Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 11, 1998, 45–57

ON THE SOLVABILITY OF A RESONANT ELLIPTIC EQUATION WITH ASYMMETRIC NONLINEARITY

Ana Rute Domingos — Miguel Ramos

1. Introduction

Let Ω be a bounded smooth domain in \mathbb{R}^N , $N \ge 1$. In this paper we study the existence of the solution for the elliptic equation with Dirichlet boundary condition

(1.1)
$$-\Delta u = \alpha u^+ - \beta u^- + g(x, u), \quad u \in H^1_0(\Omega),$$

where α , β are real parameters and $u^+ = \max\{u, 0\}$, $u^- = u^+ - u$. Without loss of generality, we assume $\beta \leq \alpha$. In fact, denoting by (λ_i) the increasing sequence of eigenvalues of $(-\Delta, H_0^1(\Omega))$, we study the case where $\lambda_1 < \beta < \alpha$ and $[\beta, \alpha]$ intersects this linear spectrum. Here $g : \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function with subcritical growth at infinity, namely $|g(x,s)| \leq A(|s|^{p-1} + 1)$ with $1 if <math>N \geq 2$. If N = 1, we merely suppose that $|g(x,s)| \leq a(x) + b(x)f(s)$ where $a, b \in L^1(\Omega)$, f is continuous and f(s) = O(s)near 0.

We consider nonlinear terms which are sublinear at infinity, in a sense to be made precise below (see (2.1)). It is well-known that then the existence and multiplicity of solutions of (D) strongly rely on the position of the pair

O1998Juliusz Schauder Center for Nonlinear Studies

¹⁹⁹¹ Mathematics Subject Classification. 35J25, 35J20, 58E05, 34B15.

 $Key\ words\ and\ phrases.$ Elliptic equations, variational methods, abstract critical point theory.

Work supported by FCT, PRAXIS XXI, FEDER, project PRAXIS/2/2.1/MAT/125/94 and an EC grant CHRX-CT-94-0555.

 $(\alpha,\beta)\in\mathbb{R}^2$ with respect to the so called Fučik spectrum of $(-\Delta,H^1_0(\Omega)).$ The latter is defined as

(1.2)
$$\Sigma := \{ (\mu, \nu) \in \mathbb{R}^2 : \exists u \in H_0^1(\Omega), \ u \neq 0, \ -\Delta u = \mu u^+ - \nu u^- \}.$$

It is clear that Σ contains the lines $\mathbb{R} \times {\lambda_1}$ and ${\lambda_1} \times \mathbb{R}$ as well as the points (λ_i, λ_i) , $i \geq 1$. In the one dimensional case N = 1, the set Σ can be easily described (see e.g [12]). For higher dimensions, some properties of Σ were obtained by several authors, see [1], [3], [6], [8], [10], [13], [16], [18], [19], [22], [25]. For results concerning the solvability of (1.1) and without being exhaustive, we refer to [3]–[7], [9], [14], [17], [18], [20], [24] and especially to [21]–[23].

In particular, it was first observed by Kavian [16] that Σ contains a global curve C_2 with crosses (λ_2, λ_2) . Some qualitative properties of C_2 are also known, see [10]. The first variational characterization of C_2 in terms of the associated energy functional was already presented in [16], through a variant of the wellknown mountain pass theorem of Ambrosetti and Rabinowitz. This variational characterization was somewhat clarified in [5, Lemma 4.3] and [11, Proposition 3.2].

The present paper is motivated by a result of Costa and Cuesta [4] where the authors consider (1.1) with $(\alpha, \beta) \in C_2$. As in [4], we find solutions for (1.1) as critical points of the C^1 energy functional defined by

$$E(u) := \frac{1}{2} \int_{\Omega} [|\nabla u|^2 - \alpha (u^+)^2 - \beta (u^-)^2] - \int_{\Omega} G(x, u), \quad u \in H^1_0(\Omega).$$

where $G(x,s) := \int_0^s g(x,\xi) d\xi$. Due to the resonance of the problem (i.e. the fact that $(\alpha, \beta) \in \Sigma$ and g is sublinear at infinity) the usual Palais–Smale condition is not satisfied. Hence the authors assume that G(x,s) is *nonquadratic at infinity*, in the sense that either $(NQ)_+$ or $(NQ)_-$ below holds:

$$(NQ)_{\pm}$$
 $\lim_{|s|\to\infty} (sg(x,s) - 2G(x,s)) = \pm\infty$ uniformly for a.e. $x \in \Omega$

We refer to [4] for a discussion and examples concerning this kind of nonlinearities. The point is that under $(NQ)_+$ or $(NQ)_-$ the so called *Cerami condition* (cf. [2]) holds for E, namely any sequence $(u_n) \subset H_0^1(\Omega)$ with $(E(u_n))$ bounded and $(1 + ||u_n||)||\nabla E(u_n)|| = o(1)$ has a convergent subsequence (see [4, Lemma 2.2]). We denote by $|| \cdot ||$ the $H_0^1(\Omega)$ -norm. This key observation, together with the above mentioned characterization of C_2 , enabled the quoted authors to prove an existence result for (1.1) in case $(NQ)_+$ holds.

Here we concentrate on the case where $(NQ)_{-}$ holds. The difficulties arising from this assumption, even in the one dimensional case N = 1, were already pointed out in [4, Section 4]. Roughly speaking, our main assumption concerns the existence of a path c(t) connecting $c(0) = (\alpha, \beta)$ with some eigenpair c(1) = (λ_k, λ_k) in such a way that a delected "upper neighbourhood" of c([0, 1]) does not intersect Σ . We stress that we allow $c([0,1]) \subset \Sigma$, see Definition 2.1 and Section 3 for further comments and examples. In this way we are able to refine our previous arguments in [9] and to provide a solution for (1.1).

In Section 2 we state and prove our main result. In Section 3 we discuss three typical situations in which our main assumption holds. We also prove an existence result for (1.1) in case $(NQ)_+$ holds which extends [4, Theorem 1]. Still under assumption $(NQ)_-$, we state in Section 3 an existence theorem for an ordinary differential equation with periodic boundary conditions related to (1.1), which improves [4, Theorem 2].

2. Main result

We consider problem (1.1) with g having subcritical growth at infinity. Moreover, we assume that

(2.1)
$$\lim_{|s|\to\infty} G(x,s)/s^2 = 0 \quad \text{uniformly for a.e. } x \in \Omega.$$

Our assumption on (α, β) is expressed in the following definition. Let $(\alpha, \beta) \in \mathbb{R}^2$ be such that $\lambda_1 < \beta < \alpha$.

DEFINITION 2.1. We say that (α, β) is Σ -connected to (λ_k, λ_k) , $k \geq 2$, if there exist d > 0 and a C^1 function $c : [0,1] \to \mathbb{R}^2$ satisfying $c(0) = (\lambda_k, \lambda_k)$, $c(1) = (\alpha, \beta)$ and

$$\xi c([0,1]) \cap \Sigma = \emptyset$$
 for every $\xi \in [1, 1+d]$.

We explicitly note that we allow c to intersect Σ . In fact, in a typical situation (see Section 3) we have $c([0,1]) \subset \Sigma$. On the other hand, we suppose that we do not meet Σ when we slightly "lift up" c([0,1]). We observe also that despite the fact that we are mostly concerned with the case where $(\alpha, \beta) \in \Sigma$ we do not assume this in Definition 2.1.

THEOREM 2.2. We consider (1.1) with g satisfying both $(NQ)_{-}$ and (2.1). If (α, β) is Σ -connected to (λ_k, λ_k) for some $k \geq 2$ then (1.1) admits a solution.

The rest of the section is devoted to the proof of Theorem 2.2. Let $c(t) = (\alpha(t), \beta(t))$ be the path given by Definition 2.1. For any $t \in [0, 1]$, we introduce the C^1 functionals over $H_0^1(\Omega)$,

$$Q(t,u) := \frac{1}{2} \int_{\Omega} [|\nabla u|^2 - \alpha(t)(u^+)^2 - \beta(t)(u^-)^2],$$

and

$$E(t, u) := Q(t, u) - \int_{\Omega} G(x, u), \quad E(u) = E(1, u).$$

It is well-know that critical points of E in $H_0^1(\Omega)$ are weak solutions of problem (1.1). We consider the orthogonal direct sum

$$H_0^1(\Omega) = H_1 \oplus H_2,$$

where H_1 is the finite dimensional eigenspace associated with the eigenvalues $\lambda_1, \ldots, \lambda_k$. Since $c(0) = (\lambda_k, \lambda_k)$, it is clear that

(2.2) $Q(0,u) \le 0 \ \forall u \in H_1 \quad \text{and} \quad Q(0,u) \ge \sigma \|u\|^2 \ \forall u \in H_2,$

for some constant $\sigma > 0$. The estimate below describes our assumption on (α, β) in terms of the energy levels of the quadratic forms envolved.

LEMMA 2.3. There exist positive constants $\eta, \delta, \eta < \sigma$, with the following property: for any $t \in [0, 1]$ and $u \in H_0^1(\Omega)$, ||u|| = 1,

$$Q(t,u) \in [\eta/2,\eta] \Rightarrow \|\nabla Q(t,u)\|^2 - (\nabla Q(t,u)u)^2 \ge \delta.$$

PROOF. Let d be given by definition 2.1 and denote

$$\eta := \min\{d/3(d+1), \sigma/2\}.$$

We suppose by contradiction that for some sequence $(t_n) \subset [0,1]$ and $(u_n) \subset H_0^1(\Omega)$ with $||u_n|| = 1$ it holds

$$\eta/2 \le Q(t_n, u_n) \le \eta$$
 and $\|\nabla Q(t_n, u_n)\|^2 - (\nabla Q(t_n, u_n)u_n)^2 = o(1),$

as $n \to \infty$. We denote $\mu_n = \nabla Q(t_n, u_n) u_n = 2Q(t_n, u_n) \in [\eta, 2\eta]$. Since

$$\|\nabla Q(t_n, u_n) - \mu_n u_n\|^2 = \|\nabla Q(t_n, u_n)\|^2 - (\nabla Q(t_n, u_n)u_n)^2 = o(1)$$

we have, for every bounded sequence $(v_n) \subset H_0^1(\Omega)$,

(2.3)
$$(1-\mu_n)\int_{\Omega}\nabla u_n\nabla v_n - \alpha(t_n)\int_{\Omega}u_n^+v_n + \int_{\Omega}\beta(t_n)u_n^-v_n = o(1).$$

Up to subsequences, let $\mu = \lim \mu_n \in [\eta, 2\eta]$, $t_0 = \lim t_n \in [0, 1]$ and u be a weak limit of (u_n) . Using (2.3) with $v_n = u_n$ we see that

$$(1-\mu) = \int_{\Omega} (\alpha(t_0)(u^+)^2 + \beta(t_0)(u^-)^2)$$

Since $\mu \leq 2\eta < 1$, we deduce that $u \neq 0$. By using now (2.3) with arbitrary test functions v, we conclude that u is a nontrivial solution of the problem

$$-\Delta u = \frac{\alpha(t_0)}{1-\mu}u^+ - \frac{\beta(t_0)}{1-\mu}u^-, \quad u \in H^1_0(\Omega).$$

In particular, $(\alpha(t_0), \beta(t_0))/(1-\mu) \in \Sigma$. Since $\mu > 0$, the definition of d implies then that we must have $1/(1-\mu) \ge d+1$, that is $\mu \ge d/(d+1)$. This contradicts the fact that $\mu \le 2d/3(d+1)$.

We will find a critical point for E through a limit process with an approximate sequence of functionals E_{ε} , $\varepsilon \to 0$. So let $\varepsilon \in]0, \eta/4[$. Proceeding as in the proof of Lemma 2.3 we see that there exists $\delta_{\varepsilon} > 0$ such that, for any $t \in [0, 1]$ and $u \in H_0^1(\Omega), ||u|| = 1$,

(2.4)
$$Q(t,u) \in [\varepsilon, 2\varepsilon] \Rightarrow \|\nabla Q(t,u)\|^2 - (\nabla Q(t,u)u)^2 \ge \delta_{\varepsilon}$$

We can of course assume that $\delta_{\varepsilon} < \delta$. The above conclusions enable us to state a property similar to the one in (2.2) for all quadratic forms $Q(t, \cdot), t \in [0, 1]$, except that we replace the subspaces H_1 and H_2 in (2.2) with some convenient homeomorphic subsets of $H_0^1(\Omega)$. This homeomorphism is in turn given by the flow associated with the ordinary (but non autonomous) differential equation

$$\dot{\sigma}(t) = h(t,\sigma)\nabla Q(t,\sigma),$$

where $h: [0,1] \times H_0^1(\Omega) \to \mathbb{R}$ is an appropriate cut-off function and $\dot{\sigma}$ denotes the derivative $d\sigma/dt$. To make this idea precise, we denote by S the unit sphere in $H_0^1(\Omega)$ and introduce the closed disjoint sets

$$A_1 = \{(t, u) \in [0, 1] \times S : Q(t, u) \le \varepsilon\},\$$

$$A_2 = \{(t, u) \in [0, 1] \times S : Q(t, u) \ge \eta/2\}$$

Let $\chi : [0,1] \times S \to [-1,1]$ be a continuous function such that $\chi = -1$ over A_1 and $\chi = 1$ over A_2 . Namely, $\chi = \chi_1 - \chi_2$, with $\chi_i : [0,1] \times S \to [0,1]$ defined by

$$\chi_i(t, u) = \frac{\operatorname{dist}((t, u), A_i)}{\operatorname{dist}((t, u), A_1) + \operatorname{dist}((t, u), A_2)}$$

for i = 1, 2. It is clear that χ is locally Lipschitz continuous. We need a stronger property of χ .

LEMMA 2.4. Function χ is Lipschitz continous.

PROOF. We observe that in $[0, 1] \times S$ both functions $f_i(t, u) = \text{dist}((t, u), A_i)$ are bounded and Lipschitz continuous. Thus the conclusion follows easily once we show that

$$\inf_{[0,1]\times S} (f_1 + f_2) > 0.$$

Arguing by contradiction, if the above does not hold we find sequences $(t_n, u_n) \in A_1$, $(s_n, v_n) \in A_2$ such that $|t_n - s_n| \to 0$ and $||u_n - v_n|| \to 0$. Passing to a subsequence and using the definitions of A_1 and A_2 together with the weak continuity of Q, we find some $(t, w) \in [0, 1] \times H_0^1(\Omega)$ satisfying $\eta/2 \leq 1 - \alpha(t) \int_{\Omega} (w^+)^2 - \beta(t) \int_{\Omega} (w^-)^2 \leq \varepsilon$ and this is a contradiction. \Box

Let $F: [0,1] \times H^1_0(\Omega) \to \mathbb{R}$ be given by

$$F(t, u) = \chi(t, u/||u||) \nabla Q(t, u)$$
 if $u \neq 0$, $F(t, 0) = 0$

LEMMA 2.5. Function F is locally Lipschitz continuous. Moreover, there exists L > 0 such that, for every $(t, u) \in [0, 1] \times H_0^1(\Omega)$, $||F(t, u)|| \le L||u||$.

PROOF. Our second statement in the lemma is a direct consequence of the analogous property for ∇Q . Now, let (t, u) and (s, v) be arbitrary in $[0, 1] \times H_0^1(\Omega)$ with, say, $0 < ||u|| \le ||v||$. In particular,

(2.5)
$$\|u/\|u\| - v/\|v\|\|\|u\| \le \|u - v\|.$$

It then follows from Lemma 2.4 and (2.5) that, for some C > 0,

$$\begin{split} \|F(t,u) - F(s,v)\| &\leq |\chi(t,u/\|u\|) - \chi(s,v/\|v\|)| \|\nabla Q(t,u)\| \\ &+ |\chi(s,v/\|v\|)| \|\nabla Q(t,u) - \nabla Q(s,v)\| \\ &\leq C(\|u-v\| + |t-s| \|u\|) + \|\nabla Q(t,u) - \nabla Q(s,v)\|. \end{split}$$

Since ∇Q is locally Lipschitz continuous, the lemma follows.

Now, let $K = \sup\{|\alpha'(t)| + |\beta'(t)|, t \in [0,1]\}$ and S_0 be the Sobolev constant given by the continuous imbedding of $H_0^1(\Omega)$ into $L^2(\Omega)$. We fix any

$$(2.6) M > KS_0^2 \delta_{\varepsilon}^{-1}$$

and consider the Cauchy problem

(2.7)
$$\dot{\sigma}(t) = MF(t, \sigma(t)), \quad \sigma(0) = u \in H_0^1(\Omega)$$

It follows from Lemma 2.5 and standard arguments that (2.7) generates a continuous flow $\sigma : [0,1] \times H_0^1(\Omega) \to H_0^1(\Omega)$. Moreover, for any $t \in [0,1]$, $\sigma(t, \cdot)$ is a homeomorphism. Since F(t,0) = 0, the uniqueness of the Cauchy problem implies also that $\sigma(t, u) \neq 0$ whenever $t \in [0,1]$ and $u \neq 0$. For any non zero function in $H_0^1(\Omega)$, let $\Theta : [0,1] \to \mathbb{R}$ be given by

$$\Theta(t) = \frac{Q(t, \sigma(t, u))}{\|\sigma(t, u)\|^2}$$

LEMMA 2.6. Function Θ is increasing (resp. decreasing) in any interval $[t_1, t_2]$ such that

$$\eta/2 \leq \Theta(t) \leq \eta, \ \forall t \in [t_1, t_2] \quad (\textit{resp. } \varepsilon \leq \Theta(t) \leq 2\varepsilon, \ \forall t \in [t_1, t_2]).$$

PROOF. Let us write $\sigma(t)$ for $\sigma(t, u)$. Since $Q(t, \cdot)$ is homogeneous we see that, by construction, σ satisfies

$$\dot{\sigma}(t) = M\nabla Q(t, \sigma(t))$$

over $[t_1, t_2]$. Using Lemma 2.3, (2.6) and the fact that $\nabla Q(t, v)v = 2Q(t, v)$ for any t, v, by a straightforward computation we show then that

$$\begin{split} \frac{d\Theta}{dt}(t) &= \|\sigma(t)\|^{-2} \bigg[\frac{\partial Q}{\partial t}(t,\sigma(t)) + \nabla Q(t,\sigma(t))\dot{\sigma}(t) \bigg] + Q(t,\sigma(t))\frac{d}{dt}(\|\sigma(t)\|^{-2}) \\ &= -2^{-1} \|\sigma(t)\|^{-2} \bigg[\alpha'(t) \int_{\Omega} (\sigma(t)^+)^2 + \beta'(t) \int_{\Omega} (\sigma(t)^-)^2 \bigg] \\ &+ \|\sigma(t)\|^{-2} M \|\nabla Q(t,\sigma(t))\|^2 - M(\nabla Q(t,\sigma(t))\sigma(t))^2 \|\sigma(t)\|^{-4} \\ &\geq -KS_0^2 + M(\|\nabla Q(t,v(t))\|^2 - (\nabla Q(t,v(t))v(t))^2) \\ &> -KS_0^2 + M\delta > 0. \end{split}$$

where we denoted $v(t) = \sigma(t)/||\sigma(t)||$. This proves the first statement in the lemma. The case where Θ lies in $[\varepsilon, 2\varepsilon]$ follows from a similar argument by using (2.4) and observing that now $\dot{\sigma}(t) = -M\nabla Q(t, \sigma(t))$.

Now, let
$$\gamma_0: H_0^1(\Omega) \to H_0^1(\Omega)$$
 be the homeomorphism defined by

(2.8)
$$\gamma_0(u) = \sigma(1, u)$$

We observe that γ_0 depends on ε . Let η be as in Lemma 2.3. Taking (2.2) and Lemma 2.6 into account we see that

(2.9)
$$Q(1,\gamma_0(u)) \le \varepsilon \|\gamma_0(u)\|^2 \ \forall u \in H_1, \quad Q(1,\gamma_0(u)) \ge \eta \|\gamma_0(u)\|^2 \ \forall u \in H_2.$$

The above conclusions suggest that we apply the following minimax procedure. For any R > 0, we denote

(2.10)
$$S = \gamma_0(H_2), \quad A = R\gamma_0(B_1) \quad \text{and} \quad \partial A = R\gamma_0(\partial B_1)$$

where B_1 stands for the unit ball in H_1 with the center at the origin. We denote

$$\Gamma := \{ \gamma \in C(A; H_0^1(\Omega)) : \gamma(u) = u \ \forall u \in \partial A \}.$$

LEMMA 2.7. Sets S and ∂A link through A, that is

$$\partial A \cap S = \emptyset$$
 and $\gamma(A) \cap S \neq \emptyset \ \forall \gamma \in \Gamma.$

PROOF. We first claim that for any $u \in \partial B_1$, $v \in H_2$, $\xi \in \mathbb{R}$, $\xi \neq 0$,

(2.11)
$$\xi \gamma_0(u) \neq \gamma_0(v).$$

Indeed, if $\xi \gamma_0(u) = \gamma_0(v)$ then $\xi^2 \|\gamma_0(u)\|^2 = \|\gamma_0(v)\|^2$ and (2.9) implies

$$\begin{aligned} \eta \|\gamma_0(v)\|^2 &\leq Q(1, \gamma_0(v)) = Q(1, \xi\gamma_0(u)) \\ &= \xi^2 Q(1, \gamma_0(u)) \leq \varepsilon \xi^2 \|\gamma_0(u)\|^2 = \varepsilon \|\gamma_0(v)\|^2, \end{aligned}$$

yielding $\gamma_0(v) = 0$. Thus also $\gamma_0(u) = 0$. By the uniqueness of the Cauchy problem (2.7), u = 0. This contradicts $u \in \partial B_1$ and proves (2.11). In particular, this shows that $\partial A \cap S = \emptyset$.

We denote by P the orthogonal projection of $H_0^1(\Omega)$ onto H_1 . Again (2.11) implies that for any $t \in [0, 1]$ the map $\mathcal{H}_t : B_1 \to H_1$ given by

$$\mathcal{H}_t = P \circ \gamma_0^{-1} \circ (1 + (R - 1)t)\gamma_0,$$

has a well-defined Brouwer degree $\deg(\mathcal{H}_t, B_1, 0)$. By the invariance property of the degree,

$$\deg(\mathcal{H}_1, B_1, 0) = \deg(\mathcal{H}_0, B_1, 0) = \deg(P, B_1, 0) = 1.$$

Now, for a given $\gamma \in \Gamma$, the above shows that

$$\deg (P \circ \gamma_0^{-1} \circ \gamma(R\gamma_0), B_1, 0) = \deg (\mathcal{H}_1, B_1, 0) = 1.$$

This implies $\gamma(A) \cap S \neq \emptyset$ and proves the lemma.

PROOF OF THEOREM 2.2 COMPLETED. (1) Let η be given by Lemma 2.3. It follows from (2.1) that there exists C > 0 such that, for every $u \in H_0^1(\Omega)$,

(2.12)
$$\eta \|u\|^2 - \int_{\Omega} G(x, u) \ge \eta \|u\|^2 / 2 - C$$

On the other hand, it follows easily from (2.1) and $(NQ)_{-}$ that $G(x, s) \to \infty$ as $|s| \to \infty$, uniformly for a.e. $x \in \Omega$ (see [4, Lemma 2.3]). In particular, there exists $C_1 > 0$ such that, for every $u \in H_0^1(\Omega)$,

(2.13)
$$\int_{\Omega} G(x,u) \ge -C_1.$$

(2) Let's fix any $\varepsilon \in [0, \eta/4[$ and consider the homeomorphism γ_0 given in (2.8). Using the compactness of ∂B_1 and the uniqueness of the Cauchy problem (2.7) we see that

$$a_{\varepsilon} := \inf\{\|\gamma_0(u)\|^2, \ u \in \partial B_1\} > 0.$$

Then we fix R > 0 sufficiently large so that

$$(2.14) \qquad -\varepsilon R^2 a_{\varepsilon} + C_1 < -C.$$

For this choice of R, we consider the sets S, A, ∂A as in (2.10). We denote

$$E_{\varepsilon}(u) := E(u) - 2\varepsilon ||u||^2, \quad u \in H_0^1(\Omega).$$

It follows from (2.9), (2.13) and (2.14) that for any $v \in \partial A$, say, $v = R\gamma_0(u)$,

$$E_{\varepsilon}(v) = R^2 Q(1, \gamma_0(u)) - \int_{\Omega} G(x, v) - 2\varepsilon R^2 \|\gamma_0(u)\|^2$$

$$\leq -\varepsilon R^2 \|\gamma_0(u)\|^2 + C_1 \leq -\varepsilon R^2 a_{\varepsilon} + C_1 < -C.$$

We observe also that $E_{\varepsilon}(v) \leq C_1$ for any $v \in A$. Similarly, if $v \in S$ (2.9) and (2.12) imply

$$E_{\varepsilon}(v) \ge \eta \|v\|^2 - \int_{\Omega} G(x,v) - 2\varepsilon \|v\|^2 \ge (\eta/2 - 2\varepsilon) \|v\|^2 - C \ge -C.$$

We thus conclude that

(2.15)
$$\sup_{\partial A} E_{\varepsilon} < -C \le \inf_{S} E_{\varepsilon} \le \sup_{A} E_{\varepsilon} \le C_{1}.$$

In particular,

(2.16)
$$\sup_{\partial A} E_{\varepsilon} < \inf_{S} E_{\varepsilon}.$$

(3) It is proved in [4, Lemma 2.2], as a consequence of both (2.1) and $(NQ)_{-}$, that the Cerami condition (see Section 1) holds for the functional E. In fact, the arguments in [4, Lemma 2.2] show that E_{ε} also satisfies the Cerami condition, as long as $0 < \varepsilon < 1/4$. This, together with (2.16) implies (see [2]) that E_{ε} has a critical point u_{ε} , with a minimax critical level given by

$$E_{\varepsilon}(u_{\varepsilon}) = \inf_{\gamma \in \Gamma} \sup_{u \in A} E_{\varepsilon}.$$

Hence we see that (2.15) implies

$$\nabla E_{\varepsilon}(u_{\varepsilon}) = 0$$
 and $-C \leq E_{\varepsilon}(u_{\varepsilon}) \leq C_1$.

In particular, $(E_{\varepsilon}(u_{\varepsilon}))$ is bounded uniformly in ε . Thus again the arguments in [4, Lemma 2.2] imply that $u_{\varepsilon_n} \to u$ in $H_0^1(\Omega)$ along some sequence $\varepsilon_n \to 0$. Clearly,

$$\nabla E(u) = 0$$
 and $-C \leq E(u) \leq C_1$.

This completes the proof of Theorem 2.2.

3. Further results

We start by presenting some situations where Theorem 2.2 applies, namely where the pair (α, β) is Σ -connected to some eigenpair in the sense of Definition 2.1. In the following we let $\lambda_1 < \beta < \alpha$.

EXAMPLE 3.1. Let's assume $N \geq 2$ and that $\lambda_{k-1} < \beta \leq \lambda_k \leq \alpha < \lambda_{k+1}$ for some $k \geq 2$. It is known that Σ contains at least two paths $c_i(t)$, i = 1, 2, with image in $J := [\lambda_k, \lambda_{k+1}] \times [\lambda_{k-1}, \lambda_k]$ and starting at the point (λ_k, λ_k) . Moreover, $\Sigma \cap J$ lies in between the graphs of c_1 and c_2 . In fact, if λ_k is a simple eigenvalue then $\Sigma \cap J = \operatorname{range}(c_1) \cup \operatorname{range}(c_2)$. We also recall that it may happen that $c_1 = c_2$. Otherwise, say, the graph of c_1 lies below the graph of c_2 . For this and other properties of c_1 and c_2 we refer the reader to [3], [13], [18], [25].

Thus, with the above notation, we see that (α, β) is Σ -connected to (λ_k, λ_k) whenever (α, β) lies in range (c_2) (or above it).

EXAMPLE 3.2. Let's suppose now $\Omega = B_R(0) \subset \mathbb{R}^N$ is an open ball. Whenever $g(\cdot, s)$ is radially invariant we may look at the radial solutions of (1.1). In this case Theorem 2.2 also provides a radial solution for (1.1). In fact, the proof remains unchanged except that now we work in the space $H^1_{0,\text{rad}}(\Omega)$ consisting of the radially symmetric functions of $H^1_0(\Omega)$. Indeed, it follows from the principle of symmetric criticality (see e.g. [26, Theorem 1.28]) that a critical point of the restricted functional E is a radial solution of (1.1).

Of course, in this situation we can relax our assumption on (α, β) by merely assuming that (α, β) is Σ_{rad} -connected to some (λ_k, λ_k) , in an obvious sense. Here (λ_i) stands for the radial eigenvalues of $(-\Delta, H^1_{0,\text{rad}}(\Omega))$ and Σ_{rad} is given in (1.2) with $H^1_0(\Omega)$ replaced by $H^1_{0,\text{rad}}(\Omega)$. It is proved in [1] that Σ_{rad} consists of the lines $\mathbb{R} \times \{\lambda_1\}$ and $\{\lambda_1\} \times \mathbb{R}$ together with pairs $r_{1,k}, r_{2,k}$ ($k \geq 2$) of (globally defined) curves which cross (λ_k, λ_k) . Each set $\text{range}(r_{1,k}) \cup \text{range}(r_{2,k})$ is isolated from the rest of Σ_{rad} . We refer to [1] for further regularity, monotonicity and asymptotic properties of these curves.

Let us write $r_{i,k} = (t, s_{i,k}(t))$ for $i = 1, 2, t \in [\lambda_k, \infty[$ and set $r_k(t) = (t, s_k(t))$, where $s_k = \max\{s_{1,k}, s_{2,k}\}$. It then follows that (α, β) is Σ_{rad} -connected to (λ_k, λ_k) whenever (α, β) lies in $r_k([\lambda_k, \infty[).$

EXAMPLE 3.3. We now consider the one dimensional case N = 1 with, say, $\Omega =]0, \pi[$. In this case Σ can be computed explicitly (cf. e.g. [4], [12]) and it is precisely the union of the (globally defined) curves $c_{1,k}, c_{2,k}$ ($k \ge 2$) mentioned in Example 3.1 together with the lines $\mathbb{R} \times \{\lambda_1\}$ and $\{\lambda_1\} \times \mathbb{R}$. As in Example 3.1,

Theorem 2.2 applies for any pair $(\alpha, \beta) \in \mathbb{R}^2$ lying in the upper branch $c_{2,k}$.

Next we make some remarks concerning the scalar periodic problem

(3.1)
$$-\ddot{u} = \alpha u^{+} - \beta u^{-} + g(x, u), \quad u(0) - u(2\pi) = 0 = \dot{u}(0) - \dot{u}(2\pi),$$

with $0 < \beta < \alpha$. Here $\lambda_i = (i-1)^2$ for $i \ge 1$. We refer the reader to [11] and [15] for recent results concerning (3.1). The Fučik spectrum Σ of the associated linear operator is defined as in (1.2) except that now we work in the space $H_{\text{per}}^1(]0, 2\pi[)$, consisting of the 2π -periodic functions of the Sobolev space $H^1(]0, 2\pi[)$. It is easily seen that Σ consists of the lines $\mathbb{R} \times \{0\}$ and $\{0\} \times \mathbb{R}$ together with the curves defined by

$$C_k = \left\{ (\mu, \nu) \in \mathbb{R}^2_+ : \frac{1}{\sqrt{\mu}} + \frac{1}{\sqrt{\nu}} = \frac{2}{k-1} \right\}, \quad k \ge 2$$

Assuming (2.1), it is proved in [4, Theorem 2] that (3.1) admits a solution whenever $(\alpha, \beta) \in C_k$ $(k \geq 2)$ and either $(NQ)_+$ holds or else $(NQ)_-$ holds and $\alpha \geq \lambda_{k-1}, \beta \geq \lambda_{k-1}$ hold. The latter restriction can in fact be avoided. THEOREM 3.4. Let $(\alpha, \beta) \in C_k$, $k \ge 2$, and assume (2.1) and $(NQ)_-$. Then (3.1) admits at least one solution.

PROOF. We may write the equation in (3.1) as

$$-Lu = \widetilde{\alpha}u^+ - \widetilde{\beta}u^- + g(x, u),$$

where $\tilde{\alpha} = \alpha + 1$, $\tilde{\beta} = \beta + 1$ and $Lu = \ddot{u} - u$. With an obvious meaning, let $\tilde{\Sigma}$ be the Fučik spectrum of $(-L, H_{\text{per}}^1(]0, 2\pi[))$, that is, $\tilde{\Sigma} = \Sigma + \{(1, 1)\}$. Using the curve C_k we see that $(\tilde{\alpha}, \tilde{\beta})$ is $\tilde{\Sigma}$ -connected to the eigenpair $(\lambda_k + 1, \lambda_k + 1)$ of $(-L, H_{\text{per}}^1(]0, 2\pi[))$. Since L is invertible, the proof of Theorem 2.2 can then be repeated step by step.

We conclude with a symmetric version of Theorem 2.2, in the sense that we assume that $(NQ)_+$ holds instead of $(NQ)_-$.

THEOREM 3.5. We consider (1.1) with g satisfying both $(NQ)_+$ and (2.1). We suppose there exist $d \in [0,1[$ and a C^1 function $c : [0,1] \to \mathbb{R}^2$ such that $c(0) = (\lambda_k, \lambda_k)$ $(k \geq 2)$, $c(1) = (\alpha, \beta)$ and

(3.2)
$$\xi c([0,1]) \cap \Sigma = \emptyset \quad \text{for every } \xi \in [1-d,1[$$

Then (1.1) has a solution.

SKETCH OF THE PROOF. We follow the steps in the proof of Theorem 2.2. We decompose

$$H_0^1(\Omega) = V_1 \oplus V_2,$$

where V_1 is the finite dimensional eigenspace associated to the eigenvalues $\lambda_1, \ldots, \lambda_{k-1}$. We use similar notation as in Section 2. Clearly there exists $\sigma > 0$ such that

$$Q(0,u) \leq -\sigma \|u\|^2 \quad \forall u \in V_1 \quad \text{and} \quad Q(0,u) \geq 0 \quad \forall u \in V_2$$

It follows from (3.2) that a result similar to Lemma 2.3 can be stated, provided we replace the interval $[\eta/2, \eta]$ in that lemma with $[-\eta, -\eta/2]$. As a consequence, for every $\varepsilon > 0$ small enough there exists a homeomorphism γ_0 in $H_0^1(\Omega)$ such that (compare with (2.9))

(3.3)
$$Q(1,\gamma_0(u)) \leq -\eta \|\gamma_0(u)\|^2 \quad \forall u \in V_1, \\ Q(1,\gamma_0(u)) \geq -\varepsilon \|\gamma_0(u)\|^2 \quad \forall u \in V_2.$$

For large R (depending on ε), let $S = \gamma_0(V_2)$, $A = R\gamma_0(B_1)$, $\partial A = R\gamma_0(\partial B_1)$ be as in (2.10), where now B_1 stands for the unit ball in V_1 with the center at the origin. Using (2.1) and $(NQ)_+$ we see that there exist positive constants C and C_1 such that, for any $u \in H_0^1(\Omega)$ (compare with (2.12), (2.13)),

(3.4)
$$\int_{\Omega} G(x,u) \le C_1$$
 and $-\eta \|u\|^2 - \int_{\Omega} G(x,u) \le -\eta \|u\|^2/2 + C.$

Let $E_{\varepsilon}(u) = E(u) + 2\varepsilon ||u||^2$. It follows from (3.3) and (3.4) that, provided R is large (compare with (2.15)),

$$\sup_{\partial A} E_{\varepsilon} < -C_1 \le \inf_S E_{\varepsilon} \le \sup_A E_{\varepsilon} \le C.$$

It then follows easily that E admits a critical point u with energy level in $[-C_1, C]$.

Going through Examples 3.1–3.3 above we see that (3.2) holds when, roughly speaking, (α, β) lies in some "lower branch" of Σ which is isolated from below from the rest of the spectrum Σ . In the particular case where $(\alpha, \beta) \in C_2$ (see Section 1), the variational characterization of C_2 given in [5], [11] implies that (3.2) holds. In this way we obtain [4, Theorem 1] as a corollary of Theorem 3.5. Similar results apply to the periodic problem (3.1).

References

- M. ARIAS AND J. CAMPOS, Radial Fučik spectrum of the Laplace operator, J. Math. Anal. Appl. 190 (199), 654–666.
- P. BARTOLO, V. BENCI AND D. FORTUNATO, Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity, Nonlinear Anal. 7 (1983), 981–1012.
- [3] N. P. CĂK, On nontrivial solutions of a Dirichlet problem whose jumping nonlinearity crosses a multiple eigenvalue, J. Differential Equations 80 (1989), 379–404.
- [4] D. G. COSTA AND M. CUESTA, Existence results for perturbations of the Fučik spectrum, Topol. Methods Nonlinear Anal. 8 (1996), 295–314.
- [5] M. CUESTA AND J. P. GOSSEZ, A variational approach to nonresonance with respect to the Fučik spectrum, Nonlinear Anal. 19 (1992), 487–500.
- [6] E. N. DANCER, On the Dirichlet problem for weakly nonlinear elliptic partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 76 (1977), 283–300.
- [7] _____, Multiple solutions of asymptotically homogeneous problems, Ann. Mat. Pura Appl. 152 (1988), 63–78.
- [8] _____, Generic domain dependence for non-smooth equations and the open problem for jumping nonlinearities, Topol. Methods Nonlinear Anal. 1 (1993), 139–150.
- [9] A. R. DOMINGOS AND M. RAMOS, Remarks on a class of elliptic problems with asymmetric nonlinearities, Nonlinear Anal. 25 (1995), 629–638.
- [10] D. G. DE FIGUEIREDO AND J. P. GOSSEZ, On the first curve of the Fučik spectrum of an elliptic operator, Differential Integral Equations 7 (1994), 1285–1302.
- [11] A. FONDA AND M. RAMOS, Large-amplitude subharmonic oscillations for scalar second order differential equations with asymmetric nonlinearities, J. Differential Equations 109 (1994), 354–372.
- [12] S. FUČIK, Boundary value problems with jumping nonlinearities, Časopis pro Pěstováni Matematiky 101 (1976), 69–87.
- [13] T. GALLOUËT AND O. KAVIAN, Résultats d'existence et de non-existence pour certains problèmes demi-linéaires à l'infini, Ann. Fac. Sci. Toulouse Math. 3 (1981), 201–246.
- [14] _____, Resonance for jumping non-linearities, Comm. Partial Differential Equations 7 (1982), 325–342.

- [15] P. HABETS, P. OMARI AND F. ZANOLIN, Nonresonance conditions on the potential with respect to the Fučik spectrum for the periodic boundary value problem, Rocky Mountain J. Math. 25 (1995), 1305–1340.
- [16] O. KAVIAN, Quelques remarques sur le spectre demi-lineaire de certains opérateurs autoadjoints, preprint.
- [17] A. C. LAZER AND P. J. MCKENNA, Critical point theory and boundary value problems with nonlinearities crossing multiple eigenvalues II, Comm. Partial Differential Equations 11 (1986), 1653–1676.
- [18] C. A. MAGALHÃES, Multiplicity results for a semilinear elliptic problem with crossing of multiple eigenvalues, Differential Integral Equations 4 (1991), 129–136.
- [19] A. M. MICHELETTI, A remark on the resonance set for a semilinear elliptic equation, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), 803–809.
- [20] A. MARINO, A. M. MICHELETTI AND A. PISTOIA, Some variational results on semilinear problems with asymptotically nonsymmetric behaviour, Quaderno Sc. Normale Superiore, volume in honour of G. Prodi (1991), 243–256.
- [21] _____, A nonsymmetric asymptotically linear elliptic problem, Topol. Methods Nonlinear Anal. 2 (1994), 289–340.
- [22] A. M. MICHELETTI AND A. PISTOIA, A note on the resonance set for a semilinear elliptic equation and an application to jumping nonlinearities, Topol. Methods Nonlinear Anal. 6 (1995), 67–80.
- [23] A. PISTOIA, Alcuni problemi ellittici semilineari asintoticamente asimmetrici, Ph.D. thesis, Pisa, 1990.
- [24] M. RAMOS, A critical point theorem suggested by an elliptic problem with asymmetric nonlinearities, J. Math. Anal. Appl. 196 (1995), 938–946.
- [25] M. SCHECHTER, The Fučik spectrum, Indiana Univ. Math. J. 43 (1994), 1139–1157.
- [26] M. WILLEM, Minimax Theorems, Birkhäuser, 1997.

Manuscript received February 3, 1998

ANA RUTE DOMINGOS AND MIGUEL RAMOS CMAF, Universidade de Lisboa Av. Prof. Gama Pinto, 2 1699 Lisboa Codex, PORTUGAL

E-mail address: mramos@lmc.fc.ul.pt

 TMNA : Volume 11 – 1998 – Nº 1