ON THE SOLVABILITY OF A RESONANT ELLIPTIC EQUATION WITH ASYMMETRIC NONLINEARITY

Ana Rute Domingos - Miguel Ramos

1. Introduction

Let Ω be a bounded smooth domain in $\mathbb{R}^{N}, N \geq 1$. In this paper we study the existence of the solution for the elliptic equation with Dirichlet boundary condition

$$
\begin{equation*}
-\Delta u=\alpha u^{+}-\beta u^{-}+g(x, u), \quad u \in H_{0}^{1}(\Omega), \tag{1.1}
\end{equation*}
$$

where α, β are real parameters and $u^{+}=\max \{u, 0\}, u^{-}=u^{+}-u$. Without loss of generality, we assume $\beta \leq \alpha$. In fact, denoting by $\left(\lambda_{i}\right)$ the increasing sequence of eigenvalues of $\left(-\Delta, H_{0}^{1}(\Omega)\right)$, we study the case where $\lambda_{1}<\beta<\alpha$ and $[\beta, \alpha]$ intersects this linear spectrum. Here $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function with subcritical growth at infinity, namely $|g(x, s)| \leq A\left(|s|^{p-1}+1\right)$ with $1<p<2 N /(N-2)$ if $N \geq 2$. If $N=1$, we merely suppose that $|g(x, s)| \leq a(x)+b(x) f(s)$ where $a, b \in L^{1}(\Omega), f$ is continuous and $f(s)=\mathrm{O}(s)$ near 0 .

We consider nonlinear terms which are sublinear at infinity, in a sense to be made precise below (see (2.1)). It is well-known that then the existence and multiplicity of solutions of (D) strongly rely on the position of the pair

[^0]$(\alpha, \beta) \in \mathbb{R}^{2}$ with respect to the so called Fučik spectrum of $\left(-\Delta, H_{0}^{1}(\Omega)\right)$. The latter is defined as
\[

$$
\begin{equation*}
\Sigma:=\left\{(\mu, \nu) \in \mathbb{R}^{2}: \exists u \in H_{0}^{1}(\Omega), u \neq 0,-\Delta u=\mu u^{+}-\nu u^{-}\right\} \tag{1.2}
\end{equation*}
$$

\]

It is clear that Σ contains the lines $\mathbb{R} \times\left\{\lambda_{1}\right\}$ and $\left\{\lambda_{1}\right\} \times \mathbb{R}$ as well as the points $\left(\lambda_{i}, \lambda_{i}\right), i \geq 1$. In the one dimensional case $N=1$, the set Σ can be easily described (see e.g [12]). For higher dimensions, some properties of Σ were obtained by several authors, see [1], [3], [6], [8], [10], [13], [16], [18], [19], [22], [25]. For results concerning the solvability of (1.1) and without being exhaustive, we refer to [3]-[7], [9], [14], [17], [18], [20], [24] and especially to [21]-[23].

In particular, it was first observed by Kavian [16] that Σ contains a global curve C_{2} with crosses $\left(\lambda_{2}, \lambda_{2}\right)$. Some qualitative properties of C_{2} are also known, see [10]. The first variational characterization of C_{2} in terms of the associated energy functional was already presented in [16], through a variant of the wellknown mountain pass theorem of Ambrosetti and Rabinowitz. This variational characterization was somewhat clarified in [5, Lemma 4.3] and [11, Proposition 3.2].

The present paper is motivated by a result of Costa and Cuesta [4] where the authors consider (1.1) with $(\alpha, \beta) \in C_{2}$. As in [4], we find solutions for (1.1) as critical points of the C^{1} energy functional defined by

$$
E(u):=\frac{1}{2} \int_{\Omega}\left[|\nabla u|^{2}-\alpha\left(u^{+}\right)^{2}-\beta\left(u^{-}\right)^{2}\right]-\int_{\Omega} G(x, u), \quad u \in H_{0}^{1}(\Omega),
$$

where $G(x, s):=\int_{0}^{s} g(x, \xi) d \xi$. Due to the resonance of the problem (i.e. the fact that $(\alpha, \beta) \in \Sigma$ and g is sublinear at infinity) the usual Palais-Smale condition is not satisfied. Hence the authors assume that $G(x, s)$ is nonquadratic at infinity, in the sense that either $(N Q)_{+}$or $(N Q)_{-}$below holds:
$(N Q)_{ \pm} \quad \lim _{|s| \rightarrow \infty}(s g(x, s)-2 G(x, s))= \pm \infty \quad$ uniformly for a.e. $x \in \Omega$.
We refer to [4] for a discussion and examples concerning this kind of nonlinearities. The point is that under $(N Q)_{+}$or $(N Q)_{-}$the so called Cerami condition (cf. [2]) holds for E, namely any sequence $\left(u_{n}\right) \subset H_{0}^{1}(\Omega)$ with $\left(E\left(u_{n}\right)\right)$ bounded and $\left(1+\left\|u_{n}\right\|\right)\left\|\nabla E\left(u_{n}\right)\right\|=\mathrm{o}(1)$ has a convergent subsequence (see [4, Lemma 2.2]). We denote by $\|\cdot\|$ the $H_{0}^{1}(\Omega)$-norm. This key observation, together with the above mentioned characterization of C_{2}, enabled the quoted authors to prove an existence result for (1.1) in case $(N Q)_{+}$holds.

Here we concentrate on the case where $(N Q)_{\text {_ }}$ holds. The difficulties arising from this assumption, even in the one dimensional case $N=1$, were already pointed out in [4, Section 4]. Roughly speaking, our main assumption concerns the existence of a path $c(t)$ connecting $c(0)=(\alpha, \beta)$ with some eigenpair $c(1)=$ $\left(\lambda_{k}, \lambda_{k}\right)$ in such a way that a delected "upper neighbourhood" of $c([0,1])$ does
not intersect Σ. We stress that we allow $c([0,1]) \subset \Sigma$, see Definition 2.1 and Section 3 for further comments and examples. In this way we are able to refine our previous arguments in [9] and to provide a solution for (1.1).

In Section 2 we state and prove our main result. In Section 3 we discuss three typical situations in which our main assumption holds. We also prove an existence result for (1.1) in case $(N Q)_{+}$holds which extends [4, Theorem 1]. Still under assumption $(N Q)_{-}$, we state in Section 3 an existence theorem for an ordinary differential equation with periodic boundary conditions related to (1.1), which improves [4, Theorem 2].

2. Main result

We consider problem (1.1) with g having subcritical growth at infinity. Moreover, we assume that

$$
\begin{equation*}
\lim _{|s| \rightarrow \infty} G(x, s) / s^{2}=0 \quad \text { uniformly for a.e. } x \in \Omega \tag{2.1}
\end{equation*}
$$

Our assumption on (α, β) is expressed in the following definition. Let $(\alpha, \beta) \in \mathbb{R}^{2}$ be such that $\lambda_{1}<\beta<\alpha$.

Definition 2.1. We say that (α, β) is Σ-connected to $\left(\lambda_{k}, \lambda_{k}\right), k \geq 2$, if there exist $d>0$ and a C^{1} function $c:[0,1] \rightarrow \mathbb{R}^{2}$ satisfying $c(0)=\left(\lambda_{k}, \lambda_{k}\right)$, $c(1)=(\alpha, \beta)$ and

$$
\xi c([0,1]) \cap \Sigma=\emptyset \quad \text { for every } \xi \in] 1,1+d]
$$

We explicitely note that we allow c to intersect Σ. In fact, in a typical situation (see Section 3) we have $c([0,1]) \subset \Sigma$. On the other hand, we suppose that we do not meet Σ when we slightly "lift up" $c([0,1])$. We observe also that despite the fact that we are mostly concerned with the case where $(\alpha, \beta) \in \Sigma$ we do not assume this in Definition 2.1.

Theorem 2.2. We consider (1.1) with g satisfying both $(N Q)_{-}$and (2.1). If (α, β) is Σ-connected to $\left(\lambda_{k}, \lambda_{k}\right)$ for some $k \geq 2$ then (1.1) admits a solution.

The rest of the section is devoted to the proof of Theorem 2.2. Let $c(t)=$ $(\alpha(t), \beta(t))$ be the path given by Definition 2.1. For any $t \in[0,1]$, we introduce the C^{1} functionals over $H_{0}^{1}(\Omega)$,

$$
Q(t, u):=\frac{1}{2} \int_{\Omega}\left[|\nabla u|^{2}-\alpha(t)\left(u^{+}\right)^{2}-\beta(t)\left(u^{-}\right)^{2}\right]
$$

and

$$
E(t, u):=Q(t, u)-\int_{\Omega} G(x, u), \quad E(u)=E(1, u)
$$

It is well-know that critical points of E in $H_{0}^{1}(\Omega)$ are weak solutions of problem (1.1). We consider the orthogonal direct sum

$$
H_{0}^{1}(\Omega)=H_{1} \oplus H_{2}
$$

where H_{1} is the finite dimensional eigenspace associated with the eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$. Since $c(0)=\left(\lambda_{k}, \lambda_{k}\right)$, it is clear that

$$
\begin{equation*}
Q(0, u) \leq 0 \forall u \in H_{1} \quad \text { and } \quad Q(0, u) \geq \sigma\|u\|^{2} \forall u \in H_{2} \tag{2.2}
\end{equation*}
$$

for some constant $\sigma>0$. The estimate below describes our assumption on (α, β) in terms of the energy levels of the quadratic forms envolved.

Lemma 2.3. There exist positive constants $\eta, \delta, \eta<\sigma$, with the following property: for any $t \in[0,1]$ and $u \in H_{0}^{1}(\Omega),\|u\|=1$,

$$
Q(t, u) \in[\eta / 2, \eta] \Rightarrow\|\nabla Q(t, u)\|^{2}-(\nabla Q(t, u) u)^{2} \geq \delta
$$

Proof. Let d be given by definition 2.1 and denote

$$
\eta:=\min \{d / 3(d+1), \sigma / 2\} .
$$

We suppose by contradiction that for some sequence $\left(t_{n}\right) \subset[0,1]$ and $\left(u_{n}\right) \subset$ $H_{0}^{1}(\Omega)$ with $\left\|u_{n}\right\|=1$ it holds

$$
\eta / 2 \leq Q\left(t_{n}, u_{n}\right) \leq \eta \quad \text { and } \quad\left\|\nabla Q\left(t_{n}, u_{n}\right)\right\|^{2}-\left(\nabla Q\left(t_{n}, u_{n}\right) u_{n}\right)^{2}=o(1)
$$

as $n \rightarrow \infty$. We denote $\mu_{n}=\nabla Q\left(t_{n}, u_{n}\right) u_{n}=2 Q\left(t_{n}, u_{n}\right) \in[\eta, 2 \eta]$. Since

$$
\left\|\nabla Q\left(t_{n}, u_{n}\right)-\mu_{n} u_{n}\right\|^{2}=\left\|\nabla Q\left(t_{n}, u_{n}\right)\right\|^{2}-\left(\nabla Q\left(t_{n}, u_{n}\right) u_{n}\right)^{2}=o(1)
$$

we have, for every bounded sequence $\left(v_{n}\right) \subset H_{0}^{1}(\Omega)$,

$$
\begin{equation*}
\left(1-\mu_{n}\right) \int_{\Omega} \nabla u_{n} \nabla v_{n}-\alpha\left(t_{n}\right) \int_{\Omega} u_{n}^{+} v_{n}+\int_{\Omega} \beta\left(t_{n}\right) u_{n}^{-} v_{n}=o(1) \tag{2.3}
\end{equation*}
$$

Up to subsequences, let $\mu=\lim \mu_{n} \in[\eta, 2 \eta], t_{0}=\lim t_{n} \in[0,1]$ and u be a weak limit of $\left(u_{n}\right)$. Using (2.3) with $v_{n}=u_{n}$ we see that

$$
(1-\mu)=\int_{\Omega}\left(\alpha\left(t_{0}\right)\left(u^{+}\right)^{2}+\beta\left(t_{0}\right)\left(u^{-}\right)^{2}\right)
$$

Since $\mu \leq 2 \eta<1$, we deduce that $u \neq 0$. By using now (2.3) with arbitrary test functions v, we conclude that u is a nontrivial solution of the problem

$$
-\Delta u=\frac{\alpha\left(t_{0}\right)}{1-\mu} u^{+}-\frac{\beta\left(t_{0}\right)}{1-\mu} u^{-}, \quad u \in H_{0}^{1}(\Omega) .
$$

In particular, $\left(\alpha\left(t_{0}\right), \beta\left(t_{0}\right)\right) /(1-\mu) \in \Sigma$. Since $\mu>0$, the definition of d implies then that we must have $1 /(1-\mu) \geq d+1$, that is $\mu \geq d /(d+1)$. This contradicts the fact that $\mu \leq 2 d / 3(d+1)$.

We will find a critical point for E through a limit process with an approximate sequence of functionals $E_{\varepsilon}, \varepsilon \rightarrow 0$. So let $\left.\varepsilon \in\right] 0, \eta / 4[$. Proceeding as in the proof of Lemma 2.3 we see that there exists $\delta_{\varepsilon}>0$ such that, for any $t \in[0,1]$ and $u \in H_{0}^{1}(\Omega),\|u\|=1$,

$$
\begin{equation*}
Q(t, u) \in[\varepsilon, 2 \varepsilon] \Rightarrow\|\nabla Q(t, u)\|^{2}-(\nabla Q(t, u) u)^{2} \geq \delta_{\varepsilon} \tag{2.4}
\end{equation*}
$$

We can of course assume that $\delta_{\varepsilon}<\delta$. The above conlusions enable us to state a property similar to the one in (2.2) for all quadratic forms $Q(t, \cdot), t \in[0,1]$, except that we replace the subspaces H_{1} and H_{2} in (2.2) with some convenient homeomorphic subsets of $H_{0}^{1}(\Omega)$. This homeomorphism is in turn given by the flow associated with the ordinary (but non autonomous) differential equation

$$
\dot{\sigma}(t)=h(t, \sigma) \nabla Q(t, \sigma),
$$

where $h:[0,1] \times H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ is an appropriate cut-off function and $\dot{\sigma}$ denotes the derivative $d \sigma / d t$. To make this idea precise, we denote by S the unit sphere in $H_{0}^{1}(\Omega)$ and introduce the closed disjoint sets

$$
\begin{aligned}
& A_{1}=\{(t, u) \in[0,1] \times S: Q(t, u) \leq \varepsilon\} \\
& A_{2}=\{(t, u) \in[0,1] \times S: Q(t, u) \geq \eta / 2\}
\end{aligned}
$$

Let $\chi:[0,1] \times S \rightarrow[-1,1]$ be a continuous function such that $\chi=-1$ over A_{1} and $\chi=1$ over A_{2}. Namely, $\chi=\chi_{1}-\chi_{2}$, with $\chi_{i}:[0,1] \times S \rightarrow[0,1]$ defined by

$$
\chi_{i}(t, u)=\frac{\operatorname{dist}\left((t, u), A_{i}\right)}{\operatorname{dist}\left((t, u), A_{1}\right)+\operatorname{dist}\left((t, u), A_{2}\right)}
$$

for $i=1,2$. It is clear that χ is locally Lipschitz continuous. We need a stronger property of χ.

Lemma 2.4. Function χ is Lipschitz continous.
Proof. We observe that in $[0,1] \times S$ both functions $f_{i}(t, u)=\operatorname{dist}\left((t, u), A_{i}\right)$ are bounded and Lipschitz continuous. Thus the conclusion follows easily once we show that

$$
\inf _{[0,1] \times S}\left(f_{1}+f_{2}\right)>0
$$

Arguing by contradiction, if the above does not hold we find sequences $\left(t_{n}, u_{n}\right) \in$ $A_{1},\left(s_{n}, v_{n}\right) \in A_{2}$ such that $\left|t_{n}-s_{n}\right| \rightarrow 0$ and $\left\|u_{n}-v_{n}\right\| \rightarrow 0$. Passing to a subsequence and using the definitions of A_{1} and A_{2} together with the weak continuity of Q, we find some $(t, w) \in[0,1] \times H_{0}^{1}(\Omega)$ satisfying $\eta / 2 \leq 1-$ $\alpha(t) \int_{\Omega}\left(w^{+}\right)^{2}-\beta(t) \int_{\Omega}\left(w^{-}\right)^{2} \leq \varepsilon$ and this is a contradiction.

Let $F:[0,1] \times H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ be given by

$$
F(t, u)=\chi(t, u /\|u\|) \nabla Q(t, u) \text { if } u \neq 0, \quad F(t, 0)=0
$$

Lemma 2.5. Function F is locally Lipschitz continuous. Moreover, there exists $L>0$ such that, for every $(t, u) \in[0,1] \times H_{0}^{1}(\Omega),\|F(t, u)\| \leq L\|u\|$.

Proof. Our second statement in the lemma is a direct consequence of the analogous property for ∇Q. Now, let (t, u) and (s, v) be arbitrary in $[0,1] \times H_{0}^{1}(\Omega)$ with, say, $0<\|u\| \leq\|v\|$. In particular,

$$
\begin{equation*}
\|u /\| u\|-v /\| v\|\|\|\|u\| \leq\| u-v\| . \tag{2.5}
\end{equation*}
$$

It then follows from Lemma 2.4 and (2.5) that, for some $C>0$,

$$
\begin{aligned}
\|F(t, u)-F(s, v)\| \leq & |\chi(t, u /\|u\|)-\chi(s, v /\|v\|)|\|\nabla Q(t, u)\| \\
& +|\chi(s, v /\|v\|)|\|\nabla Q(t, u)-\nabla Q(s, v)\| \\
\leq & C(\|u-v\|+|t-s|\|u\|)+\|\nabla Q(t, u)-\nabla Q(s, v)\| .
\end{aligned}
$$

Since ∇Q is locally Lipschitz continuous, the lemma follows.
Now, let $K=\sup \left\{\left|\alpha^{\prime}(t)\right|+\left|\beta^{\prime}(t)\right|, t \in[0,1]\right\}$ and S_{0} be the Sobolev constant given by the continuous imbedding of $H_{0}^{1}(\Omega)$ into $L^{2}(\Omega)$. We fix any

$$
\begin{equation*}
M>K S_{0}^{2} \delta_{\varepsilon}^{-1} \tag{2.6}
\end{equation*}
$$

and consider the Cauchy problem

$$
\begin{equation*}
\dot{\sigma}(t)=M F(t, \sigma(t)), \quad \sigma(0)=u \in H_{0}^{1}(\Omega) \tag{2.7}
\end{equation*}
$$

It follows from Lemma 2.5 and standard arguments that (2.7) generates a continuous flow $\sigma:[0,1] \times H_{0}^{1}(\Omega) \rightarrow H_{0}^{1}(\Omega)$. Moreover, for any $t \in[0,1], \sigma(t, \cdot)$ is a homeomorphism. Since $F(t, 0)=0$, the uniqueness of the Cauchy problem implies also that $\sigma(t, u) \neq 0$ whenever $t \in[0,1]$ and $u \neq 0$. For any non zero function in $H_{0}^{1}(\Omega)$, let $\Theta:[0,1] \rightarrow \mathbb{R}$ be given by

$$
\Theta(t)=\frac{Q(t, \sigma(t, u))}{\|\sigma(t, u)\|^{2}}
$$

Lemma 2.6. Function Θ is increasing (resp. decreasing) in any interval $\left[t_{1}, t_{2}\right]$ such that

$$
\left.\eta / 2 \leq \Theta(t) \leq \eta, \forall t \in\left[t_{1}, t_{2}\right] \quad \text { (resp. } \varepsilon \leq \Theta(t) \leq 2 \varepsilon, \forall t \in\left[t_{1}, t_{2}\right]\right)
$$

Proof. Let us write $\sigma(t)$ for $\sigma(t, u)$. Since $Q(t, \cdot)$ is homogeneous we see that, by construction, σ satisfies

$$
\dot{\sigma}(t)=M \nabla Q(t, \sigma(t))
$$

over $\left[t_{1}, t_{2}\right]$. Using Lemma 2.3, (2.6) and the fact that $\nabla Q(t, v) v=2 Q(t, v)$ for any t, v, by a straightforward computation we show then that

$$
\begin{aligned}
\frac{d \Theta}{d t}(t)= & \|\sigma(t)\|^{-2}\left[\frac{\partial Q}{\partial t}(t, \sigma(t))+\nabla Q(t, \sigma(t)) \dot{\sigma}(t)\right]+Q(t, \sigma(t)) \frac{d}{d t}\left(\|\sigma(t)\|^{-2}\right) \\
= & -2^{-1}\|\sigma(t)\|^{-2}\left[\alpha^{\prime}(t) \int_{\Omega}\left(\sigma(t)^{+}\right)^{2}+\beta^{\prime}(t) \int_{\Omega}\left(\sigma(t)^{-}\right)^{2}\right] \\
& +\|\sigma(t)\|^{-2} M \| \nabla Q\left(t, \sigma(t)\left\|^{2}-M(\nabla Q(t, \sigma(t)) \sigma(t))^{2}\right\| \sigma(t) \|^{-4}\right. \\
\geq & -K S_{0}^{2}+M\left(\|\nabla Q(t, v(t))\|^{2}-(\nabla Q(t, v(t)) v(t))^{2}\right) \\
\geq & -K S_{0}^{2}+M \delta>0
\end{aligned}
$$

where we denoted $v(t)=\sigma(t) /\|\sigma(t)\|$. This proves the first statement in the lemma. The case where Θ lies in $[\varepsilon, 2 \varepsilon]$ follows from a similar argument by using (2.4) and observing that now $\dot{\sigma}(t)=-M \nabla Q(t, \sigma(t))$.

Now, let $\gamma_{0}: H_{0}^{1}(\Omega) \rightarrow H_{0}^{1}(\Omega)$ be the homeomorphism defined by

$$
\begin{equation*}
\gamma_{0}(u)=\sigma(1, u) \tag{2.8}
\end{equation*}
$$

We observe that γ_{0} depends on ε. Let η be as in Lemma 2.3. Taking (2.2) and Lemma 2.6 into account we see that

$$
\begin{equation*}
Q\left(1, \gamma_{0}(u)\right) \leq \varepsilon\left\|\gamma_{0}(u)\right\|^{2} \forall u \in H_{1}, \quad Q\left(1, \gamma_{0}(u)\right) \geq \eta\left\|\gamma_{0}(u)\right\|^{2} \forall u \in H_{2} \tag{2.9}
\end{equation*}
$$

The above conclusions suggest that we apply the following minimax procedure. For any $R>0$, we denote

$$
\begin{equation*}
S=\gamma_{0}\left(H_{2}\right), \quad A=R \gamma_{0}\left(B_{1}\right) \quad \text { and } \quad \partial A=R \gamma_{0}\left(\partial B_{1}\right) \tag{2.10}
\end{equation*}
$$

where B_{1} stands for the unit ball in H_{1} with the center at the origin. We denote

$$
\Gamma:=\left\{\gamma \in C\left(A ; H_{0}^{1}(\Omega)\right): \gamma(u)=u \forall u \in \partial A\right\} .
$$

Lemma 2.7. Sets S and ∂A link through A, that is

$$
\partial A \cap S=\emptyset \quad \text { and } \quad \gamma(A) \cap S \neq \emptyset \forall \gamma \in \Gamma .
$$

Proof. We first claim that for any $u \in \partial B_{1}, v \in H_{2}, \xi \in \mathbb{R}, \xi \neq 0$,

$$
\begin{equation*}
\xi \gamma_{0}(u) \neq \gamma_{0}(v) \tag{2.11}
\end{equation*}
$$

Indeed, if $\xi \gamma_{0}(u)=\gamma_{0}(v)$ then $\xi^{2}\left\|\gamma_{0}(u)\right\|^{2}=\left\|\gamma_{0}(v)\right\|^{2}$ and (2.9) implies

$$
\begin{aligned}
\eta\left\|\gamma_{0}(v)\right\|^{2} & \leq Q\left(1, \gamma_{0}(v)\right)=Q\left(1, \xi \gamma_{0}(u)\right) \\
& =\xi^{2} Q\left(1, \gamma_{0}(u)\right) \leq \varepsilon \xi^{2}\left\|\gamma_{0}(u)\right\|^{2}=\varepsilon\left\|\gamma_{0}(v)\right\|^{2}
\end{aligned}
$$

yielding $\gamma_{0}(v)=0$. Thus also $\gamma_{0}(u)=0$. By the uniqueness of the Cauchy problem (2.7), $u=0$. This contradicts $u \in \partial B_{1}$ and proves (2.11). In particular, this shows that $\partial A \cap S=\emptyset$.

We denote by P the orthogonal projection of $H_{0}^{1}(\Omega)$ onto H_{1}. Again (2.11) implies that for any $t \in[0,1]$ the $\operatorname{map} \mathcal{H}_{t}: B_{1} \rightarrow H_{1}$ given by

$$
\mathcal{H}_{t}=P \circ \gamma_{0}^{-1} \circ(1+(R-1) t) \gamma_{0}
$$

has a well-defined Brouwer degree $\operatorname{deg}\left(\mathcal{H}_{t}, B_{1}, 0\right)$. By the invariance property of the degree,

$$
\operatorname{deg}\left(\mathcal{H}_{1}, B_{1}, 0\right)=\operatorname{deg}\left(\mathcal{H}_{0}, B_{1}, 0\right)=\operatorname{deg}\left(P, B_{1}, 0\right)=1
$$

Now, for a given $\gamma \in \Gamma$, the above shows that

$$
\operatorname{deg}\left(P \circ \gamma_{0}^{-1} \circ \gamma\left(R \gamma_{0}\right), B_{1}, 0\right)=\operatorname{deg}\left(\mathcal{H}_{1}, B_{1}, 0\right)=1
$$

This implies $\gamma(A) \cap S \neq \emptyset$ and proves the lemma.
Proof of Theorem 2.2 completed. (1) Let η be given by Lemma 2.3. It follows from (2.1) that there exists $C>0$ such that, for every $u \in H_{0}^{1}(\Omega)$,

$$
\begin{equation*}
\eta\|u\|^{2}-\int_{\Omega} G(x, u) \geq \eta\|u\|^{2} / 2-C \tag{2.12}
\end{equation*}
$$

On the other hand, it follows easily from (2.1) and $(N Q)_{-}$that $G(x, s) \rightarrow \infty$ as $|s| \rightarrow \infty$, uniformly for a.e. $x \in \Omega$ (see [4, Lemma 2.3]). In particular, there exists $C_{1}>0$ such that, for every $u \in H_{0}^{1}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega} G(x, u) \geq-C_{1} \tag{2.13}
\end{equation*}
$$

(2) Let's fix any $\varepsilon \in] 0, \eta / 4\left[\right.$ and consider the homeomorphism γ_{0} given in (2.8). Using the compactness of ∂B_{1} and the uniqueness of the Cauchy problem (2.7) we see that

$$
a_{\varepsilon}:=\inf \left\{\left\|\gamma_{0}(u)\right\|^{2}, u \in \partial B_{1}\right\}>0
$$

Then we fix $R>0$ sufficiently large so that

$$
\begin{equation*}
-\varepsilon R^{2} a_{\varepsilon}+C_{1}<-C \tag{2.14}
\end{equation*}
$$

For this choice of R, we consider the sets $S, A, \partial A$ as in (2.10). We denote

$$
E_{\varepsilon}(u):=E(u)-2 \varepsilon\|u\|^{2}, \quad u \in H_{0}^{1}(\Omega) .
$$

It follows from (2.9), (2.13) and (2.14) that for any $v \in \partial A$, say, $v=R \gamma_{0}(u)$,

$$
\begin{aligned}
E_{\varepsilon}(v) & =R^{2} Q\left(1, \gamma_{0}(u)\right)-\int_{\Omega} G(x, v)-2 \varepsilon R^{2}\left\|\gamma_{0}(u)\right\|^{2} \\
& \leq-\varepsilon R^{2}\left\|\gamma_{0}(u)\right\|^{2}+C_{1} \leq-\varepsilon R^{2} a_{\varepsilon}+C_{1}<-C
\end{aligned}
$$

We observe also that $E_{\varepsilon}(v) \leq C_{1}$ for any $v \in A$. Similarly, if $v \in S$ (2.9) and (2.12) imply

$$
E_{\varepsilon}(v) \geq \eta\|v\|^{2}-\int_{\Omega} G(x, v)-2 \varepsilon\|v\|^{2} \geq(\eta / 2-2 \varepsilon)\|v\|^{2}-C \geq-C
$$

We thus conclude that

$$
\begin{equation*}
\sup _{\partial A} E_{\varepsilon}<-C \leq \inf _{S} E_{\varepsilon} \leq \sup _{A} E_{\varepsilon} \leq C_{1} . \tag{2.15}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\sup _{\partial A} E_{\varepsilon}<\inf _{S} E_{\varepsilon} . \tag{2.16}
\end{equation*}
$$

(3) It is proved in [4, Lemma 2.2], as a consequence of both (2.1) and $(N Q)_{-}$, that the Cerami condition (see Section 1) holds for the functional E. In fact, the arguments in [4, Lemma 2.2] show that E_{ε} also satisfies the Cerami condition, as long as $0<\varepsilon<1 / 4$. This, together with (2.16) implies (see [2]) that E_{ε} has a critical point u_{ε}, with a minimax critical level given by

$$
E_{\varepsilon}\left(u_{\varepsilon}\right)=\inf _{\gamma \in \Gamma} \sup _{u \in A} E_{\varepsilon}
$$

Hence we see that (2.15) implies

$$
\nabla E_{\varepsilon}\left(u_{\varepsilon}\right)=0 \quad \text { and } \quad-C \leq E_{\varepsilon}\left(u_{\varepsilon}\right) \leq C_{1} .
$$

In particular, $\left(E_{\varepsilon}\left(u_{\varepsilon}\right)\right)$ is bounded uniformly in ε. Thus again the arguments in [4, Lemma 2.2] imply that $u_{\varepsilon_{n}} \rightarrow u$ in $H_{0}^{1}(\Omega)$ along some sequence $\varepsilon_{n} \rightarrow 0$. Clearly,

$$
\nabla E(u)=0 \quad \text { and } \quad-C \leq E(u) \leq C_{1}
$$

This completes the proof of Theorem 2.2.

3. Further results

We start by presenting some situations where Theorem 2.2 applies, namely where the pair (α, β) is Σ-connected to some eigenpair in the sense of Definition 2.1. In the following we let $\lambda_{1}<\beta<\alpha$.

Example 3.1. Let's assume $N \geq 2$ and that $\lambda_{k-1}<\beta \leq \lambda_{k} \leq \alpha<\lambda_{k+1}$ for some $k \geq 2$. It is known that Σ contains at least two paths $c_{i}(t), i=1,2$, with image in $J:=\left[\lambda_{k}, \lambda_{k+1}[\times] \lambda_{k-1}, \lambda_{k}\right]$ and starting at the point $\left(\lambda_{k}, \lambda_{k}\right)$. Moreover, $\Sigma \cap J$ lies in between the graphs of c_{1} and c_{2}. In fact, if λ_{k} is a simple eigenvalue then $\Sigma \cap J=\operatorname{range}\left(c_{1}\right) \cup \operatorname{range}\left(c_{2}\right)$. We also recall that it may happen that $c_{1}=c_{2}$. Otherwise, say, the graph of c_{1} lies below the graph of c_{2}. For this and other properties of c_{1} and c_{2} we refer the reader to [3], [13], [18], [25].

Thus, with the above notation, we see that (α, β) is Σ-connected to $\left(\lambda_{k}, \lambda_{k}\right)$ whenever (α, β) lies in range $\left(c_{2}\right)$ (or above it).

Example 3.2. Let's suppose now $\Omega=B_{R}(0) \subset \mathbb{R}^{N}$ is an open ball. Whenever $g(\cdot, s)$ is radially invariant we may look at the radial solutions of (1.1). In this case Theorem 2.2 also provides a radial solution for (1.1). In fact, the proof remains unchanged except that now we work in the space $H_{0, \mathrm{rad}}^{1}(\Omega)$ consisting of the radially symmetric functions of $H_{0}^{1}(\Omega)$. Indeed, it follows from the principle of symmetric criticality (see e.g. [26, Theorem 1.28]) that a critical point of the restricted functional E is a radial solution of (1.1).

Of course, in this situation we can relax our assumption on (α, β) by merely assuming that (α, β) is Σ_{rad}-connected to some $\left(\lambda_{k}, \lambda_{k}\right)$, in an obvious sense. Here $\left(\lambda_{i}\right)$ stands for the radial eigenvalues of $\left(-\Delta, H_{0, \mathrm{rad}}^{1}(\Omega)\right)$ and Σ_{rad} is given in (1.2) with $H_{0}^{1}(\Omega)$ replaced by $H_{0, \mathrm{rad}}^{1}(\Omega)$. It is proved in [1] that $\Sigma_{\text {rad }}$ consists of the lines $\mathbb{R} \times\left\{\lambda_{1}\right\}$ and $\left\{\lambda_{1}\right\} \times \mathbb{R}$ together with pairs $r_{1, k}, r_{2, k}(k \geq 2)$ of (globally defined) curves which cross $\left(\lambda_{k}, \lambda_{k}\right)$. Each set range $\left(r_{1, k}\right) \cup \operatorname{range}\left(r_{2, k}\right)$ is isolated from the rest of $\Sigma_{\text {rad }}$. We refer to [1] for further regularity, monotonicity and asymptotic properties of these curves.

Let us write $r_{i, k}=\left(t, s_{i, k}(t)\right)$ for $i=1,2, t \in\left[\lambda_{k}, \infty\left[\right.\right.$ and set $r_{k}(t)=\left(t, s_{k}(t)\right)$, where $s_{k}=\max \left\{s_{1, k}, s_{2, k}\right\}$. It then follows that (α, β) is Σ_{rad}-connected to $\left(\lambda_{k}, \lambda_{k}\right)$ whenever (α, β) lies in $r_{k}\left(\left[\lambda_{k}, \infty[)\right.\right.$.

Example 3.3. We now consider the one dimensional case $N=1$ with, say, $\Omega=] 0, \pi[$. In this case Σ can be computed explicitly (cf. e.g. [4], [12]) and it is precisely the union of the (globally defined) curves $c_{1, k}, c_{2, k}(k \geq 2)$ mentioned in Example 3.1 together with the lines $\mathbb{R} \times\left\{\lambda_{1}\right\}$ and $\left\{\lambda_{1}\right\} \times \mathbb{R}$. As in Example 3.1,

Theorem 2.2 applies for any pair $(\alpha, \beta) \in \mathbb{R}^{2}$ lying in the upper branch $c_{2, k}$.
Next we make some remarks concerning the scalar periodic problem

$$
\begin{equation*}
-\ddot{u}=\alpha u^{+}-\beta u^{-}+g(x, u), \quad u(0)-u(2 \pi)=0=\dot{u}(0)-\dot{u}(2 \pi), \tag{3.1}
\end{equation*}
$$

with $0<\beta<\alpha$. Here $\lambda_{i}=(i-1)^{2}$ for $i \geq 1$. We refer the reader to [11] and [15] for recent results concerning (3.1). The Fučik spectrum Σ of the associated linear operator is defined as in (1.2) except that now we work in the space $H_{\mathrm{per}}^{1}(] 0,2 \pi[)$, consisting of the 2π-periodic functions of the Sobolev space $H^{1}(] 0,2 \pi[)$. It is easily seen that Σ consists of the lines $\mathbb{R} \times\{0\}$ and $\{0\} \times \mathbb{R}$ together with the curves defined by

$$
C_{k}=\left\{(\mu, \nu) \in \mathbb{R}_{+}^{2}: \frac{1}{\sqrt{\mu}}+\frac{1}{\sqrt{\nu}}=\frac{2}{k-1}\right\}, \quad k \geq 2
$$

Assuming (2.1), it is proved in [4, Theorem 2] that (3.1) admits a solution whenever $(\alpha, \beta) \in C_{k}(k \geq 2)$ and either $(N Q)_{+}$holds or else $(N Q)_{-}$holds and $\alpha \geq \lambda_{k-1}, \beta \geq \lambda_{k-1}$ hold. The latter restriction can in fact be avoided.

Theorem 3.4. Let $(\alpha, \beta) \in C_{k}, k \geq 2$, and assume (2.1) and ($\left.N Q\right)_{-}$. Then (3.1) admits at least one solution.

Proof. We may write the equation in (3.1) as

$$
-L u=\widetilde{\alpha} u^{+}-\widetilde{\beta} u^{-}+g(x, u),
$$

where $\widetilde{\alpha}=\alpha+1, \widetilde{\beta}=\beta+1$ and $L u=\ddot{u}-u$. With an obvious meaning, let $\widetilde{\Sigma}$ be the Fučik spectrum of $\left(-L, H_{\mathrm{per}}^{1}(] 0,2 \pi[)\right)$, that is, $\widetilde{\Sigma}=\Sigma+\{(1,1)\}$. Using the curve C_{k} we see that $(\widetilde{\alpha}, \widetilde{\beta})$ is $\widetilde{\Sigma}$-connected to the eigenpair $\left(\lambda_{k}+1, \lambda_{k}+1\right)$ of $\left(-L, H_{\mathrm{per}}^{1}(] 0,2 \pi[)\right)$. Since L is invertible, the proof of Theorem 2.2 can then be repeated step by step.

We conclude with a symmetric version of Theorem 2.2, in the sense that we assume that $(N Q)_{+}$holds instead of $(N Q)_{-}$.

Theorem 3.5. We consider (1.1) with g satisfying both $(N Q)_{+}$and (2.1). We suppose there exist $d \in] 0,1\left[\right.$ and a C^{1} function $c:[0,1] \rightarrow \mathbb{R}^{2}$ such that $c(0)=\left(\lambda_{k}, \lambda_{k}\right)(k \geq 2), c(1)=(\alpha, \beta)$ and

$$
\begin{equation*}
\xi c([0,1]) \cap \Sigma=\emptyset \quad \text { for every } \xi \in[1-d, 1[\tag{3.2}
\end{equation*}
$$

Then (1.1) has a solution.
Sketch of the proof. We follow the steps in the proof of Theorem 2.2. We decompose

$$
H_{0}^{1}(\Omega)=V_{1} \oplus V_{2}
$$

where V_{1} is the finite dimensional eigenspace associated to the eigenvalues λ_{1}, \ldots, λ_{k-1}. We use similar notation as in Section 2. Clearly there exists $\sigma>0$ such that

$$
Q(0, u) \leq-\sigma\|u\|^{2} \forall u \in V_{1} \quad \text { and } \quad Q(0, u) \geq 0 \forall u \in V_{2}
$$

It follows from (3.2) that a result similar to Lemma 2.3 can be stated, provided we replace the interval $[\eta / 2, \eta]$ in that lemma with $[-\eta,-\eta / 2]$. As a consequence, for every $\varepsilon>0$ small enough there exists a homeomorphism γ_{0} in $H_{0}^{1}(\Omega)$ such that (compare with (2.9))

$$
\begin{array}{ll}
Q\left(1, \gamma_{0}(u)\right) \leq-\eta\left\|\gamma_{0}(u)\right\|^{2} & \forall u \in V_{1} \\
Q\left(1, \gamma_{0}(u)\right) \geq-\varepsilon\left\|\gamma_{0}(u)\right\|^{2} & \forall u \in V_{2} \tag{3.3}
\end{array}
$$

For large R (depending on ε), let $S=\gamma_{0}\left(V_{2}\right), A=R \gamma_{0}\left(B_{1}\right), \partial A=R \gamma_{0}\left(\partial B_{1}\right)$ be as in (2.10), where now B_{1} stands for the unit ball in V_{1} with the center at the origin. Using (2.1) and $(N Q)_{+}$we see that there exist positive constants C and C_{1} such that, for any $u \in H_{0}^{1}(\Omega)$ (compare with (2.12), (2.13)),

$$
\begin{equation*}
\int_{\Omega} G(x, u) \leq C_{1} \quad \text { and } \quad-\eta\|u\|^{2}-\int_{\Omega} G(x, u) \leq-\eta\|u\|^{2} / 2+C \tag{3.4}
\end{equation*}
$$

Let $E_{\varepsilon}(u)=E(u)+2 \varepsilon\|u\|^{2}$. It follows from (3.3) and (3.4) that, provided R is large (compare with (2.15)),

$$
\sup _{\partial A} E_{\varepsilon}<-C_{1} \leq \inf _{S} E_{\varepsilon} \leq \sup _{A} E_{\varepsilon} \leq C
$$

It then follows easily that E admits a critical point u with energy level in $\left[-C_{1}, C\right]$.

Going through Examples 3.1-3.3 above we see that (3.2) holds when, roughly speaking, (α, β) lies in some "lower branch" of Σ which is isolated from below from the rest of the spectrum Σ. In the particular case where $(\alpha, \beta) \in C_{2}$ (see Section 1), the variational characterization of C_{2} given in [5], [11] implies that (3.2) holds. In this way we obtain [4, Theorem 1] as a corollary of Theorem 3.5. Similar results apply to the periodic problem (3.1).

References

[1] M. Arias and J. Campos, Radial Fučik spectrum of the Laplace operator, J. Math. Anal. Appl. 190 (199), 654-666.
[2] P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity, Nonlinear Anal. 7 (1983), 981-1012.
[3] N. P. CĂк, On nontrivial solutions of a Dirichlet problem whose jumping nonlinearity crosses a multiple eigenvalue, J. Differential Equations 80 (1989), 379-404.
[4] D. G. Costa and M. Cuesta, Existence results for perturbations of the Fučik spectrum, Topol. Methods Nonlinear Anal. 8 (1996), 295-314.
[5] M. Cuesta and J. P. Gossez, A variational approach to nonresonance with respect to the Fučik spectrum, Nonlinear Anal. 19 (1992), 487-500.
[6] E. N. Dancer, On the Dirichlet problem for weakly nonlinear elliptic partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 76 (1977), 283-300.
[7] , Multiple solutions of asymptotically homogeneous problems, Ann. Mat. Pura Appl. 152 (1988), 63-78.
[8] , Generic domain dependence for non-smooth equations and the open problem for jumping nonlinearities, Topol. Methods Nonlinear Anal. 1 (1993), 139-150.
[9] A. R. Domingos and M. Ramos, Remarks on a class of elliptic problems with asymmetric nonlinearities, Nonlinear Anal. 25 (1995), 629-638.
[10] D. G. de Figueiredo and J. P. Gossez, On the first curve of the Fučik spectrum of an elliptic operator, Differential Integral Equations 7 (1994), 1285-1302.
[11] A. Fonda and M. Ramos, Large-amplitude subharmonic oscillations for scalar second order differential equations with asymmetric nonlinearities, J. Differential Equations 109 (1994), 354-372.
[12] S. FUČIK, Boundary value problems with jumping nonlinearities, Časopis pro Pěstováni Matematiky 101 (1976), 69-87.
[13] T. Gallouët and O. Kavian, Résultats d'existence et de non-existence pour certains problèmes demi-linéaires à l'infini, Ann. Fac. Sci. Toulouse Math. 3 (1981), 201-246.
[14] , Resonance for jumping non-linearities, Comm. Partial Differential Equations 7 (1982), 325-342.
[15] P. Habets, P. Omari and F. Zanolin, Nonresonance conditions on the potential with respect to the Fučik spectrum for the periodic boundary value problem, Rocky Mountain J. Math. 25 (1995), 1305-1340.
[16] O. Kavian, Quelques remarques sur le spectre demi-lineaire de certains opérateurs autoadjoints, preprint.
[17] A. C. Lazer and P. J. McKenna, Critical point theory and boundary value problems with nonlinearities crossing multiple eigenvalues II, Comm. Partial Differential Equations 11 (1986), 1653-1676.
[18] C. A. Magalhães, Multiplicity results for a semilinear elliptic problem with crossing of multiple eigenvalues, Differential Integral Equations 4 (1991), 129-136.
[19] A. M. Micheletti, A remark on the resonance set for a semilinear elliptic equation, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), 803-809.
[20] A. Marino, A. M. Micheletti and A. Pistoia, Some variational results on semilinear problems with asymptotically nonsymmetric behaviour, Quaderno Sc. Normale Superiore, volume in honour of G. Prodi (1991), 243-256.
[21] , A nonsymmetric asymptotically linear elliptic problem, Topol. Methods Nonlinear Anal. 2 (1994), 289-340.
[22] A. M. Micheletti and A. Pistoia, A note on the resonance set for a semilinear elliptic equation and an application to jumping nonlinearities, Topol. Methods Nonlinear Anal. 6 (1995), 67-80.
[23] A. Pistoia, Alcuni problemi ellittici semilineari asintoticamente asimmetrici, Ph.D. thesis, Pisa, 1990.
[24] M. Ramos, A critical point theorem suggested by an elliptic problem with asymmetric nonlinearities, J. Math. Anal. Appl. 196 (1995), 938-946.
[25] M. Schechter, The Fučik spectrum, Indiana Univ. Math. J. 43 (1994), 1139-1157.
[26] M. Willem, Minimax Theorems, Birkhäuser, 1997.

Ana Rute Domingos and Miguel Ramos
CMAF, Universidade de Lisboa
Av. Prof. Gama Pinto, 2
1699 Lisboa Codex, PORTUGAL
E-mail address: mramos@lmc.fc.ul.pt

[^0]: 1991 Mathematics Subject Classification. 35J25, 35J20, 58E05, 34B15.
 Key words and phrases. Elliptic equations, variational methods, abstract critical point theory.

 Work supported by FCT, PRAXIS XXI, FEDER, project PRAXIS/2/2.1/MAT/125/94 and an EC grant CHRX-CT-94-0555.

