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ON THE SOLVABILITY OF A RESONANT ELLIPTIC
EQUATION WITH ASYMMETRIC NONLINEARITY

Ana Rute Domingos — Miguel Ramos

1. Introduction

Let Ω be a bounded smooth domain in RN , N ≥ 1. In this paper we study
the existence of the solution for the elliptic equation with Dirichlet boundary
condition

(1.1) −∆u = αu+ − βu− + g(x, u), u ∈ H1
0 (Ω),

where α, β are real parameters and u+ = max{u, 0}, u− = u+ − u. Without
loss of generality, we assume β ≤ α. In fact, denoting by (λi) the increasing
sequence of eigenvalues of (−∆,H1

0 (Ω)), we study the case where λ1 < β < α

and [β, α] intersects this linear spectrum. Here g : Ω×R → R is a Carathéodory
function with subcritical growth at infinity, namely |g(x, s)| ≤ A(|s|p−1 + 1)
with 1 < p < 2N/(N − 2) if N ≥ 2. If N = 1, we merely suppose that
|g(x, s)| ≤ a(x) + b(x)f(s) where a, b ∈ L1(Ω), f is continuous and f(s) = O (s)
near 0.

We consider nonlinear terms which are sublinear at infinity, in a sense to
be made precise below (see (2.1)). It is well-known that then the existence
and multiplicity of solutions of (D) strongly rely on the position of the pair
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(α, β) ∈ R2 with respect to the so called Fučik spectrum of (−∆,H1
0 (Ω)). The

latter is defined as

(1.2) Σ := {(µ, ν) ∈ R2 : ∃u ∈ H1
0 (Ω), u 6= 0, −∆u = µu+ − νu−}.

It is clear that Σ contains the lines R × {λ1} and {λ1} × R as well as the
points (λi, λi), i ≥ 1. In the one dimensional case N = 1, the set Σ can be
easily described (see e.g [12]). For higher dimensions, some properties of Σ were
obtained by several authors, see [1], [3], [6], [8], [10], [13], [16], [18], [19], [22],
[25]. For results concerning the solvability of (1.1) and without being exhaustive,
we refer to [3]–[7], [9], [14], [17], [18], [20], [24] and especially to [21]–[23].

In particular, it was first observed by Kavian [16] that Σ contains a global
curve C2 with crosses (λ2, λ2). Some qualitative properties of C2 are also known,
see [10]. The first variational characterization of C2 in terms of the associated
energy functional was already presented in [16], through a variant of the well-
known mountain pass theorem of Ambrosetti and Rabinowitz. This variational
characterization was somewhat clarified in [5, Lemma 4.3] and [11, Proposi-
tion 3.2].

The present paper is motivated by a result of Costa and Cuesta [4] where
the authors consider (1.1) with (α, β) ∈ C2. As in [4], we find solutions for (1.1)
as critical points of the C1 energy functional defined by

E(u) :=
1
2

∫
Ω

[|∇u|2 − α(u+)2 − β(u−)2]−
∫

Ω

G(x, u), u ∈ H1
0 (Ω),

where G(x, s) :=
∫ s

0
g(x, ξ) dξ. Due to the resonance of the problem (i.e. the fact

that (α, β) ∈ Σ and g is sublinear at infinity) the usual Palais–Smale condition is
not satisfied. Hence the authors assume that G(x, s) is nonquadratic at infinity,
in the sense that either (NQ)+ or (NQ)− below holds:

(NQ)± lim
|s|→∞

(sg(x, s)− 2G(x, s)) = ±∞ uniformly for a.e. x ∈ Ω.

We refer to [4] for a discussion and examples concerning this kind of nonlineari-
ties. The point is that under (NQ)+ or (NQ)− the so called Cerami condition (cf.
[2]) holds for E, namely any sequence (un) ⊂ H1

0 (Ω) with (E(un)) bounded and
(1+ ‖un‖)‖∇E(un)‖ = o (1) has a convergent subsequence (see [4, Lemma 2.2]).
We denote by ‖ · ‖ the H1

0 (Ω)-norm. This key observation, together with the
above mentioned characterization of C2, enabled the quoted authors to prove an
existence result for (1.1) in case (NQ)+ holds.

Here we concentrate on the case where (NQ)− holds. The difficulties arising
from this assumption, even in the one dimensional case N = 1, were already
pointed out in [4, Section 4]. Roughly speaking, our main assumption concerns
the existence of a path c(t) connecting c(0) = (α, β) with some eigenpair c(1) =
(λk, λk) in such a way that a delected “upper neighbourhood” of c([0, 1]) does
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not intersect Σ. We stress that we allow c([0, 1]) ⊂ Σ, see Definition 2.1 and
Section 3 for further comments and examples. In this way we are able to refine
our previous arguments in [9] and to provide a solution for (1.1).

In Section 2 we state and prove our main result. In Section 3 we discuss
three typical situations in which our main assumption holds. We also prove an
existence result for (1.1) in case (NQ)+ holds which extends [4, Theorem 1].
Still under assumption (NQ)−, we state in Section 3 an existence theorem for
an ordinary differential equation with periodic boundary conditions related to
(1.1), which improves [4, Theorem 2].

2. Main result

We consider problem (1.1) with g having subcritical growth at infinity. More-
over, we assume that

(2.1) lim
|s|→∞

G(x, s)/s2 = 0 uniformly for a.e. x ∈ Ω.

Our assumption on (α, β) is expressed in the following definition. Let (α, β) ∈ R2

be such that λ1 < β < α.

Definition 2.1. We say that (α, β) is Σ-connected to (λk, λk), k ≥ 2, if
there exist d > 0 and a C1 function c : [0, 1] → R2 satisfying c(0) = (λk, λk),
c(1) = (α, β) and

ξc([0, 1]) ∩ Σ = ∅ for every ξ ∈ ]1, 1 + d] .

We explicitely note that we allow c to intersect Σ. In fact, in a typical
situation (see Section 3) we have c([0, 1]) ⊂ Σ. On the other hand, we suppose
that we do not meet Σ when we slightly “lift up” c([0, 1]). We observe also that
despite the fact that we are mostly concerned with the case where (α, β) ∈ Σ we
do not assume this in Definition 2.1.

Theorem 2.2. We consider (1.1) with g satisfying both (NQ)− and (2.1).
If (α, β) is Σ-connected to (λk, λk) for some k ≥ 2 then (1.1) admits a solution.

The rest of the section is devoted to the proof of Theorem 2.2. Let c(t) =
(α(t), β(t)) be the path given by Definition 2.1. For any t ∈ [0, 1], we introduce
the C1 functionals over H1

0 (Ω),

Q(t, u) :=
1
2

∫
Ω

[|∇u|2 − α(t)(u+)2 − β(t)(u−)2],

and

E(t, u) := Q(t, u)−
∫

Ω

G(x, u), E(u) = E(1, u).
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It is well-know that critical points of E in H1
0 (Ω) are weak solutions of prob-

lem (1.1). We consider the orthogonal direct sum

H1
0 (Ω) = H1 ⊕H2,

where H1 is the finite dimensional eigenspace associated with the eigenvalues
λ1, . . . , λk. Since c(0) = (λk, λk), it is clear that

(2.2) Q(0, u) ≤ 0 ∀u ∈ H1 and Q(0, u) ≥ σ‖u‖2 ∀u ∈ H2,

for some constant σ > 0. The estimate below describes our assumption on (α, β)
in terms of the energy levels of the quadratic forms envolved.

Lemma 2.3. There exist positive constants η, δ, η < σ, with the following
property: for any t ∈ [0, 1] and u ∈ H1

0 (Ω), ‖u‖ = 1,

Q(t, u) ∈ [η/2, η] ⇒ ‖∇Q(t, u)‖2 − (∇Q(t, u)u)2 ≥ δ.

Proof. Let d be given by definition 2.1 and denote

η := min{d/3(d + 1), σ/2}.

We suppose by contradiction that for some sequence (tn) ⊂ [0, 1] and (un) ⊂
H1

0 (Ω) with ‖un‖ = 1 it holds

η/2 ≤ Q(tn, un) ≤ η and ‖∇Q(tn, un)‖2 − (∇Q(tn, un)un)2 = o(1),

as n →∞. We denote µn = ∇Q(tn, un)un = 2Q(tn, un) ∈ [η, 2η]. Since

‖∇Q(tn, un)− µnun‖2 = ‖∇Q(tn, un)‖2 − (∇Q(tn, un)un)2 = o(1),

we have, for every bounded sequence (vn) ⊂ H1
0 (Ω),

(2.3) (1− µn)
∫

Ω

∇un∇vn − α(tn)
∫

Ω

u+
n vn +

∫
Ω

β(tn)u−n vn = o(1).

Up to subsequences, let µ = lim µn ∈ [η, 2η], t0 = lim tn ∈ [0, 1] and u be a weak
limit of (un). Using (2.3) with vn = un we see that

(1− µ) =
∫

Ω

(α(t0)(u+)2 + β(t0)(u−)2).

Since µ ≤ 2η < 1, we deduce that u 6= 0. By using now (2.3) with arbitrary test
functions v, we conclude that u is a nontrivial solution of the problem

−∆u =
α(t0)
1− µ

u+ − β(t0)
1− µ

u−, u ∈ H1
0 (Ω).

In particular, (α(t0), β(t0))/(1− µ) ∈ Σ. Since µ > 0, the definition of d implies
then that we must have 1/(1−µ) ≥ d+1, that is µ ≥ d/(d+1). This contradicts
the fact that µ ≤ 2d/3(d + 1). �
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We will find a critical point for E through a limit process with an approximate
sequence of functionals Eε, ε → 0. So let ε ∈ ]0, η/4[. Proceeding as in the proof
of Lemma 2.3 we see that there exists δε > 0 such that, for any t ∈ [0, 1] and
u ∈ H1

0 (Ω), ‖u‖ = 1,

(2.4) Q(t, u) ∈ [ε, 2ε] ⇒ ‖∇Q(t, u)‖2 − (∇Q(t, u)u)2 ≥ δε.

We can of course assume that δε < δ. The above conlusions enable us to state
a property similar to the one in (2.2) for all quadratic forms Q(t, · ), t ∈ [0, 1],
except that we replace the subspaces H1 and H2 in (2.2) with some convenient
homeomorphic subsets of H1

0 (Ω). This homeomorphism is in turn given by the
flow associated with the ordinary (but non autonomous) differential equation

σ̇(t) = h(t, σ)∇Q(t, σ),

where h : [0, 1] × H1
0 (Ω) → R is an appropriate cut-off function and σ̇ denotes

the derivative dσ/dt. To make this idea precise, we denote by S the unit sphere
in H1

0 (Ω) and introduce the closed disjoint sets

A1 = {(t, u) ∈ [0, 1]× S : Q(t, u) ≤ ε},
A2 = {(t, u) ∈ [0, 1]× S : Q(t, u) ≥ η/2}.

Let χ : [0, 1] × S → [−1, 1] be a continuous function such that χ = −1 over A1

and χ = 1 over A2. Namely, χ = χ1 − χ2, with χi : [0, 1]× S → [0, 1] defined by

χi(t, u) =
dist((t, u), Ai)

dist((t, u), A1) + dist((t, u), A2)
,

for i = 1, 2. It is clear that χ is locally Lipschitz continuous. We need a stronger
property of χ.

Lemma 2.4. Function χ is Lipschitz continous.

Proof. We observe that in [0, 1]×S both functions fi(t, u) = dist((t, u), Ai)
are bounded and Lipschitz continuous. Thus the conclusion follows easily once
we show that

inf
[0,1]×S

(f1 + f2) > 0.

Arguing by contradiction, if the above does not hold we find sequences (tn, un) ∈
A1, (sn, vn) ∈ A2 such that |tn − sn| → 0 and ‖un − vn‖ → 0. Passing to
a subsequence and using the definitions of A1 and A2 together with the weak
continuity of Q, we find some (t, w) ∈ [0, 1] × H1

0 (Ω) satisfying η/2 ≤ 1 −
α(t)

∫
Ω
(w+)2 − β(t)

∫
Ω
(w−)2 ≤ ε and this is a contradiction. �

Let F : [0, 1]×H1
0 (Ω) → R be given by

F (t, u) = χ(t, u/‖u‖)∇Q(t, u) if u 6= 0, F (t, 0) = 0.
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Lemma 2.5. Function F is locally Lipschitz continuous. Moreover, there
exists L > 0 such that, for every (t, u) ∈ [0, 1]×H1

0 (Ω), ‖F (t, u)‖ ≤ L‖u‖.

Proof. Our second statement in the lemma is a direct consequence of the
analogous property for∇Q. Now, let (t, u) and (s, v) be arbitrary in [0, 1]×H1

0 (Ω)
with, say, 0 < ‖u‖ ≤ ‖v‖. In particular,

(2.5) ‖u/‖u‖ − v/‖v‖‖‖u‖ ≤ ‖u− v‖.

It then follows from Lemma 2.4 and (2.5) that, for some C > 0,

‖F (t, u)− F (s, v)‖ ≤ |χ(t, u/‖u‖)− χ(s, v/‖v‖)|‖∇Q(t, u)‖
+ |χ(s, v/‖v‖)|‖∇Q(t, u)−∇Q(s, v)‖

≤C(‖u− v‖+ |t− s| ‖u‖) + ‖∇Q(t, u)−∇Q(s, v)‖.

Since ∇Q is locally Lipschitz continuous, the lemma follows. �

Now, let K = sup{|α′(t)|+ |β′(t)|, t ∈ [0, 1]} and S0 be the Sobolev constant
given by the continuous imbedding of H1

0 (Ω) into L2(Ω). We fix any

(2.6) M > KS2
0δ−1

ε

and consider the Cauchy problem

(2.7) σ̇(t) = MF (t, σ(t)), σ(0) = u ∈ H1
0 (Ω).

It follows from Lemma 2.5 and standard arguments that (2.7) generates a con-
tinuous flow σ : [0, 1] × H1

0 (Ω) → H1
0 (Ω). Moreover, for any t ∈ [0, 1], σ(t, · )

is a homeomorphism. Since F (t, 0) = 0, the uniqueness of the Cauchy problem
implies also that σ(t, u) 6= 0 whenever t ∈ [0, 1] and u 6= 0. For any non zero
function in H1

0 (Ω), let Θ : [0, 1] → R be given by

Θ(t) =
Q(t, σ(t, u))
‖σ(t, u)‖2

·

Lemma 2.6. Function Θ is increasing (resp. decreasing) in any interval
[t1, t2] such that

η/2 ≤ Θ(t) ≤ η, ∀t ∈ [t1, t2] (resp. ε ≤ Θ(t) ≤ 2ε, ∀t ∈ [t1, t2]).

Proof. Let us write σ(t) for σ(t, u). Since Q(t, · ) is homogeneous we see
that, by construction, σ satisfies

σ̇(t) = M∇Q(t, σ(t))
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over [t1, t2]. Using Lemma 2.3, (2.6) and the fact that ∇Q(t, v)v = 2Q(t, v) for
any t, v, by a straightforward computation we show then that

dΘ
dt

(t) =‖σ(t)‖−2

[
∂Q

∂t
(t, σ(t)) +∇Q(t, σ(t))σ̇(t)

]
+ Q(t, σ(t))

d

dt
(‖σ(t)‖−2)

=− 2−1‖σ(t)‖−2

[
α′(t)

∫
Ω

(σ(t)+)2 + β′(t)
∫

Ω

(σ(t)−)2
]

+ ‖σ(t)‖−2M‖∇Q(t, σ(t)‖2 −M(∇Q(t, σ(t))σ(t))2‖σ(t)‖−4

≥−KS2
0 + M(‖∇Q(t, v(t))‖2 − (∇Q(t, v(t))v(t))2)

≥−KS2
0 + Mδ > 0,

where we denoted v(t) = σ(t)/‖σ(t)‖. This proves the first statement in the
lemma. The case where Θ lies in [ε, 2ε] follows from a similar argument by using
(2.4) and observing that now σ̇(t) = −M∇Q(t, σ(t)). �

Now, let γ0 : H1
0 (Ω) → H1

0 (Ω) be the homeomorphism defined by

(2.8) γ0(u) = σ(1, u).

We observe that γ0 depends on ε. Let η be as in Lemma 2.3. Taking (2.2) and
Lemma 2.6 into account we see that

(2.9) Q(1, γ0(u)) ≤ ε‖γ0(u)‖2 ∀u ∈ H1, Q(1, γ0(u)) ≥ η‖γ0(u)‖2 ∀u ∈ H2.

The above conclusions suggest that we apply the following minimax procedure.
For any R > 0, we denote

(2.10) S = γ0(H2), A = Rγ0(B1) and ∂A = Rγ0(∂B1)

where B1 stands for the unit ball in H1 with the center at the origin. We denote

Γ := {γ ∈ C(A;H1
0 (Ω)) : γ(u) = u ∀u ∈ ∂A}.

Lemma 2.7. Sets S and ∂A link through A, that is

∂A ∩ S = ∅ and γ(A) ∩ S 6= ∅ ∀γ ∈ Γ.

Proof. We first claim that for any u ∈ ∂B1, v ∈ H2, ξ ∈ R, ξ 6= 0,

(2.11) ξγ0(u) 6= γ0(v).

Indeed, if ξγ0(u) = γ0(v) then ξ2‖γ0(u)‖2 = ‖γ0(v)‖2 and (2.9) implies

η‖γ0(v)‖2 ≤ Q(1, γ0(v)) = Q(1, ξγ0(u))

= ξ2Q(1, γ0(u)) ≤ εξ2‖γ0(u)‖2 = ε‖γ0(v)‖2,

yielding γ0(v) = 0. Thus also γ0(u) = 0. By the uniqueness of the Cauchy
problem (2.7), u = 0. This contradicts u ∈ ∂B1 and proves (2.11). In particular,
this shows that ∂A ∩ S = ∅.
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We denote by P the orthogonal projection of H1
0 (Ω) onto H1. Again (2.11)

implies that for any t ∈ [0, 1] the map Ht : B1 → H1 given by

Ht = P ◦ γ−1
0 ◦ (1 + (R− 1)t)γ0,

has a well-defined Brouwer degree deg(Ht, B1, 0). By the invariance property of
the degree,

deg (H1, B1, 0) = deg (H0, B1, 0) = deg (P,B1, 0) = 1.

Now, for a given γ ∈ Γ, the above shows that

deg (P ◦ γ−1
0 ◦ γ(Rγ0), B1, 0) = deg (H1, B1, 0) = 1.

This implies γ(A) ∩ S 6= ∅ and proves the lemma. �

Proof of Theorem 2.2 completed. (1) Let η be given by Lemma 2.3.
It follows from (2.1) that there exists C > 0 such that, for every u ∈ H1

0 (Ω),

(2.12) η‖u‖2 −
∫

Ω

G(x, u) ≥ η‖u‖2/2− C.

On the other hand, it follows easily from (2.1) and (NQ)− that G(x, s) → ∞
as |s| → ∞, uniformly for a.e. x ∈ Ω (see [4, Lemma 2.3]). In particular, there
exists C1 > 0 such that, for every u ∈ H1

0 (Ω),

(2.13)
∫

Ω

G(x, u) ≥ −C1.

(2) Let’s fix any ε ∈ ]0, η/4[ and consider the homeomorphism γ0 given in
(2.8). Using the compactness of ∂B1 and the uniqueness of the Cauchy problem
(2.7) we see that

aε := inf{‖γ0(u)‖2, u ∈ ∂B1} > 0.

Then we fix R > 0 sufficiently large so that

(2.14) −εR2aε + C1 < −C.

For this choice of R, we consider the sets S, A, ∂A as in (2.10). We denote

Eε(u) := E(u)− 2ε‖u‖2, u ∈ H1
0 (Ω).

It follows from (2.9), (2.13) and (2.14) that for any v ∈ ∂A, say, v = Rγ0(u),

Eε(v) = R2Q(1, γ0(u))−
∫

Ω

G(x, v)− 2εR2‖γ0(u)‖2

≤ −εR2‖γ0(u)‖2 + C1 ≤ −εR2aε + C1 < −C.

We observe also that Eε(v) ≤ C1 for any v ∈ A. Similarly, if v ∈ S (2.9) and
(2.12) imply

Eε(v) ≥ η‖v‖2 −
∫

Ω

G(x, v)− 2ε‖v‖2 ≥ (η/2− 2ε)‖v‖2 − C ≥ −C.
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We thus conclude that

(2.15) sup
∂A

Eε < −C ≤ inf
S

Eε ≤ sup
A

Eε ≤ C1.

In particular,

(2.16) sup
∂A

Eε < inf
S

Eε.

(3) It is proved in [4, Lemma 2.2], as a consequence of both (2.1) and (NQ)−,
that the Cerami condition (see Section 1) holds for the functional E. In fact, the
arguments in [4, Lemma 2.2] show that Eε also satisfies the Cerami condition,
as long as 0 < ε < 1/4. This, together with (2.16) implies (see [2]) that Eε has
a critical point uε, with a minimax critical level given by

Eε(uε) = inf
γ∈Γ

sup
u∈A

Eε.

Hence we see that (2.15) implies

∇Eε(uε) = 0 and − C ≤ Eε(uε) ≤ C1.

In particular, (Eε(uε)) is bounded uniformly in ε. Thus again the arguments
in [4, Lemma 2.2] imply that uεn

→ u in H1
0 (Ω) along some sequence εn → 0.

Clearly,

∇E(u) = 0 and − C ≤ E(u) ≤ C1.

This completes the proof of Theorem 2.2. �

3. Further results

We start by presenting some situations where Theorem 2.2 applies, namely
where the pair (α, β) is Σ-connected to some eigenpair in the sense of Defini-
tion 2.1. In the following we let λ1 < β < α.

Example 3.1. Let’s assume N ≥ 2 and that λk−1 < β ≤ λk ≤ α < λk+1

for some k ≥ 2. It is known that Σ contains at least two paths ci(t), i = 1, 2,
with image in J := [λk, λk+1[ × ]λk−1, λk] and starting at the point (λk, λk).
Moreover, Σ∩J lies in between the graphs of c1 and c2. In fact, if λk is a simple
eigenvalue then Σ∩J = range(c1)∪range(c2). We also recall that it may happen
that c1 = c2. Otherwise, say, the graph of c1 lies below the graph of c2. For this
and other properties of c1 and c2 we refer the reader to [3], [13], [18], [25].

Thus, with the above notation, we see that (α, β) is Σ-connected to (λk, λk)
whenever (α, β) lies in range(c2) (or above it).
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Example 3.2. Let’s suppose now Ω = BR(0) ⊂ RN is an open ball. When-
ever g( · , s) is radially invariant we may look at the radial solutions of (1.1). In
this case Theorem 2.2 also provides a radial solution for (1.1). In fact, the proof
remains unchanged except that now we work in the space H1

0,rad (Ω) consisting

of the radially symmetric functions of H1
0 (Ω). Indeed, it follows from the princi-

ple of symmetric criticality (see e.g. [26, Theorem 1.28]) that a critical point of
the restricted functional E is a radial solution of (1.1).

Of course, in this situation we can relax our assumption on (α, β) by merely
assuming that (α, β) is Σrad -connected to some (λk, λk), in an obvious sense.
Here (λi) stands for the radial eigenvalues of (−∆,H1

0,rad (Ω)) and Σrad is given

in (1.2) with H1
0 (Ω) replaced by H1

0,rad (Ω). It is proved in [1] that Σrad consists
of the lines R×{λ1} and {λ1}×R together with pairs r1,k, r2,k (k ≥ 2) of (globally
defined) curves which cross (λk, λk). Each set range(r1,k)∪range(r2,k) is isolated
from the rest of Σrad . We refer to [1] for further regularity, monotonicity and
asymptotic properties of these curves.

Let us write ri,k = (t, si,k(t)) for i = 1, 2, t ∈ [λk,∞[ and set rk(t) = (t, sk(t)),
where sk = max{s1,k, s2,k}. It then follows that (α, β) is Σrad -connected to
(λk, λk) whenever (α, β) lies in rk([λk,∞[).

Example 3.3. We now consider the one dimensional case N = 1 with, say,
Ω = ]0, π[. In this case Σ can be computed explicitly (cf. e.g. [4], [12]) and it is
precisely the union of the (globally defined) curves c1,k, c2,k (k ≥ 2) mentioned in
Example 3.1 together with the lines R×{λ1} and {λ1}×R. As in Example 3.1,

Theorem 2.2 applies for any pair (α, β) ∈ R2 lying in the upper branch c2,k.

Next we make some remarks concerning the scalar periodic problem

(3.1) −ü = αu+ − βu− + g(x, u), u(0)− u(2π) = 0 = u̇(0)− u̇(2π),

with 0 < β < α. Here λi = (i−1)2 for i ≥ 1. We refer the reader to [11] and [15]
for recent results concerning (3.1). The Fučik spectrum Σ of the associated linear
operator is defined as in (1.2) except that now we work in the space H1

per(]0, 2π[),
consisting of the 2π-periodic functions of the Sobolev space H1(]0, 2π[). It is
easily seen that Σ consists of the lines R × {0} and {0} × R together with the
curves defined by

Ck =
{

(µ, ν) ∈ R2
+ :

1
√

µ
+

1√
ν

=
2

k − 1

}
, k ≥ 2.

Assuming (2.1), it is proved in [4, Theorem 2] that (3.1) admits a solution when-
ever (α, β) ∈ Ck (k ≥ 2) and either (NQ)+ holds or else (NQ)− holds and
α ≥ λk−1, β ≥ λk−1 hold. The latter restriction can in fact be avoided.
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Theorem 3.4. Let (α, β) ∈ Ck, k ≥ 2, and assume (2.1) and (NQ)−. Then
(3.1) admits at least one solution.

Proof. We may write the equation in (3.1) as

−Lu = α̃u+ − β̃u− + g(x, u),

where α̃ = α+1, β̃ = β +1 and Lu = ü−u. With an obvious meaning, let Σ̃ be
the Fučik spectrum of (−L, H1

per(]0, 2π[)), that is, Σ̃ = Σ + {(1, 1)}. Using the

curve Ck we see that (α̃, β̃) is Σ̃-connected to the eigenpair (λk + 1, λk + 1) of
(−L,H1

per(]0, 2π[)). Since L is invertible, the proof of Theorem 2.2 can then be
repeated step by step. �

We conclude with a symmetric version of Theorem 2.2, in the sense that we
assume that (NQ)+ holds instead of (NQ)−.

Theorem 3.5. We consider (1.1) with g satisfying both (NQ)+ and (2.1).
We suppose there exist d ∈ ]0, 1[ and a C1 function c : [0, 1] → R2 such that
c(0) = (λk, λk) (k ≥ 2), c(1) = (α, β) and

(3.2) ξc([0, 1]) ∩ Σ = ∅ for every ξ ∈ [1− d, 1[ .

Then (1.1) has a solution.

Sketch of the proof. We follow the steps in the proof of Theorem 2.2.
We decompose

H1
0 (Ω) = V1 ⊕ V2,

where V1 is the finite dimensional eigenspace associated to the eigenvalues λ1, . . . ,
λk−1. We use similar notation as in Section 2. Clearly there exists σ > 0 such
that

Q(0, u) ≤ −σ‖u‖2 ∀u ∈ V1 and Q(0, u) ≥ 0 ∀u ∈ V2.

It follows from (3.2) that a result similar to Lemma 2.3 can be stated, provided
we replace the interval [η/2, η] in that lemma with [−η,−η/2]. As a consequence,
for every ε > 0 small enough there exists a homeomorphism γ0 in H1

0 (Ω) such
that (compare with (2.9))

(3.3)
Q(1, γ0(u)) ≤ −η‖γ0(u)‖2 ∀u ∈ V1,

Q(1, γ0(u)) ≥ −ε‖γ0(u)‖2 ∀u ∈ V2.

For large R (depending on ε), let S = γ0(V2), A = Rγ0(B1), ∂A = Rγ0(∂B1) be
as in (2.10), where now B1 stands for the unit ball in V1 with the center at the
origin. Using (2.1) and (NQ)+ we see that there exist positive constants C and
C1 such that, for any u ∈ H1

0 (Ω) (compare with (2.12), (2.13)),

(3.4)
∫

Ω

G(x, u) ≤ C1 and − η‖u‖2 −
∫

Ω

G(x, u) ≤ −η‖u‖2/2 + C.



56 A. R. Domingos — M. Ramos

Let Eε(u) = E(u) + 2ε‖u‖2. It follows from (3.3) and (3.4) that, provided R is
large (compare with (2.15)),

sup
∂A

Eε < −C1 ≤ inf
S

Eε ≤ sup
A

Eε ≤ C.

It then follows easily that E admits a critical point u with energy level in
[−C1, C]. �

Going through Examples 3.1–3.3 above we see that (3.2) holds when, roughly
speaking, (α, β) lies in some “lower branch” of Σ which is isolated from below
from the rest of the spectrum Σ. In the particular case where (α, β) ∈ C2 (see
Section 1), the variational characterization of C2 given in [5], [11] implies that
(3.2) holds. In this way we obtain [4, Theorem 1] as a corollary of Theorem 3.5.
Similar results apply to the periodic problem (3.1).
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