of a fundamental domain for $T^{3}=\mathbb{R}^{3} / \mathbb{Z}^{3}$. In view of the equations (21), that is,

$$
\delta_{\eta}^{h} \theta_{i}^{h}+\omega_{i j}^{h} \cdot{ }_{\eta} \theta_{j}^{h}=\tau_{1 i}^{h} \quad \text { in } Q
$$

and distributional convergence $\delta_{\eta}^{h} \theta_{i}^{h} \rightharpoondown \delta_{\eta} \theta_{i}$ in $\mathcal{D}^{\prime}\left(T^{3}\right)$, it will suffice to show that

$$
\begin{equation*}
\omega_{i j}^{h} \cdot \eta \theta_{j}^{h}-\tau_{1 i}^{h} \rightharpoondown \omega_{i j} \cdot \eta \theta_{i} \quad \text { in } \mathcal{D}^{\prime}\left(T^{3}\right) \tag{24}
\end{equation*}
$$

as $h \rightarrow 0$ suitably.
Let

$$
\begin{equation*}
*_{\eta} \theta_{i}^{-h}=d^{h} a_{i}^{h}+\delta_{\text {eucl }}^{h} b_{i}^{h}+c_{i}^{h} \tag{25}
\end{equation*}
$$

be the Hodge decomposition of $*_{\eta} \theta_{i}^{-h}$ on $S^{1} \times T_{h}$ as determined in Proposition 2.1. We may assume that as $h \rightarrow 0$ suitably

$$
a_{i}^{h} \rightharpoondown a_{i}, \quad b_{i}^{h} \rightharpoondown b_{i} \text { weakly in } H^{1}\left(T^{3}\right),
$$

and $c_{i}^{h} \rightarrow c_{i}$ smoothly. Observe that the harmonic forms c_{i}^{h}, c_{i} are constant linear combinations of the basis $d x^{\alpha} \wedge d x^{\beta}, 0 \leq \alpha<\beta \leq 2$.

Using this decomposition, we may write

$$
\omega_{i j}^{-h} \cdot{ }_{\eta} \theta_{j}^{-h} d z=\omega_{i j}^{-h} \wedge *_{\eta} \theta_{j}^{-h}=\omega_{i j}^{-h} \wedge d^{h} a_{j}^{h}+\omega_{i j}^{-h} \wedge \delta_{\mathrm{eucl}}^{h} b_{j}^{h}+\omega_{i j}^{-h} \wedge c_{j}^{h}
$$

Since $c_{j}^{h} \rightarrow c_{j}$ smoothly, passing to the desired limit in the last term is no problem. To show convergence of the second last term, for convenience denote $-*_{\text {eucl }} b_{j}^{h}=\beta_{j}^{h}$. Observe that β_{j}^{h} is a scalar function and $\beta_{j}^{h} \rightharpoondown \beta_{j}=-*_{\text {eucl }} b_{j}$ weakly in $H^{1}\left(T^{3}\right)$, whence strongly in $L^{2}\left(T^{3}\right)$ by the Rellich-Kondrakov theorem. Then

$$
\begin{aligned}
\omega_{i j}^{-h} \wedge \delta_{\mathrm{eucl}}^{h} b_{j}^{h} & =\omega_{i j}^{-h} \wedge *_{\mathrm{eucl}} d^{-h} \beta_{j}^{h}=\omega_{i j}^{-h} \cdot \cdot_{\mathrm{eucl}} d^{-h} \beta_{j}^{h} d z \\
& =\left(*_{\mathrm{eucl}} \omega_{i j}^{-h}\right) \wedge d^{-h} \beta_{j}^{h}=d^{-h}\left(*_{\mathrm{eucl}} \omega_{i j}^{h} \beta_{j}^{h}\right)
\end{aligned}
$$

as $\left(\delta_{\text {eucl }}^{h} \omega_{i j}^{h}\right) \beta_{j}^{h}=0$ on account of the Coulomb gauge condition. (In coordinates, $\omega_{i j}^{-h} \cdot$ eucl $\left.d^{-h} \beta_{j}^{h}=\omega_{i j, \alpha}^{-h} \partial_{\alpha}^{-h} \beta_{j}^{h}=\partial_{\alpha}^{-h}\left(\omega_{i j, \alpha}^{h} \beta_{j}^{h}\right)-\left(\partial_{\alpha}^{-h} \omega_{i j, \alpha}^{h}\right) \beta_{j}^{h}.\right)$

Since $\omega_{i j}^{h} \rightharpoondown \omega_{i j}$ weakly in L^{2}, while $\beta_{j}^{h} \rightarrow \beta_{j}$ strongly in L^{2}, we conclude that

$$
\omega_{i j}^{-h} \wedge \delta_{\mathrm{eucl}}^{h} b_{j}^{h} \rightharpoondown \omega_{i j} \wedge \delta_{\mathrm{eucl}} b_{j} \quad \text { in } \mathcal{D}^{\prime}
$$

For the remaining term by the discrete product rule we have

$$
\begin{aligned}
\omega_{i j}^{-h} \wedge d^{h} a_{j}^{h} & =\omega_{i j, \alpha}^{-h} \partial_{\beta}^{h} a_{j, \gamma}^{h} d x^{\alpha} \wedge d x^{\beta} \wedge d x^{\gamma} \\
& =\left[\partial_{\beta}^{h}\left(\omega_{i j, \alpha}^{-h}\left(\cdot-h \underline{e}_{\beta}\right) a_{j, \gamma}^{h}\right)-\partial_{\beta}^{-h} \omega_{i j, \alpha}^{-h} a_{j, \gamma}^{h}\right] d x^{\alpha} \wedge d x^{\beta} \wedge d x^{\gamma} \\
& =d^{-h} \omega_{i j}^{-h} \wedge a_{j}^{h}+\partial_{\beta}^{-h}\left(\omega_{i j, \alpha}^{-h} \tau_{\beta}^{h} a_{j, \gamma}^{h}\right) d x^{\alpha} \wedge d x^{\beta} \wedge d x^{\gamma}
\end{aligned}
$$

Since we also have that $\tau_{\beta}^{h} a_{j}^{h} \rightharpoondown a_{j}$ weakly in $H^{1}\left(T^{3}\right)$ and hence strongly in L^{2}, as $h \rightarrow 0$ the last term converges to $\partial_{\beta}\left(\omega_{i j, \alpha} a_{j, \gamma}\right) d x^{\alpha} \wedge d x^{\beta} \wedge d x^{\gamma}=-d\left(\omega_{i j} \wedge a_{j}\right)$ in \mathcal{D}^{\prime}.

Thus we have shown distributional convergence

$$
\begin{equation*}
\omega_{i j}^{-h} \cdot{ }_{\eta} \theta_{j}^{-h} d z-d^{-h} \omega_{i j}^{-h} \wedge a_{j}^{h} \rightharpoondown \omega_{i j} \cdot{ }_{\eta} \theta_{j} d z-d \omega_{i j} \wedge a_{j} \tag{26}
\end{equation*}
$$

as $h \rightarrow 0$, and it remains to prove that

$$
\begin{equation*}
d^{-h} \omega_{i j}^{-h} \wedge a_{j}^{h}-\tau_{1 i}^{h} \rightharpoondown d \omega_{i j} \wedge a_{j} \quad \text { in } \mathcal{D}^{\prime} \tag{27}
\end{equation*}
$$

The proof of (27) will be accomplished by adapting the ideas of [8] to the spatially discrete case.

Passing to a further subsequence, if necessary, we may assume that, as $h \rightarrow 0$,

$$
e_{h}\left(u^{h}\right)+e_{h}\left(e^{h}\right) \stackrel{*}{\rightarrow} \mu \quad \text { in } \mathcal{M}\left(T^{3}\right)
$$

as Radon measures. Theorem 4.1 then will be a consequence of the following Proposition.

Proposition 4.2. There exists a Radon measure ν such that, as $h \rightarrow 0$ suitably,

$$
d^{-h} \omega_{i j}^{-h} \wedge a_{j}^{h}-\tau_{1 i}^{h} \rightharpoondown d \omega_{i j} \wedge a_{j}-\nu \quad \text { in } \mathcal{D}^{\prime}(Q)
$$

where

$$
\operatorname{supp}(\nu) \subset \Sigma=\left\{z=(t, x): \limsup _{R \rightarrow 0}\left(R^{-1} \mu\left(P_{R}(z)\right)\right)>0\right\}
$$

has finite 1-dimensional Hausdorff measure.
Proof of Theorem 4.1. Combining Proposition 4.2 and (26), we conclude that, as $h \rightarrow 0$,

$$
0=\delta_{\eta}^{h} \theta_{i}^{h}+\omega_{i j}^{h} \cdot \eta_{j}^{h}-\tau_{1 i}^{h} \rightharpoondown \delta_{\eta} \theta_{i}+\omega_{i j} \cdot{ }_{\eta} \theta_{j}-\nu
$$

in $\mathcal{D}^{\prime}(Q)$. Hence

$$
\nu=\delta_{\eta} \theta_{i}+\omega_{i j} \cdot{ }_{\eta} \theta_{j} \in H^{-1}+L^{1}
$$

But since the support of ν is contained in a set of finite 1-dimensional Hausdorff measure, as in [8], Proof of Theorem 1.3, we conclude that, in fact, $\nu=0$ and

$$
\delta_{\eta} \theta_{i}+\omega_{i j} \cdot \eta \theta_{j}=0 \quad \text { in } \mathcal{D}^{\prime}(Q)
$$

as claimed.
4.3 Proof of Proposition 4.2. We proceed as in [8]. The key ingredients in the proof are the duality between the Hardy space \mathcal{H}^{1} and BMO (due to Fefferman and Stein [6]), the \mathcal{H}^{1} estimates for Jacobians of Coifman, Lions, Meyer and Semmes [4] (see Lemma 4.4 below for the discrete setting), and a characterization of concentration points in the spirit of concentration compactness for sequences of products whose factors are bounded in \mathcal{H}^{1} and BMO, respectively (see [8], Lemma 3.7). To obtain the BMO estimate (see Lemma 4.3 below) we exploit the energy inequality and apply Campanato theory and Poincaré's inequality. For elliptic problems similar arguments were used by Hélein [9], [10], Evans [5], Bethuel [1], and others.

Fix a function $\varphi \in C_{0}^{\infty}\left(B_{1}(0)\right)$ with $\int_{\mathbb{R}^{3}} \varphi d z=1$. For $f \in L^{1}\left(T^{3}\right)$ then let

$$
\left(\mathcal{M}_{\varphi} f\right)\left(z_{0}\right)=\sup _{0<r<1}\left|\int_{T^{3}} r^{-3} \varphi\left(\frac{z-z_{0}}{r}\right) f(z) d z\right|
$$

be the regularized maximal function of f. The Hardy space on T^{3} then is the space

$$
\mathcal{H}^{1}\left(T^{3}\right)=\left\{f \in L^{1}\left(T^{3}\right) ; \int_{T^{3}} f d z=0, \mathcal{M}_{\varphi}(f) \in L^{1}\left(T^{3}\right)\right\}
$$

with norm

$$
\|f\|_{\mathcal{H}^{1}}:=\left\|\mathcal{M}_{\varphi}(f)\right\|_{L^{1}} .
$$

Also let $\operatorname{BMO}\left(T^{3}\right)$ be the space of functions $f \in L^{1}\left(T^{3}\right)$ such that

$$
[f]_{\mathrm{BMO}\left(T^{3}\right)}=\sup _{0<r<1 / 2} \sup _{z_{0} \in T^{3}} f_{P_{r}\left(z_{0}\right)}\left|f-f_{r, z_{0}}\right| d z<\infty
$$

with norm

$$
\|f\|_{\mathrm{BMO}\left(T^{3}\right)}=\left|\int_{T^{3}} f d z\right|+[f]_{\mathrm{BMO}\left(T^{3}\right)},
$$

where $P_{r}\left(z_{0}\right)$ and $f_{r, z_{0}}$ are defined as in Section 2.
By [6], $\operatorname{BMO}\left(T^{3}\right)$ is the dual space of $\mathcal{H}^{1}\left(T^{3}\right)$, and for $g \in \mathcal{H}^{1}\left(T^{3}\right), f \in$ $\operatorname{BMO}\left(T^{3}\right)$ there holds

$$
\langle f, g\rangle_{\mathrm{BMO} \times \mathcal{H}^{1}} \leq C[f]_{\mathrm{BMO}\left(T^{3}\right)}\|g\|_{\mathcal{H}^{1}} .
$$

Moreover, for any $\varphi \in C^{\infty}\left(T^{3}\right), f \in \operatorname{BMO}\left(T^{3}\right)$ the function $f \varphi \in \operatorname{BMO}\left(T^{3}\right)$ and

$$
[f \varphi]_{\mathrm{BMO}} \leq C\|f\|_{\mathrm{BMO}}\|\varphi\|_{C^{1}} ;
$$

see for instance [8], Proposition 3.8. In particular, for any $f \in \operatorname{BMO}\left(T^{3}\right), g \in$ $\mathcal{H}^{1}\left(T^{3}\right)$ the product $T=f g$ is defined as a distribution in T^{3} by letting

$$
\langle T, \varphi\rangle_{\mathcal{D}^{\prime} \times \mathcal{D}}:=\langle f \varphi, g\rangle_{\mathrm{BMO} \times \mathcal{H}^{1}}
$$

for any $\varphi \in C^{\infty}\left(T^{3}\right)$. Finally, for $0 \leq \lambda \leq 3, f \in L^{2}\left(T^{3}\right)$ let

$$
[f]_{\mathcal{L}^{2, \lambda}}^{2}=\sup _{0<r<1 / 2} \sup _{z_{0}} r^{-\lambda} f_{P_{r}\left(z_{0}\right)}\left|f-f_{r, z_{0}}\right|^{2} d z
$$

and for $0 \leq \lambda<3$ denote

$$
\|f\|_{L^{2, \lambda}}^{2}=\sup _{0<r<1 / 2} \sup _{z_{0}} r^{-\lambda} f_{P_{r}\left(z_{0}\right)}|f|^{2} d z .
$$

Define the Morrey-Companato spaces

$$
\begin{aligned}
\mathcal{L}^{2, \lambda}\left(T^{3}\right) & =\left\{f \in L^{2}\left(T^{3}\right):[f]_{\mathcal{L}^{2, \lambda}}<\infty\right\} \\
L^{2, \lambda}\left(T^{3}\right) & =\left\{f \in L^{2}\left(T^{3}\right):\|f\|_{L^{2, \lambda}}<\infty\right\}
\end{aligned}
$$

with norms $\|\cdot\|_{L^{2, \lambda}}$ and $\|f\|_{\mathcal{L}^{2, \lambda}}=\|f\|_{L^{2}}+[f]_{\mathcal{L}^{2, \lambda}}$, respectively. Recall that $L^{2, \lambda} \cong \mathcal{L}^{2, \lambda}$ for $0 \leq \lambda<3$ and $\mathcal{L}^{2,3} \cong \mathrm{BMO}$ with equivalent norms.

For an open set $U \subset T^{3}$ define the local BMO-seminorm by letting

$$
[f]_{\mathrm{BMO}(U)}=\sup \left\{f_{B_{r}\left(z_{0}\right)}\left|f-f_{r, z_{0}}\right|^{2} d z: B_{r}\left(z_{0}\right) \subset U\right\}
$$

Lemma 4.3. For any $h>0$ we have $a_{j}^{h} \in \operatorname{BMO}\left(T^{3}\right)$ with $d^{h} a_{j}^{h} \in L^{2,1}\left(T^{3}\right)$ and

$$
\left\|a_{j}^{h}\right\|_{\mathrm{BMO}}^{2} \leq C\left\|d^{h} a_{j}^{h}\right\|_{L^{2,1}}^{2} \leq C E_{h}\left(u^{h}\right) \leq C
$$

independently of h. Moreover, for any $0<h \leq r \leq R<1 / 2$, any $z_{0} \in T^{3}$ there holds
$\left[a_{j}^{h}\right]_{\mathrm{BMO}\left(P_{r}\left(z_{0}\right)\right)}+\left[d^{h} a_{j}^{h}\right]_{L^{2,1}\left(P_{r}\left(z_{0}\right)\right)} \leq C\left(\frac{r}{R}\left\|a_{j}^{h}\right\|_{\mathrm{BMO}\left(P_{R}\left(z_{0}\right)\right)}+\left\|\theta_{j}^{-h}\right\|_{L^{2,1}\left(P_{R}\left(z_{0}\right)\right)}\right)$.
Proof. A global bound for a_{j}^{h} follows from (8). From (25) we obtain the equation

$$
-\Delta_{3}^{h} a_{j}^{h}=\delta_{\text {eucl }}^{h} d^{h} a_{j}^{h}=\delta_{\text {eucl }}^{h} *_{\eta} \theta_{j}^{-h}=D^{h} \theta_{j}^{-h},
$$

where D^{h} is a discrete first order differential operator with constant coefficients. The proof now proceeds as the proof [8], Lemma 3.11, in the case $h=0$. Omitting the index j for brevity, given $0<h \leq r<R=K h<1 / 2, z_{0} \in S^{1} \times T_{h}$, we split $a^{h}=a_{1}^{h}+a_{2}^{h}$ on $P_{R}\left(z_{0}\right)$, where

$$
-\Delta_{3}^{h} a_{1}^{h}=0 \quad \text { in } P_{R}\left(z_{0}\right), \quad a_{1}^{h}=a^{h} \quad \text { on } \partial P_{R}\left(z_{0}\right),
$$

and

$$
-\Delta_{3}^{h} a_{2}^{h}=D^{h} \theta^{-h} \quad \text { in } P_{R}\left(z_{0}\right), \quad a_{2}^{h}=0 \quad \text { on } \partial P_{R}\left(z_{0}\right)
$$

Standard estimates yield that

$$
\left\|e_{h}\left(a_{1}^{h}\right)\right\|_{L^{\infty}\left(P_{R / 2}\left(z_{0}\right)\right)} \leq C R^{-2} \int_{P_{R}\left(z_{0}\right)}\left|a_{1}^{h}-\left(a_{1}^{h}\right)_{R, z_{0}}\right|^{2} .
$$

Hence, from Proposition 2.3(ii), for any $r=k h, z \in S^{1} \times T_{h}$ such that $P_{r+h}(z) \subset$ $P_{R / 2}\left(z_{0}\right)$ we conclude

$$
\begin{aligned}
f_{P_{r}(z)}\left|a_{1}^{h}-\left(a_{1}^{h}\right)_{r, z}\right|^{2} & \leq C r^{-1} \int_{P_{r+h}(z)} e_{h}\left(a_{1}^{h}\right) \leq C r^{2}\left\|e_{h}\left(a_{1}^{h}\right)\right\|_{L^{\infty}\left(P_{R / 2}\left(z_{0}\right)\right)} \\
& \leq C\left(\frac{r}{R}\right)^{2} f_{P_{R}\left(z_{0}\right)}\left|a_{1}^{h}-\left(a_{1}^{h}\right)_{R, z_{0}}\right|^{2} \\
& \leq C\left(\frac{r}{R}\right)^{2}\left[a_{1}^{h}\right]_{\operatorname{BMO}\left(P_{R}\left(z_{0}\right)\right)}^{2} .
\end{aligned}
$$

Clearly, these estimates remain valid for any $r>h$ and any $z \in T^{3}$ with $P_{r+h}(z) \subset P_{R / 2}\left(z_{0}\right)$ if we extend a^{h} as the spatially piecewise constant function

$$
a^{h}(t, x)=a^{h}\left(t, x_{h}\right), \quad \text { for } x \in Q_{h}\left(x_{h}\right) .
$$

Moreover, for $0<r<h$, if we compare a_{1}^{h} to its bilinearly interpolated function \bar{a}_{1}^{h}, for any $z_{1}=\left(t_{1}, x_{1}\right) \in T^{3}$ with $P_{r}\left(z_{1}\right) \subset P_{2 h}\left(z_{h}\right) \subset P_{R / 2}\left(z_{0}\right)$ for some $z_{h}=\left(t, x_{h}\right) \in S^{1} \times T_{h}$, from Proposition 2.2 (i), (iii) and the (standard) Poincaré inequality applied to \bar{a}_{1}^{h} we obtain

$$
\begin{aligned}
& f_{P_{r}\left(z_{1}\right)}\left|a_{1}^{h}-\left(a_{1}^{h}\right)_{r, z_{1}}\right|^{2} d z+r^{-1} \int_{P_{r}\left(z_{1}\right)}\left|d^{h} a_{1}^{h}\right|^{2} d z \\
& \leq C \int_{t_{1}-r}^{t_{1}+r}\left\|\left(a_{1}^{h}-\bar{a}_{1}^{h}\right)(t)\right\|_{L^{\infty}\left(Q_{r}\left(x_{1}\right)\right)}^{2} d t \\
&+C f_{P_{r}\left(z_{1}\right)}\left|\bar{a}_{1}^{h}-\left(\bar{a}_{1}^{h}\right)_{r, z_{1}}\right|^{2} d z+r^{-1} \int_{P_{r}\left(z_{1}\right)}\left|d^{h} a_{1}^{h}\right|^{2} d z \\
& \leq C \int_{t_{1}-r}^{t_{1}+r} \int_{Q_{2 h}\left(x_{h}\right)}\left(e_{h}\left(a_{1}^{h}(t)\right)+\left|d \bar{a}_{1}^{h}(t)\right|^{2}\right) d x d t \leq C \int_{t_{1}-r}^{t_{1}+r} \int_{Q_{2 h}\left(x_{h}\right)} e_{h}\left(a_{1}^{h}(t)\right) \\
& \leq C h^{2}\left\|e_{h}\left(a_{1}^{h}\right)\right\|_{L^{\infty}\left(P_{R / 2}\left(z_{0}\right)\right)} \leq C\left(\frac{h}{R}\right)^{2}\left[a_{1}^{h}\right]_{\operatorname{BMO}\left(P_{R}\left(z_{0}\right)\right)} .
\end{aligned}
$$

It follows that for $r \geq h$ there holds

$$
\begin{aligned}
{\left[a_{1}^{h}\right]_{\mathrm{BMO}\left(P_{r}\left(z_{0}\right)\right)}+\left\|d^{h} a_{1}^{h}\right\|_{L^{2,1}\left(P_{r}\left(z_{0}\right)\right)} } & \leq C \frac{r}{R}\left[a_{1}^{h}\right]_{\mathrm{BMO}\left(P_{R}\left(z_{0}\right)\right)} \\
& \leq C\left(\frac{r}{R}\left[a^{h}\right]_{\mathrm{BMO}\left(P_{R}\left(z_{0}\right)\right)}+\left[a_{2}^{h}\right]_{\mathrm{BMO}\left(P_{R}\left(z_{0}\right)\right)}\right) .
\end{aligned}
$$

The analogous estimate

$$
\left[a_{2}^{h}\right]_{\mathrm{BMO}\left(P_{R}\left(z_{0}\right)\right)} \leq C\left\|d^{h} a_{2}^{h}\right\|_{L^{2,1}\left(P_{R}\left(z_{0}\right)\right)} \leq C\left\|\theta^{-h}\right\|_{L^{2,1}\left(P_{R}\left(z_{0}\right)\right)}
$$

is obtained exactly as in the continuous case from [2], Teorema 16.I, and Poincaré's inequality.

Observe that the local energy inequality Lemma 3.2 implies that

$$
\begin{equation*}
\underset{h \rightarrow 0}{\limsup }\left\|\theta_{j}^{-h}\right\|_{L^{2,1}\left(P_{R}\left(z_{0}\right)\right)}^{2} \leq C R^{-1} \mu\left(\overline{P_{3 R}\left(z_{0}\right)}\right) \tag{28}
\end{equation*}
$$

Indeed, for any $r<R$, any $z_{1}=\left(t_{1}, x_{1}\right)$ such that $P_{r}\left(z_{1}\right) \subset P_{R}\left(z_{0}\right)$, if $3 r<R$ by Lemma 3.2 we have

$$
\begin{aligned}
(4 r)^{-1}\left\|\theta_{j}^{-h}\right\|_{L^{2}\left(P_{r}\left(z_{1}\right)\right)}^{2} & \leq \sup _{\left|t-t_{1}\right|<r} \int_{Q_{r}\left(x_{1}\right)} e_{h}\left(u^{h}(t)\right) \\
& \leq \int_{Q_{4 r}\left(x_{1}\right)} e_{h}\left(u^{h}\left(t_{1}-r\right)\right)+o(1) \\
& \leq \int_{Q_{2 R}\left(x_{0}\right)} e_{h}\left(u^{h}\left(t_{1}-r\right)\right)+o(1) \\
& \leq R^{-1} \int_{t_{1}-r-R}^{t_{1}-r} \int_{Q_{3 R}\left(x_{0}\right)} e_{h}\left(u^{h}(t)\right) d t+o(1) \\
& \leq R^{-1} \int_{P_{3 R}\left(z_{0}\right)} e_{h}\left(u^{h}(t)\right)+o(1) \leq R^{-1} \mu\left(\overline{P_{3 R}\left(z_{0}\right)}\right)+o(1)
\end{aligned}
$$

where $o(1) \rightarrow 0$ as $h \rightarrow 0$.
If $R / 3 \leq r \leq R$, clearly

$$
(3 r)^{-1}\left\|\theta_{j}^{-h}\right\|_{L^{2}\left(P_{r}\left(z_{1}\right)\right)} \leq R^{-1}\left\|\theta_{j}^{-h}\right\|_{L^{2}\left(P_{R}\left(z_{0}\right)\right)} \leq R^{-1} \mu\left(P_{3 R}\left(z_{0}\right)\right)+o(1)
$$

where $o(1) \rightarrow 0$ as $h \rightarrow 0$.
Regarding $\omega_{i j}^{h}$, we now introduce the bilinearly interpolated frame to split

$$
\begin{equation*}
\omega_{i j, \alpha}^{h}=\left\langle\partial_{\alpha}^{h} e_{i}^{h}, \bar{e}_{j}^{h}\right\rangle+\left\langle\partial_{\alpha}^{h} e_{i}^{h}, m_{\alpha}^{h} e_{j}^{h}-\bar{e}_{j}^{h}\right\rangle . \tag{29}
\end{equation*}
$$

Lemma 4.4. For any $h>0$ there holds $d^{h}\left\langle d^{h} e_{i}^{h}, \bar{e}_{j}^{h}\right\rangle \in \mathcal{H}^{1}\left(T^{3}\right)$ and

$$
d^{h}\left\langle d^{h} e_{i}^{h}, \bar{e}_{j}^{h}\right\rangle \xrightarrow{*} d\left\langle d e_{i}, e_{j}\right\rangle=d \omega_{i j}
$$

in $\mathcal{H}^{1}\left(T^{3}\right)$ as $h \rightarrow 0$ suitably.
Proof. In view of the identity $d^{h} \circ d^{h}=0$, we have

$$
\begin{aligned}
d^{h}\left\langle d^{h} e_{i}^{h}, \bar{e}_{j}^{h}\right\rangle & =\partial_{\alpha}^{h}\left\langle\partial_{\beta}^{h} e_{i}^{h}, \bar{e}_{j}^{h}\right\rangle d x^{\alpha} \wedge d x^{\beta} \\
& =\left\langle\partial_{\beta} e_{i}^{h}\left(\cdot+h \underline{e}_{\alpha}\right), \partial_{\alpha}^{h} \bar{e}_{j}^{h}\right\rangle d x^{\alpha} \wedge d x^{\beta}=d^{h}\left\langle d^{h} e_{i}^{h},\left(\bar{e}_{j}^{h}-q\right)\right\rangle
\end{aligned}
$$

for any $q \in \mathbb{R}^{n}$. Exactly, as in [4], Theorem 2.1, we may therefore show that

$$
d^{h}\left\langle d^{h} e_{i}^{h}, \bar{e}_{j}^{h}\right\rangle \in \mathcal{H}^{1}\left(T^{3}\right)
$$

with

$$
\left\|d^{h}\left\langle d^{h} e_{i}^{h}, \bar{e}_{j}^{h}\right\rangle\right\|_{\mathcal{H}^{1}} \leq C E_{h}\left(e^{h}\right) \leq C,
$$

where we also used Proposition 2.2(iii). Since the space $\operatorname{VMO}\left(T^{3}\right)$, the pre-dual of $\mathcal{H}^{1}\left(T^{3}\right)$ is separable, we conclude that $\left(d^{h}\left\langle d^{h} e_{i}^{h}, \bar{e}_{j}^{h}\right\rangle\right)_{h>0}$ is relatively weakly-* sequentially compact. But, as $h \rightarrow 0$ suitably, $d^{h}\left\langle d^{h} e_{i}^{h}, \bar{e}_{j}^{h}\right\rangle \rightarrow d \omega_{i j}$ in the sense
of distributions. By density of $C^{\infty}\left(T^{3}\right)$ in $\operatorname{VMO}\left(T^{3}\right)$, therefore we also have weak-* convergence

$$
d^{h}\left\langle d^{h} e_{i}^{h}, \bar{e}_{j}^{h}\right\rangle \xrightarrow{*} d \omega_{i j}
$$

in $\mathcal{H}^{1}\left(T^{3}\right)$, as claimed.
From Lemma 4.3 and [8], Theorem 3.7, we hence conclude that, as $h \rightarrow 0$,

$$
\begin{equation*}
d^{-h}\left\langle d^{-h} e_{i}^{h}, \bar{e}_{j}^{h}\right\rangle \wedge a_{j}^{h} \rightharpoondown d \omega_{i j} \wedge a_{j}+\nu_{1} \quad \text { in } \mathcal{D}^{\prime} \tag{30}
\end{equation*}
$$

where ν_{1} is a Radon measure with

$$
\operatorname{supp}\left(\nu_{1}\right) \subset\left\{z: \lim _{r \rightarrow 0} \limsup _{h \rightarrow 0}\left[a^{h}\right]_{\operatorname{BMO}\left(P_{r}\left(z_{0}\right)\right)}>0\right\}
$$

But by Lemma 4.3, for $r \geq h$ we have

$$
\left[a^{h}\right]_{\mathrm{BMO}\left(P_{r}\left(z_{0}\right)\right)} \leq C\left(\frac{r}{R}\left\|a^{h}\right\|_{\mathrm{BMO}\left(P_{R}\left(z_{0}\right)\right)}+\left\|\theta^{-h}\right\|_{L^{2,1}\left(P_{R}\left(z_{0}\right)\right)}\right)
$$

Fixing $R>0$, from (28) we conclude that

$$
\lim _{r \rightarrow 0} \limsup _{h \rightarrow 0}\left[a^{h}\right]_{\mathrm{BMO}\left(P_{r}\left(z_{0}\right)\right)}^{2} \leq C \limsup _{h \rightarrow 0}\left\|\theta^{-h}\right\|_{L^{2,1}\left(P_{R}\left(z_{0}\right)\right)} \leq C\left(R^{-1} \mu\left(\overline{P_{3 R}\left(z_{0}\right)}\right)\right)
$$

Since $R>0$ is arbitrary, therefore $\operatorname{supp}\left(\nu_{1}\right) \subset \sum$, as defined in Proposition 4.2.
The contribution to (27) from the second term in (29), after shifting in directions α and β, is

$$
\begin{aligned}
\partial_{\alpha}^{h}\left\langle\partial_{\beta} e_{i}^{h}, m_{\beta}^{h} e_{j}^{h}\right. & \left.-\bar{e}_{j}^{h}\right\rangle \tau_{\alpha}^{h} \tau_{\beta}^{h} a_{j, \gamma}^{h} d x^{\alpha} \wedge d x^{\beta} \wedge d x^{\gamma}=\left\{\partial_{\alpha}^{h}\left(\left\langle\partial_{\beta}^{h} e_{i}^{h}, m_{\beta}^{h} e_{j}^{h}-\bar{e}_{j}^{h}\right\rangle \tau_{\beta}^{h} a_{j, \gamma}^{h}\right)\right. \\
& \left.-\left\langle\partial_{\beta}^{h} e_{i}^{h}, m_{\beta}^{h} e_{j}^{h}-\bar{e}_{j}^{h}\right\rangle \partial_{\alpha}^{h} \tau_{\beta}^{h} a_{j, \gamma}^{h}\right\} d x^{\alpha} \wedge d x^{\beta} \wedge d x^{\gamma}=: I^{h}+I I^{h}
\end{aligned}
$$

Since, as $h \rightarrow 0$ suitably, $\tau_{\beta}^{h} a_{j, \gamma}^{h} \rightarrow a_{j, \gamma}$ while $m_{\beta}^{h} e_{j}^{h}, \bar{e}_{j}^{h} \rightarrow e_{j}$ in $L^{p}\left(T^{3}\right)$ for any $p<\infty$, and since $\left(\partial_{\beta}^{h} e_{i}^{h}\right)$ is bounded in $L^{2}\left(T^{3}\right)$, the first term $I^{h} \rightharpoondown 0$ in $\mathcal{D}^{\prime}\left(T^{3}\right)$. Observing that for any $t \in S^{1}, x_{h} \in T_{h}, x=x_{h}+\xi \in T, \xi \in Q_{h}^{+}(0)$, we have
$\left(m_{\beta}^{h} e_{j}^{h}-\bar{e}_{j}^{h}\right)(t, x)=\frac{1}{2}\left(\tau_{\beta}^{h} e_{j}^{h}-e_{j}^{h}\right)\left(t, x_{h}\right)-\sum_{\alpha=1,2} \xi^{\alpha} \partial_{\alpha}^{h} e_{j}^{h}\left(t, x_{h}\right)-\xi^{1} \xi^{2} \partial_{1}^{h} \partial_{2}^{h} e_{j}^{h}\left(t, x_{h}\right)$,
moreover, we can estimate

$$
\left|\left(m_{\beta}^{h} e_{j}^{h}-\bar{e}_{j}^{h}\right)(t, x)\right| \leq C h \sum_{\alpha=1,2}\left|\partial_{\alpha}^{h} e_{j}^{h}\left(t, x_{h}\right)\right|
$$

Thus, the second term above may be bounded

$$
\begin{aligned}
\left|I I^{h}\right| & \leq\left|\left\langle\partial_{\beta}^{h} e_{i}^{h}, m_{\beta}^{h} e_{j}^{h}-\bar{e}_{j}^{h}\right\rangle \partial_{\alpha}^{h} \tau_{\beta}^{h} a_{j, \gamma}^{h}\right| \\
& \leq C h\left|d^{h} e^{h}\right|^{2}\left|\partial_{\alpha}^{h} \tau_{\beta}^{h} a^{h}\right| \leq C\left|\tau_{\alpha}^{h}\left(\tau_{\beta}^{h} a^{h}\right)-\tau_{\beta}^{h} a^{h}\right|\left|d^{h} e^{h}\right|^{2}
\end{aligned}
$$

Shifting back, from (29) and (30) we thus obtain that

$$
d^{-h} \omega_{i j}^{-h} \wedge a_{j}^{h}-d \omega_{i j} \wedge a_{j}=\tau_{1 i}^{h}+\tau_{2 i}^{h}+\nu_{1}+o(1)
$$

where $o(1) \rightarrow 0$ in $\mathcal{D}^{\prime}\left(T^{3}\right)$ and where

$$
\left|\tau_{2 i}^{h}\right| \leq C \sum_{\alpha}\left|a^{h}-a^{h}\left(\cdot-h \underline{e}_{\alpha}\right)\right| e_{h}\left(e^{h}\right)
$$

LEMmA 4.5. $\tau_{1 i}^{h}+\tau_{2 i}^{h} \rightharpoondown \nu_{2}$ in $\mathcal{M}\left(T^{3}\right)$, where ν_{2} is a Radon measure with $\operatorname{supp}\left(\nu_{2}\right) \subset \sum$, as defined in Proposition 4.2.

Proof. For any $\varphi \in C^{0}\left(T^{3}\right)$ we can estimate

$$
\begin{aligned}
& \left|\int_{T^{3}} \tau_{1 i}^{h} \varphi d z\right|+\left|\int_{T^{3}} \tau_{2 i}^{h} \varphi d z\right|=\left|\int_{S^{1} \times T_{h}} \tau_{1 i}^{h} \varphi^{h}\right|+\left|\int_{S^{1} \times T_{h}} \tau_{2 i}^{h} \varphi^{h}\right| \\
& \leq C \int_{S^{1} \times T_{h}} \sum_{\alpha}\left(\left|u^{h}\left(\cdot \pm h \underline{e}_{\alpha}\right)-u^{h}\right|+\left|a^{h}\left(\cdot \pm h \underline{e}_{\alpha}\right)-a^{h}\right|\right) \cdot\left(e_{h}\left(u^{h}\right)+e_{h}\left(e^{h}\right)\right)\left|\varphi^{h}\right| .
\end{aligned}
$$

Now by Proposition 2.2(i) and Lemma 3.2, for any $z=\left(t, x_{h}\right) \in S^{1} \times T_{h}$, any $0<h \leq 3 h \leq r<1 / 2$ we have

$$
\left|\left(u^{h}\left(\cdot \pm h \underline{e}_{\alpha}\right)-u^{h}\right)\left(t, x_{h}\right)\right|^{2} \leq E_{h}\left(u^{h}(t) ; Q_{2 h}^{+}\left(x_{h}\right)\right) \leq C r^{-1} \int_{P_{r}(z)} e_{h}\left(u^{h}\right)+o(1)
$$

where $o(1) \rightarrow 0$ as $h \rightarrow 0$.
Similarly, for any $z=\left(t, x_{h}\right) \in S^{1} \times T_{h}$, any $0<h \leq 2 h \leq r<R \leq 1 / 2$, by Proposition 2.3 (i) we can estimate

$$
\left|\left(a_{j}^{h}\left(\cdot \pm h \underline{e}_{\alpha}\right)-a_{j}^{h}\right)\left(t, x_{h}\right)\right|^{2} \leq C h^{-1} \int_{P_{2 h}(z)} e_{h}\left(a_{j}^{h}\right) \leq C\left[d^{h} a_{j}^{h}\right]_{L^{2,1}\left(P_{r}(z)\right)}^{2}
$$

Hence by Lemma 4.3 we obtain

$$
\left|\left(a_{j}^{h}\left(\cdot \pm h \underline{e}_{\alpha}\right)-a_{j}^{h}\right)(z)\right| \leq C\left(\frac{r}{R}\left\|a_{j}^{h}\right\|_{\mathrm{BMO}\left(P_{R}(z)\right)}+\left\|\theta_{j}^{h}\right\|_{L^{2,1}\left(P_{R}(z)\right)}\right)
$$

It follows that $\tau_{1 i}^{h}+\tau_{2 i}^{h} \rightharpoondown \nu_{2}$ in $\mathcal{M}\left(T^{3}\right)$ as $h \rightarrow 0$, where ν_{2} is absolutely continuous with respect to μ with density

$$
\begin{aligned}
\frac{d \nu_{2}}{d \mu}(z) & =\lim _{r \rightarrow 0} \frac{\nu_{2}\left(P_{r}(z)\right)}{\mu\left(P_{r}(z)\right)} \\
& \leq C \lim _{r \rightarrow 0} \limsup _{h \rightarrow 0}\left(\frac{r}{R}\left\|a^{h}\right\|_{\mathrm{BMO}\left(P_{R}(z)\right)}+\left\|d^{ \pm h} u^{h}\right\|_{L^{2,1}\left(P_{3 R}(z)\right)}\right) \\
& \leq C R^{-1} \mu\left(P_{R}(z)\right)
\end{aligned}
$$

for any $z \in T^{3}$. Since $R>0$ is arbitrary, the asserted characterization of $\operatorname{supp}\left(\nu_{2}\right)$ follows.

This completes the proof of Theorem 4.1 if $T N$ is parallelizable. In the general case, by the results of [3] and [9] we may embed N as a totally geodesic submanifold of another manifold \widetilde{N} with this property. As above, we now obtain weak convergence of a subsequence $u^{h} \rightharpoondown u$, where $u: \mathbb{R} \times \mathbb{R}^{2} \rightarrow N \hookrightarrow \widetilde{N}$ is
a weak wave map into \widetilde{N}. But then as in [11], p. 255 f., it follows that u also is a weak wave map into N.

5. Global existence of wave maps

Theorems 3.1 and 4.1 easily give rise to the following existence result, previously established in [11] by a different method.

Theorem 5.1. For any $\left(u_{0}, u_{1}\right) \in H^{1} \times L^{2}\left(\mathbb{R}^{2} ; T N\right)$ there exists a global weak solution u of the Cauchy problem (1), (2) satisfying the energy inequality

$$
E(u(t))=\frac{1}{2} \int_{\mathbb{R}^{2}}|D u(t)|^{2} d x \leq E_{0}=\frac{1}{2} \int_{\mathbb{R}^{2}}\left(\left|u_{1}\right|^{2}+\left|\nabla u_{0}\right|^{2}\right) d x
$$

for all t and which continuously attains the initial data in $H^{1} \times L^{2}$.
Proof. Let u_{0}^{h}, u_{1}^{h} be the maps u_{0}, u_{1}, discretized as in Section 2.4. Note that

$$
\begin{aligned}
\operatorname{dist}^{2}\left(u_{0}^{h}(x), N\right) & \leq \int_{Q_{h}^{+}(x)}\left|u_{0}^{h}(x)-u_{0}(y)\right|^{2} d y \\
& \leq \int_{Q_{h}^{+}(x)} f_{Q_{h}^{+}(x)}\left|u_{0}(y)-u_{0}\left(y^{\prime}\right)\right|^{2} d y d y^{\prime} \\
& \leq C \int_{Q_{h}^{+}(x)}\left|\nabla u_{0}\right|^{2} d y \rightarrow 0
\end{aligned}
$$

as $h \rightarrow 0$. Hence for $0<h \leq h_{0}$ the range of u_{0}^{h} lies in a sufficiently small tubular neighbourhood of N and we may project to obtain spatially discrete data $\left(\widetilde{u}_{0}^{h}=\pi_{N} \circ u_{0}^{h}, \widetilde{u}_{1}^{h}=u_{1}^{h}\right): M_{h} \rightarrow T N$ such that

$$
\widetilde{E}_{h}:=\frac{1}{2} \int_{M_{h}}\left(\left|\widetilde{u}_{1}^{h}\right|^{2}+\left|d^{h} \widetilde{u}_{0}^{h}\right|^{2}\right)<\infty
$$

and such that

$$
\left(\widetilde{u}_{0}^{h}, \widetilde{u}_{1}^{h}\right) \rightarrow\left(u_{0}, u_{1}\right) \quad \text { in } H^{1} \times L^{2}
$$

as $h \rightarrow \infty$. In particular $\widetilde{E}_{h} \rightarrow E_{0}$ as $h \rightarrow 0$.
By Theorem 3.1 now, for any $h>0$ there exists a unique global solution \widetilde{u}^{h} of (9) with data $\left(\widetilde{u}^{h}, \widetilde{u}_{t}^{h}\right)_{\mid t=0}=\left(\widetilde{u}_{0}^{h}, \widetilde{u}_{1}^{h}\right)$, satisfying the energy identity $E_{h}\left(\widetilde{u}^{h}(t)\right)=\widetilde{E}_{h}$ for all t.

By Theorem 4.1 a subsequence $\left(\widetilde{u}^{h}\right)$ as $h \rightarrow 0$ weakly converges to a weak solution u of (1), (2) with

$$
E(u(t)) \leq \liminf _{h \rightarrow 0} E_{h}\left(\widetilde{u}^{h}(t)\right)=E_{0}
$$

for all t. In particular,

$$
\limsup _{t \rightarrow 0} \frac{1}{2} \int_{\mathbb{R}^{2}}|D u(t)|^{2} d x=\limsup _{t \rightarrow 0} E(u(t)) \leq E_{0}
$$

and we conclude that $D u(t) \rightarrow D u(0)$ strongly in $L^{2}\left(\mathbb{R}^{2}\right)$ as $t \rightarrow 0$, showing that the initial data are attained continuously in $H^{1} \times L^{2}$.

References

[1] F. Bethuel, On the singular set of stationary harmonic maps, Manuscripta Math. 78 (1993), 417-443.
[2] S. Campanato, Sistemi ellittiche del secondo ordine e spazi $\mathcal{L}^{2, \lambda}$, Ann. Math. Pura Appl. 69 (1965), 321-380.
[3] D. Christodoulou and A. S. Tahvildar-Zadeh, On the regularity of spherically symmetric wave maps, Comm. Pure Appl. Math. 46 (1993), 1041-1091.
[4] R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993), 247-286.
[5] L. C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Rational Mech. Anal. 116 (1991), 101-113.
[6] C. Fefferman and E. M. Stein, H^{p} spaces of several variables, Acta Math. 129 (1972), 137-193.
[7] A. Freire, S. Müller and M. Struwe, Weak convergence of wave maps from (1+2)dimensional Minkowski space to Riemannian manifolds, Invent. Math. 130 (1997), 589617.
[8] , Weak compactness of wave maps and harmonic maps, Ann. Inst. H. Poincaré Anal. Non Linéaire; (in press).
[9] F. HÉlein, Regularité des applications faiblement harmoniques entre une surface et une varieté Riemannienne, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), 591-596.
[10] \qquad , Harmonic Maps, Conservation Laws and Moving Frames, Diderot, 1997.
[11] S. Müller and M. Struwe, Global existence of wave maps in $1+2$ dimensions with finite energy data, Topol. Methods in Nonlinear Anal. 7 (1996), 245-259.
[12] S. Müller, M. Struwe and V. Šverák, Harmonic maps on planar lattices, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) (to appear).
[13] R. S. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom. 18 (1983), 253-268.

Stefan MÜller

Max-Planck-Institut für Mathematik
Inselstrasse 22-26
D-04103 Leipzig, GERMANY
E-mail address: sm@mis.mpg.de
Michael Struwe
Mathematik
ETH-Zentrum
CH-8092 Zürich, SWITZERLAND
E-mail address: struwe@math.ethz.ch

