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Introduction

In this paper we consider the differential equation

(∗) u′(t) + f(t, u(t)) = g(t),

where the unknown u is a real function on S
1 and the nonlinearity f : S

1 ×R → R

can assume a number of forms.
Our approach is to study the global geometry of the operator

F : B1 → B0, u �→ u′ + f(t, u)

where the domain is either C1(S1) (the Banach space of periodic functions with
continuous derivatives) or the Hilbert space H1(S1) of periodic functions with
square integrable derivative. Ideally, we search for global changes of variables in
both domain and image taking the operator F to a simple normal form. This
goal has been achieved in previous occasions, starting with the seminal work
of A. A. Ambrosetti and G. Prodi ([AP]) and its geometric interpretation by
M. S. Berger and P. T. Church ([BC]), who showed that the operator associated
to a certain nonlinear Dirichlet problem gives rise to a global fold between infinite
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dimensional spaces. Topological global cusps have appeared already in operators
related to partial differential equations with a parameter ([BCT], [CDT]). Closer
to the subject of this paper, H. P. McKean and J. C. Scovel ([McKS]) showed
that the operator F for f(t, x) = x2 (or more generally, for convex nonlinearities)
is also a global fold, and raised the question of the global nature of F for f(t, x) =
x3 − x. The same question was asked by V. Cafagna and F. Donati ([CD]) and
P. T. Church and J. G. Timourian ([CT]), who state and prove partial results for
the more general Cafagna–Donati equation ([CD]), for which f(t, x) = ax+bx2+
cx2k+1 for appropriate choices of a, b and c. In Theorem 5.1 and Corollary 5.5, we
show that these nonlinearities indeed obtain global cusps. With some additional
effort, we show that in Hilbert spaces the requested global changes of variables
can be taken to be smooth.

Actually, the operator F is simple enough that substantial insight into its
global geometry can be obtained without having to specialize f . First, we con-
struct a global Lyapunov–Schmidt type decomposition of F . Split a function u

as a sum of a function of average zero (ũ) and a constant (u) and decompose
domain and image accordingly: Bi = B̃i ⊕ Bi. Writing the action of F as

u = (ũ, u) �→ v = (ṽ, v),

we show in Theorem 1.2 that, for each u, the correspondence ũ �→ ṽ is a global
diffeomorphism. This provides a change of coordinates in the domain of F bring-
ing it to (global) adapted coordinates

(ṽ, u) �→ (ṽ, v).

We immediately infer that the inverse images of vertical lines under F are fibres,
curves foliating the domain and intersecting every horizontal plane exactly once
and transversally. The study of F in a sense boils down to the study of its
behaviour on the fibres: for example, f(t, x) = x2 produces a fold on every fibre
and thus F is a global fold.

No hypothesis on the behaviour of f at infinity is necessary to obtain adapted
coordinates: in particular, we obtain some results about the global geometry of F

even when it is not proper. From Proposition 1.4, properness of f implies proper-
ness of F but, from Proposition 4.1, the converse is false. Adapted coordinates
combined with properness make clear the possibility of definining a topological
degree for F : the degree of F is just the degree of any of its restrictions to fibres.

It is easy to see that (generically) S1, the critical set of F , is a manifold.
Rather surprisingly, the global geometry of S1 does not depend on the nonlin-
earity: generically, it is connected and contractible (Corollary 1.9). This follows
from a more general theorem (Theorem 1.8 or [MST]) on the contractibility of
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regular level sets of a class of functionals defined by integration. From con-
tractibility, by topological arguments often using the infinite dimension of the
spaces involved ([Ka], [Ku], [S]), there is a change of variables in the domain of
F taking S1 to a closed hyperplane; in the Hilbert case, this change of varia-
bles can be taken to be a diffeomorphism but in the Banach case, it is merely a
homeomorphism.

We then proceed to study the critical points of F in detail. From adapted
coordinates, ker DF has dimension 1 at critical points and im DF is then a
closed subspace of codimension 1. This restricts considerably the possible nature
of a generic critical point of F : it has to be an infinite dimensional Morin
singularity ([M]). More precisely, after changes of coordinates F near a generic
singularity u can be written as

(Z, x1, . . . , xk−1, y) �→
(

Z, x1, . . . , xk−1, yk+1 +
∑

i=1,... ,k−1

xiy
i

)

near zero, where Z is an element of an infinite dimensional space and xi and y

are real numbers. The integer k is the order of the singularity: folds and cusps
are Morin singularities of orders 1 and 2. Morin’s classification and proof carry
over to the infinite dimensional case by making use of a version of the Malgrange
preparation theorem with an (infinite dimensional) parameter: this approach has
been used in [CDT] to obtain a characterization of infinite dimensional cusps.
The description of a Morin singularity is given more explicitly in Propositions 2.1
and 2.2 in terms of a collection of functionals Σi, i = 1, 2, . . .: at a singular
point of order k, the first k functionals have to be zero and some transversality
relations have to hold. Given v, we may define a return map ρv taking x0 to
x1 if a (possibly non-periodic) solution u of (∗) satisfies u(0) = x0, u(1) = x1.
In Proposition 2.3, we relate the order of a singularity u to the order of contact
between ρF(u) and the identity at u(0).

In the autonomous case, when the nonlinearity does not depend on t, also
S2, the set of critical points which are not folds, is (generically) a connected
contractible manifold. To show this, we need again Theorem 1.8 and Lemma 3.1,
stating that S1 and S2 are diffeomorphic to the simpler sets Ŝ1 and Ŝ2, critical
and non-fold points of the simplified operator

F̂ : B1 → B0, u �→ u′ +
∫

f(t, u(t)) dt.

Again, contractibility yields a change of variables flattening S1 and S2. Here,
and throughout the paper, the indefinite integral represents integration over S

1.
The functionals Σi are rather complicated and we do not know of a simple

procedure to decide if singularities of a given order exist for a fixed f . However,
in the autonomous case, we describe in Lemma 3.5 a necessary (and essentially
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sufficient) criterion for the existence of singularities of order k for the simplified
operator F̂ . In the same lemma, we show that if F̂ has a singularity of order k

then F also does.

In Section 4, we consider some special types of functions f : if f is either
monotonic or convex for each value of the first coordinate t, we give a global
description of the behaviour of F . Even though some of the results are simple
or well known (from [McKS]), they provide a convenient introduction to our
approach of studying F fibre by fibre. Using Lemma 3.5, we give a criterion
(Theorem 4.4) for autonomous nonlinearities to decide whether the operator F is
a global fold. In particular (Corollary 4.5), polynomial non-convex nonlinearities
f give rise to operators F with S2 �= ∅ but there are fast-growing non-convex
nonlinearities for which the operator is a global fold. Also, local behaviour
characterizes global folds (Theorem 4.6): generically, if all singularities of F are
folds then F is a global fold.

In Section 5, the autonomous nonlinearities f satisfy f ′′′ ≥ 0 with isolated
zeros. The related operator F is then a global cusp: here we make full use of
our techniques. In this case there does not seem to be an explicit description of
the requested (global) changes of variables: their existence follows by topological
arguments similar to those used in the study of the sets S1 and S2. Lemma 5.4
is a global parametrized version of Whitney’s normal form for cusps ([W]); the
proof appears to be cumbersome but its main difficulty lies in verifying that
Whitney’s construction can be performed smoothly in a parameter. We present
only a sketch of argument and we thank John Mather for helpful discussions.

We finish the paper with an example of a different kind. The results in
Sections 4 and 5 are enough to show that if f(t, x) is a polynomial in x of degree
d ≤ 3 (with coefficients depending on t and non-zero coefficient of highest degree),
then the related operator F is a diffeomorphism, a global fold or a global cusp.
In this case, thus, equation (∗) has at most d periodic solutions. The number of
solutions of (∗) when f is such a polynomial was considered by Pugh, Lins Neto
and Smale ([L]) who proved the bounds above and that the number of solutions
may be arbitrarily large for d = 4. We instead exhibit a numerical example of
an autonomous polynomial f of degree four and a function u which is a Morin
singularity of order four (a butterfly). This is accomplished by requesting that
u be a root of the first four functionals Σi. By the normal form of F at a
butterfly, there are points g near F (u) with five pre-images; one is presented.
By a degree-theoretic argument, such a (regular) point ought to have an even
number of pre-images, and we verified by solving the differential equation with
a Runge–Kutta method that there are exactly six initial conditions giving rise
to periodic solutions.
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1. Adapted coordinates and the critical set

We consider the smooth nonlinear operator F : B1 → B0 given by

F (u)(t) = u′(t) + f(t, u(t)),

where f : S
1 ×R → R is a smooth function. Here B1 and B0 can be chosen in two

different ways. In the H case, they are the Sobolev spaces B1 = H1 = H1(S1; R)
(the periodic absolutely continuous real valued functions with derivative in L2)
and B0 = H0 = L2(S1; R). In the C case, B1 = C1 = C1(S1; R) and B0 = C0 =
C0(S1; R). For notational convenience, inner products are to be interpreted in the
L2 sense even in other spaces. An interesting special situation is the autonomous
case, in which f does not depend on the t coordinate. We denote the partial
derivative of f with respect to the second variable by D2f .

Proposition 1.1 below obtains a formula for DF at arbitrary points, a de-
scription of the critical set S1F and a Lyapunov-Schmidt decomposition for the
operator F in a neighbourhood of a critical point in the domain. In Theorem 1.2
we show the existence of a convenient global decomposition of F .

Recall the familiar Green kernel k(x) = x − 	x
 − 1/2 (where 	x
, following
Knuth, is the largest integer not larger than x). If h is periodic (with period 1)
then h1(t) =

∫
k(s − t)h(s) ds is also periodic and h′

1(t) = h(t) −
∫

h(s) ds, a
function of average 0, so that k is a kernel for the inverse of derivative, restricted
to functions of average zero.

Proposition 1.1. The derivative

(DF (u)v)(t) = v′(t) + D2f(t, u(t))v(t)

is a Fredholm operator of index 0 from B1 to B0. Furthermore,
∫

D2f(s, u(s)) ds

is the unique real eigenvalue of DF (u), which is simple, with corresponding eigen-
vector is

w(t) = e−
∫

k(s−t)D2f(s,u(s)) ds.

In particular, the critical set of F is

S1F =
{

u ∈ B1
∣∣∣∣

∫
D2f(t, u(t)) dt = 0

}
.

The subspace 〈1/w〉⊥ has codimension 1, is transversal to 〈w〉 and is also invari-
ant under DF (u). Thus, the restriction

DF (u) : 〈1/w〉⊥ ⊂ B1 → 〈1/w〉⊥ ⊂ B0

is bijective.

By an eigenvector of DF (u) : B1 → B0 we mean a solution of DF (u)v =
v′ + D2f(t, u(t))v = λv; by standard regularity arguments, solutions of this
equation are always in B1.
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Proof. The formula for the derivative is straightforward. The expression
for w follows from the explicit solution of the first order periodic linear ODE and
1/w is the only real eigenvector of the adjoint operator

v �→ −v′ + D2f(t, u(t))v. �

Let B1 = B̃1 ⊕ 〈1〉 and B0 = B̃0 ⊕ 〈1〉 (the tilde denotes integral equal to 0)
defining complementary projections ΠB̃ and ΠB . More concretely, ũ = ΠB̃u =
(u −

∫
u) and u = ΠBu =

∫
u. Notice that 〈1〉 is always transversal to 〈1/w〉⊥

and that 〈w〉 is likewise transversal to B̃i.

Theorem 1.2. Let F (ũ+u) = ṽ +v. The map Ψ : B1 → B0, Ψ(u) = ṽ +u,
is a (global) diffeomorphism.

We provide some equivalent, more geometric, readings for this rather dry
statement. The following diagram may be helpful:

ũ, u
F−−−−→ ṽ, v

Ψ↘ ↗F

ṽ, u

The map F = F ◦ Ψ−1 : B0 → B0 takes (ṽ, u) to (ṽ, v) = (ṽ, φ(ṽ, u)).
Horizontal hyperplanes B̃1 + {c} are injectively taken by F onto sheets, i.e.,
hypersurfaces intersecting each vertical line {ṽ} + 〈1〉 transversally and exactly
once. Equivalently, the inverse images under F of the vertical lines {ṽ} + 〈1〉
foliate B1 by fibres, i.e., curves intersecting each horizontal hyperplane transver-
sally and exactly once; we denote by τu the fibre containing u. Let T be the set
of fibres: from transversality, we may identify T with any horizontal hyperplane
in the domain, in particular with B̃1. The set of vertical lines in the image is
naturally identified with B̃0 and F induces a diffeomorphism from T to B̃0.

The following proof applies to both cases but certain complications are rele-
vant only in the H case.

Proof. In order to invert a vertical line and obtain a fibre, we consider the
differential equation

(∗) u′(t) + f(t, u(t)) = ṽ(t) + ν,

where ṽ ∈ B̃0 is fixed and ν ∈ R is a parameter. Local existence, uniqueness
and continuous dependence on parameters hold even when ṽ is only L2. Also,
solutions cease to exist only by going to infinity.

Given t0 and u(t0) there are ε > 0, ν+ and ν− such that the two solutions
u+ and u− of (∗) with initial condition u(t0) satisfy:

(+) u+ either goes to ∞ at some time t, t0 < t ≤ t0 + ε or satisfies
u+(t0 + ε) > u+(t0).
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(−) u− either goes to −∞ at some time t, t0 − ε ≤ t < t0 or satisfies
u−(t0 − ε) < u−(t0).

We discuss only (+): item (−) is analogous. Notice that the claim is trivial
in the C case: choose the parameter ν+ so that the derivative at time t0 of u+

is positive. Clearly, if (+) is satisfied by some ν+, it is satisfied by sufficiently
positive ν+.

Solve (∗) for ν = 0 to obtain a solution u0 defined on [t0, t0 + ε]. Without
loss, u0(t0) > u0(t0 + ε). Let u1(t) = u0(t) + ε−1(u0(t0) − u0(t0 + ε))(t − t0).
We choose ν+ such that the vector field (1, −f(t, u) + ṽ(t) + ν+) always crosses
the graph of u1 upwards, i.e., −f(t, u1(t)) + ṽ(t) + ν+ > u′

1(t) = −f(t, u0(t)) +
ṽ(t) + ε−1(u0(t0) − u0(t0 + ε)). This is clearly possible since f is continuous.

Given u(0), there is some ν+ for which the solution u of (∗) either goes to ∞
at some time t, 0 < t ≤ 1, or satisfies u(1) > u(0).

This follows from the previous claim by a compactness argument.

Given u(0), there is a unique ν for which (∗) admits a periodic solution.

Consider the set A+ (resp. A−) of ν’s such that the solution goes to ∞ (resp.
−∞) or satisfies u(1) ≥ u(0) (resp. u(1) ≤ u(0)). From the previous claim (and
the obvious counterpart), both sets are non-empty. By continuous dependence
on parameters, both are closed. As A+ ∪ A− = R, the sets intersect: any point
in the intersection yields a periodic orbit. Uniqueness follows from the local
behaviour of the solutions.

Given υ, there is a unique ν for which (∗) admits a periodic solution u with∫
u = υ.

Consider all periodic solutions of (∗) as curves in S
1 × R. Again, from the

local behaviour of solutions, the curves are disjoint. By the previous claim, the
union of all such curves contains the line {0}×R. By a similar argument applied
to other lines, the union of the curves is S

1 ×R and the curves form a continuous
foliation of the cylinder by circles. Notice that circles in the foliation correspond
to points in the fibre F −1({ṽ} + 〈1〉). The integrals of the solutions are strictly
increasing as a function of u(0). Also, there are solutions with arbitrarily large
(positive or negative) integrals, since the area between two curves goes to infinity
as the initial condition of one of the curves does. �

At this point, we have that, given u and ṽ, there is a unique ũ with F (ũ+u) =
ṽ+v (for some v). Thus, the function ΠB̃0 ◦F is a bijection from any hyperplane
B̃1 + {υ} to B̃0. This function is clearly smooth and, as discussed before the
statement of this theorem, its derivative is always invertible. By the inverse
function theorem, these bijections are diffeomorphisms.
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Remarks. 1. Theorem 1.2 is the counterpart of the usual global domain
decomposition found in the study of the equation ∆u = f(u), with Dirichlet
boundary conditions and special resonance hypothesis on f (see [AP]). There,
the task is simplified by the use of self-adjoint spectral theory. In our case,
the derivative, unlike the Laplacian, is skew-symmetric, with purely imaginary
spectrum containing 0, and the nonlinearity interacts at most with 0.

2. The hard part in an eventual functional analytic proof of Theorem 1.2
is the properness (and hence, from local behaviour, bijectivity) of the function
ΠH̃0 ◦ F : H̃1 + {υ} → H̃0; the necessary estimates seem to be simple only in
the C case.

For later use, we state as a lemma some consequences of the proof of Theo-
rem 1.2.

Lemma 1.3. Fibres are parametrized by average, i.e., the function

τu0 → R, u �→
∫

f(t, u(t)) dt

is a diffeomorphism. Let ua be the element of average a in τu0 . Then

lim
a→∞

min
t

ua(t) = ∞, lim
a→−∞

max
t

ua(t) = −∞.

Given t0 ∈ S
1, the function

τu0 → R, u �→ u(t0)

is also a diffeomorphism.

The study of the (global and local) geometry of F thus reduces to the study
of F = F ◦ Ψ−1 and therefore of φ : B0 → R. The diffeomorphism Ψ is said
to provide F with adapted coordinates, i.e., F(ṽ, u) = (ṽ, φ(ṽ, u)). This change
of variables is convenient to the classification of critical points of F , as we shall
see in the next section. Notice that we do not have formulae for F or Ψ and
have to make do with w and Φ(u) = (ΠB0

◦ F )(u) = (φ ◦ Ψ)(u) =
∫

f(t, u(t))dt

(a somewhat cumbersome formula for W is given in Lemma 1.5).

Proposition 1.4. If f is proper then the operator F : B1 → B0 is proper.

Notice that f : S
1 × R → R is proper if and only if |f(t, x)| goes to infinity

when (t, x) does. In particular, if f is proper, the restriction of F to a fibre takes
infinity to infinity.

Proof. Any compact set K ⊆ B0 is contained in the product of its (com-
pact) projections, so without loss, K can be taken to be the product of a
compact set K̃ ⊆ B̃0 and an interval [−k, k]. Since F ◦ Ψ−1 is of the form
(ṽ, u) �→ (ṽ, φ(ṽ, u)), the compactness of the preimage of K under F ◦ Ψ−1 (and
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hence under F ) follows from the boundedness of u in F −1(K) or the uniform
boundedness of u ∈ F −1(K).

In the C case, consider u at its global extrema: there, v(t) = u′(t) +
f(t, u(t)) = f(t, u(t)) and properness of f gives us the required uniform bound.
For the H case, assume by contradiction that there are un ∈ F −1(K) with
un(tn) > 2n, where tn is the global maximum of un, and, without loss of
generality, that f is positive for large positive x. Consider the intervals In =
(tn − 1/10, tn). If un(t) > 2n−1 for all t in In for all sufficiently large n then∫

In
vn(t) dt = un(tn)−un(tn −1/10)+

∫
In

f(t, un(t)) dt > 1/10 minx>2n−1 f(t, x)
goes to infinity with n; the L2 norm of vn ∈ K is unbounded, and we are
done with this case. Otherwise, let t′

n be the largest value in In for which
un(t′

n) = 2n−1:
∫ tn

t′
n

vn(t) dt = un(tn) − un(t′
n) +

∫ tn

t′
n

f(t, un(t)) dt > 2n−1 for
sufficiently large n and again we have a contradiction. �

Remark. There are simple a priori estimates yielding properness in the
autonomous H case. Also, in the C case (even for non-autonomous f) easy
estimates obtain Proposition 1.4 without invoking Theorem 1.2. The analogous
proof in the general H case appears to be considerably more elaborate and we
preferred making use of the more geometric Theorem 1.2.

The results above can be used to provide a simple definition of topological
degree for the operator F in the case when f is proper:

deg F = deg F =
∑

w∈F−1(v)

sgn φ2(w),

where v is an arbitrary regular value of F . As usual, the right hand side does
not depend on the choice of v: it is the degree of υ �→ φ(ṽ, υ), a proper function
from R to R. From the behaviour of φ at infinity (proof of Proposition 1.4),

deg F = sgn
(

lim
x→∞

f(t, x)
)

− sgn
(

lim
x→−∞

f(t, x)
)

.

Adapted coordinates give another simple characterization of the critical set:
(ṽ, u) is a critical point of F if and only if D2φ(ṽ, u) = 0. Equivalently, u is a
critical point of F if and only if DΦ(u)W = 0 where W is the tangent vector
to τu at u given by the pull-back W u = (DΨ(u))−1(1(Ψ(u))) (1 is the vertical
vector field consisting of the constant function 1 at each point).

Lemma 1.5. Given u ∈ B1 and m ∈ R, there is a unique α ∈ R such that
the equation

(∗) ω′ + D2f(t, u(t))ω = α,

has a (unique) periodic solution ω of average m. The function W is the only
such ω of average 1; furthermore, W is strictly positive.
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Proof. The first claim follows from either solving (∗) or from arguments in
the proof of Theorem 1.2. For the element ua of average a in τu,

u′
a(t) + f(t, ua(t)) −

∫
f(t, ua(t)) dt = ṽ.

Differentiating in a and setting W = ∂
∂a

ua, the equation (∗) for W follows. Since∫
ua = a,

∫
W = 1. The graphs of W and the constant function 0 do not cross,

implying positivity of W . �

The following lemma introduces yet another characterization of the criti-
cal set S1F and, under generic hypothesis, establishes convenient transversality
properties of these characterizations. This lemma will be essential for the more
detailed study of singularities of F in the next section.

Lemma 1.6. Let Σa, Σb, Σc : B1 → R be given by

Σa(u) =
∫

D2f(t, u(t)) dt,

Σb(u) =
∫

D2f(t, u(t)) wu(t)dt,

Σc(u) =
∫

D2f(t, u(t))W u(t) dt.

Then the three Σ’s differ by strictly positive smooth multiplicative factors. In
particular, S1F is the zero level of each of these functionals and if 0 is a regular
value of any of the functionals, it is a regular value of all of them.

Remarks. 1. For an open dense set of functions f , 0 is a regular value of Σa.
Indeed, taking derivatives as usual, 0 is a singular value if and only if there is
u ∈ B1 with

∫
D2f(t, u(t))dt = 0 and D2D2f(t, u(t)) = 0 for all t ∈ S

1.
2. In the autonomous case, 0 is a singular value of Σa if and only if D2f has

a double root.

Proof. Here, Pi stands for a smooth strictly positive function. From the
expression for w in Lemma 1.1,

w(t) = P1(u)e−
∫ t

0 (D2f(s,u(s))−Σa(u)) ds,

Thus,

Σb(u) = P1(u)
∫ 1

0
D2f(t, u(t))e−

∫ t
0 (D2f(s,u(s))−Σa(u)) ds dt.

On the other hand,

0 =
∫ 1

0

d

dt
e−
∫ t

0 (D2f(s,u(s))−Σa(u)) ds dt

=
∫ 1

0
(Σa(u) − D2f(t, u(t)))e−

∫
t

0 (D2f(s,u(s))−Σa(u)) ds dt
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whence

Σb(u) = P1(u)Σa(u)
∫ 1

0
e−
∫ t

0 (D2f(s,u(s))−Σa(u)) ds dt = P2(u)Σa(u).

Integrate from 0 to 1 the differential equation describing W to obtain α =
Σc(u). Solving the equation, we have

W (t) = W (0)e−
∫ t

0 D2f(s,u(s))ds +Σc(u)e−
∫ t

0 D2f(s,u(s)) ds

∫ t

0
e−
∫ s

0 D2f(r,u(r)) dr ds.

From W (1) = W (0), we obtain

W (0)(1 − e−Σa(u)) = Σc(u)e−Σa(u)
∫ 1

0
e−
∫ s

0 D2f(r,u(r)) dr ds.

Since (1 − e−x)/x > 0,
Σc(u) = P3(u)Σa(u),

and we are done. �

From now on, we shall always assume that f is generic in the sense that 0 is
a regular value of Σa; further generic properties will be required of f in Section 2
where we study in detail the singularities of F .

We shall later want to use the simpler w instead of W : the following prepara-
tory lemma allows for this interchange.

Lemma 1.7. The vector fields w and W are positive multiples of each other
on S1F . Furthermore, given u ∈ S1F there is a neighborhood Uu ⊆ B1 of u

where we can write

w = a1 W + Σcz1, W = a2w + Σbz2

for smooth real functions ai : Uu → R and smooth vector fields zi.

Proof. The first claim follows directly from the formulae for w and W
when restricted to S1F (where Σa = Σc = 0). The displayed equations are
consequences of the regularity of Σb and Σc at S1F . �

Remark. Actually, from results in [MST], Uu in the statement can be taken
to be the whole space B1.

It turns out that the global geometry of S1 is very simple, as we shall see
in Corollary 1.9. We need some preparation to state the key ingredient, Theo-
rem 1.8.

Let M be a smooth compact manifold equipped with a unit measure µ. Given
a continuous function gk : M × R → R

k, define Gk : B1 → R
k to be the average

of the related Nemytskĭı operator: Gk(v) =
∫

M
gk(m, v(m))dµ. We request that

gk admits continuous partial derivatives of all orders with respect to the second
variable, whence Gk is smooth.
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Let Πi : R
k → R

i be the projection to the first i coordinates. We say 0 is a
strong regular value of Gk if it is a regular value of the composition Gi = Πi ◦ Gk

for all i, 1 ≤ i ≤ k.

Theorem 1.8 ([MST]). Assume 0 to be a strong regular value of Gk. Then
the levels Zi (1 ≤ i ≤ k) are contractible manifolds. Furthermore, there is a
global homeomorphism Ξ of B1 taking each Zi to a closed linear subspace of
codimension i; Ξ can be chosen to be a diffeomorphism if B1 = H1.

The contractibility of the levels Zi essentially implies geometric triviality be-
cause of infinite dimension: recall that two infinite dimensional separable Hilbert
manifolds are diffeomorphic if their homotopy groups coincide ([Ku]) and that
all infinite dimensional separable Banach spaces are homeomorphic ([Ka]).

In the next corollary we have k = 1; Theorem 1.8 in its generality will be
convenient in Section 3.

Corollary 1.9. Assume that 0 is a regular value of Σa. Then S1 is con-
nected and contractible. Furthermore, there is a global homeomorphism Ξ of B1

taking S1 to a closed linear subspace of B1 of codimension 1; Ξ can be chosen to
be a diffeomorphism if B1 = H1.

2. Morin theory

Morin classified generic singularities of functions from R
n to R

n whose de-
rivative has kernel of dimension 1 ([M]). The first step in Morin’s proof makes
use of the implicit function theorem to write such a singularity at the origin in
adapted coordinates, i.e., in the form

(x, y) �→ (x, µ(x, y)), x = (x1, . . . , xn−1) ∈ R
n−1, y ∈ R,

after composing with suitable diffeomorphisms in the neighborhoods of zero in
both domain and image. Morin’s central result is that such singularities are
classified by their order: a Morin singularity of order k is a point (x, y) for
which

(a) D2µ(x, y) = . . . = Dk
2 µ(x, y) = 0,

(b) Dk+1
2 µ(x, y) �= 0,

(c) the Jacobian D(D2µ, . . . , Dk−1
2 µ)(x, y) is surjective.

Set Sk = {(x, y) | D2µ(x, y) = . . . = Dk
2 µ(x, y) = 0}. Thus, S0 is the

domain, S1 is the critical set {(x, y) | D2µ(x, y) = 0} (consistently with previous
notation). Also, a Morin singularity of order i belongs to Sk if and only if i ≥ k.
In a neighborhood of a Morin singularity, the sets Sk stratify the domain: the
sets are nested and Si is a submanifold of codimension i. Notice that a point
(x, y) ∈ Sk − Sk+1 is a Morin singularity (of order k) only if condition (c) above
holds.
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Composing by appropriate diffeomorphisms in the domain and image, a
Morin singularity in dimension n and order k acquires the normal form

(x1, . . . , xn−1, y) �→ (x1, . . . , xn−1, yk+1 + x1yk−1 + . . . + xk−1y).

Morin singularities of order 1, 2, 3 and 4 are called, respectively, folds, cusps,
swallowtails and butterflies.

We shall need an equivalent classification for singularities of functions be-
tween infinite-dimensional spaces. Let G : Z1 → Z2 be a smooth map between
Banach spaces so that DG(z0) is Fredholm operator of index 0 and kernel of
dimension 1. Again, after changes of variables in the domain and image, we may
assume G near z0 to be written in adapted coordinates as

G : X × R → X × R, (x, y) �→ (x, µ(x, y))

and if conditions (a), (b) and (c) above hold, the same normal form applies for
an appropriate splitting X = R

k−1 ⊕ X′ — we then call z0 a Morin singularity
of order k. The proof of this last fact follows Morin’s ([M]), making use of a
parameterized version of Malgrange’s preparation theorem, the parameter taking
values in a Banach space (see [CDT]).

We already saw in the previous section that the composition F = F ◦ Ψ−1 is
in adapted coordinates:

F : B̃0 ⊕ 〈1〉 → B̃0 ⊕ 〈1〉, (ṽ, u) �→ (ṽ, v = φ(ṽ, u)).

From the previous paragraph, a point is a Morin singularity of F (or F ) of order k

if and only if conditions (a), (b) and (c) hold for µ replaced by φ. This criterion,
however, can not be used directly since we have no formula for φ; we rephrase it
in terms of Φ = φ ◦ Ψ and w. Following the usual notation, we write wξ for the
Lie derivative Dξ(u) · wu. The following result shows that we may substitute w

for W (alternative generators for the kernel of DF over S1) — a fact which in
finite dimension would be unsurprising.

Proposition 2.1. The point u ∈ B1 is a Morin singularity of order k for
F if and only if

(a) wΦ(u) = . . . = wkΦ(u) = 0,
(b) wk+1Φ(u) �= 0,
(c) D(wΦ, . . . , wk−1Φ)(u) is surjective.

Proof. Consider in B̃0⊕〈1〉 the constant vertical vector field 1, consisting of
the constant function 1 at each point. In the notation we just introduced, D2ξ =
1ξ. In terms of the pull-back W (u) = (DΨ(u))−1(1(Ψ(u))), the conditions for u

to be a Morin singularity of order k are:

(a’) W Φ(u) = . . . = W kΦ(u) = 0,
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(b’) W k+1Φ(u) �= 0
(c’) D(W Φ, . . . , W k−1Φ)(u) is surjective.

We are left with showing that we can substitute W by w in these conditions.
Notice first that wΦ = Σb and W Φ = Σc, proving the case k = 0 (regular
points). From now on, we assume u ∈ S1F and write, making use of Lemma 1.7,
w = a1 W + (W Φ)z1 and W = a2w + (wΦ)z2 in a small neighborhood Uu of u.

For each k, the ideals in C∞(Uu, R) generated by wΦ, . . . , wkΦ and W Φ, . . . ,

W kΦ are equal. Assuming by induction that the result holds for k − 1,

wkΦ = w(wk−1Φ)

= (a1 W + (W Φ)z1)(b1 W Φ + . . . + bk−1W k−1Φ)

= a1(W b1)(W Φ) + a1b1W 2Φ + . . . a1(W bk−1)(W k−1Φ)

+ a1bk−1W kΦ + (W Φ)z1(b1 W Φ + bk−1W k−1Φ)

which is clearly in the ideal with generators W Φ, . . . , W kΦ, proving one inclu-
sion; the opposite inclusion is analogous.

The equality of the two ideals with k generators implies

wkΦ = bk W kΦ + . . . + b1W Φ, W kΦ = ckwkΦ + . . . + c1wΦ,

for smooth functions bi and ci where bk and ck are non-zero. The equivalence
between the conditions (a) and (a’) or (b) and (b’) is clear. The third equivalence
follows from repeated use of the simple fact that the spans of D(g1(u)g2(u)) and
D(g1(u)g2(u) + α(u)g1(u)) coincide for points u such that g1(u) = g2(u) = 0 (α
being a smooth real function). �

Proposition 2.2. For

Σ1(u) =
∫

D2f(t, u(t)) dt,

Σ2(u) =
∫

D2
2f(t, u(t))w(t) dt,

Σ3(u) =
∫

D3
2f(t, u(t))w2(t) dt,

Σ4(u) =
∫

D4
2f(t, u(t))w3(t)

− 2D3
2f(t, u(t))w2(t)

( ∫ t

0
D2

2f(s, u(s))w(s) ds

)
dt,

Σ5(u) =
∫

D5
2f(t, u(t))w4(t)

− 5D4
2f(t, u(t))w3(t)

( ∫ t

0
D2

2f(s, u(s))w(s) ds

)

+ 5D3
2f(t, u(t))w2(t)

(∫ t

0
D2

2f(s, u(s))w(s)
)2

dt,
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we have

Sk = {u ∈ B1 | Σi(u) = 0, i = 1, . . . , k} for k = 1, . . . , 5.

Furthermore, for k = 1, . . . , 4, u is a Morin singularity of order k if and only if

(a) Σi(u) = 0, i = 1, . . . , k,
(b) Σk+1(u) �= 0,
(c) the derivative DΣ(u) of the function

Σ : B1 → R
k−1, u �→ (Σ1(u), . . . , Σk−1(u))

is surjective.

Proof. From Proposition 2.1, we want to compute wkΦ(u). The expressions
for Σk(u) follow from repeated integration by parts, discarding elements in the
ideal generated by wΦ(u), . . . , wk−1Φ(u) and non-zero multiplicative factors. �

In particular, u is a fold point if and only if Σ1(u) = 0 and Σ2(u) �= 0. Also,
u is a cusp point if and only if Σ1(u) = Σ2(u) = 0, Σ3(u) �= 0 and DΣ1(u) �= 0.
Clearly, DΣ1(u) · v =

∫
D2

2f(t, u(t))v(t) dt, and hence DΣ1(u) = 0 if and only if
the function D2

2f(t, u(t)) is identically 0.
There is a simple relationship between Morin singularities and the return

map. Given f : S
1 × R → R and v ∈ B0, the return map ρv : I → R, I ⊆ R,

sends u(0) to u(1) if u : [0, 1] → R satisfies

u′(t) + f(t, u(t)) = v(t).

Here I is the maximal domain, i.e., the set of initial conditions such that the
solution u extends to t = 1.

Proposition 2.3. For u ∈ B1 and v = F (u), ρv(u(0)) = u(0). Also,
u ∈ S1 if and only if ρ′

v(u(0)) = 1 and u ∈ Sk if and only if ρ′
v(u(0)) = 1 and

ρ
(i)
v (u(0)) = 0 for i = 2, . . . , k.

Proof. Consider the fibre τu through u. Let ua be the element of average
a of τu and u = ua0 . By Lemma 1.3, τu is smoothly parametrized by a. Let
g(a) = Φ(ua), the average of F (ua). Clearly, g(k)(a) = W kΦ(ua) and therefore
u ∈ Sk if and only if g(i)(a0) = 0 for i = 1, . . . , k. Let uc be the element of
τu with uc(0) = c. By Lemma 1.3, τu is also parametrized by c. Let h(c) =
Φ(uc)−v = F (uc)−F (u): by the chain rule, u ∈ Sk if and only if h(i)(u(0)) = 0
for i = 1, . . . , k.

For c, b ∈ R, let β(c, b) = ρv+b(c), that is, if U(c, b, t) satisfies

(∗) D3U(c, b, t) + f(t, U(c, b, t)) = v(t) + b, U(c, b, 0) = c

we have β(c, b) = U(c, b, 1). The periodicity of uc yields β(c, h(c)) = c. Points
in the curve (c, h(c)) thus correspond to points in τu and the largest k for which
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u ∈ Sk is the order of contact between this curve and the horizontal axis (c, 0)
at the common point (u(0), 0). Differentiating (∗),

D3D2U(u(0), 0, t) + D2f(t, u(t))D2U(u(0), 0, t) = 1, D2U(u(0), 0, 0) = 0

and, by explicitly solving for D2U , we obtain D2U(u(0), 0, 1) = D2β(u(0), 0) > 0.
Thus, G(c, b) = (c, β(c, b)) is a local diffeomorphism near (u(0), 0) taking the
curve (c, h(c)) to the diagonal (c, c) and the horizontal axis to (c, ρv(c)). The
order of contact between the curves is preserved by G and we are done. �

3. The autonomous case

This section is dedicated to a number of special properties of the autonomous
case, when f depends on x only.

The sets Sk are described by the rather complicated formulae Σk. In the
autonomous case it is convenient to consider the simplified operator

F̂ : B1 → B0 u �→ u′ +
∫

f(u(t)) dt

whose critical strata Ŝk are far easier to handle but still convey significant infor-
mation about F and Sk.

Since F̂ is already given in adapted coordinates, straightforward application
of Morin’s characterization obtains

Ŝk =
{

v ∈ B1
∣∣∣∣

∫
γ̂k(v(t)) = 0

}
,

where γ̂k(x) is the k-dimensional vector (f ′(x), . . . , f(k)(x)). Notice that, from
Lemma 1.6, Ŝ1 = S1. However, Ŝ2 is usually different from S2: the following
lemma relates both sets and is a key ingredient in Section 5.

Lemma 3.1. Let f : R → R be a smooth function, F : B1 → B0 be the
operator (F (u))(t) = u′(t) + f(u(t)). Then there exists a global diffeomorphism
of B1 taking S1 to itself and S2 to Ŝ2.

Proof. The diffeomorphism has the form u �→ v = u ◦ α, with inverse
v �→ u = v ◦ β, where α and β are orientation preserving C1-diffeomorphisms of
S

1 fixing 0: such compositions take functions in B1 to functions in B1. Clearly,
β = α−1. We need the following characterizations, which follow easily from
Lemma 1.6 and Proposition 2.2

S1 =
{

u ∈ B1
∣∣∣∣

∫
f ′(u(t))w(t) dt = 0

}
,

S2 =
{

u ∈ B1
∣∣∣∣

∫
f ′(u(t))w(t) dt =

∫
f ′′(u(t))w(t) dt = 0

}
.
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We first obtain β from u that

β(s) =

∫ s

0 w(σ) dσ∫ 1
0 w(σ) dσ

is clearly a C1-diffeomorphism (w > 0). For any continuous function g, a change
of variables gives

(∗)
∫ 1

0
g(u(s))w(s) ds = 0 ⇔

∫ 1

0
g(v(t)) dt = 0,

where u = v ◦ β. Thus, if u ∈ S then v ∈ S and if u ∈ C then v ∈ Ŝ2. The
smooth dependence of β on u is obvious.

To show invertibility of the map u �→ v, we obtain α from v. If α satisfies

α′(t) =
1

A − 1
∫ t

0 f ′(v(τ)) dτ
, α(0) = 0

for an arbitrary positive constant A, standard algebra shows that

(†) α′(t) =
1
A

exp
(∫ t

0
f ′(v(τ))α′(τ) dτ

)
, α(0) = 0.

This again implies the equivalence (∗) (where, of course, v = u ◦ α) and hence
v ∈ S (resp., Ŝ2) implies u ∈ S (resp., C) provided α(1) = 1. We have to show
that for each v there is a unique A with α(1) = 1 and that the dependence of A

on v is smooth.
Let h(t) =

∫ t

0 f ′(v(τ)) dτ . h is C1 with h(0) = 0. The function α is defined
in [0, 1] if A > maxt h(t). From

α(1) =
∫ 1

0

dt

A − h(t)
,

the derivative of α(1) with respect to A is strictly negative. When A tends
to infinity, α(1) becomes small and when A approaches maxt h(t), α(1) tends
to infinity. This settles existence and uniqueness of the required A. Smooth-
ness follows from the implicit function theorem applied to the smooth function
(v, A) �→ α(1) and the fact that the derivative with respect to A is not zero.

It remains only to show that the two smooth maps constructed above are
the inverse of each other. Consider the sequence of maps

v
α−→ u = v ◦ α−1 β−→ ṽ = u ◦ β−1.

Since τ = α−1(σ)) and (†), for positive constants C1 and C2 we have

β′(s) = C1w(s) = C1 exp
(

−
∫ s

0
f ′(v(α−1(σ))) dσ

)

= C1 exp
(

−
∫ α−1(s)

0
f ′(v(τ))α′(τ) dτ

)
=

C2

α′(α−1(s))
= C2(α−1)′(s)
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and, since α(0) = β(0) = 0 and α(1) = β(1) = 1, it follows that α−1 = β and
ṽ = v. Similarly, for

u
β−→ v = u ◦ β−1 α−→ ũ = v ◦ α−1,

we have

α′(t) = C3 exp
(∫ t

0
f ′(v(τ))α′(τ) dτ

)

= C3 exp
(∫ α(t)

0
f ′(v(α−1(σ))) dσ

)
=

C3

w(α(t))
=

C4

β′(α(t))
,

hence (β ◦ α)′ is a constant and the result follows. �

As with S1 = Ŝ1, the global geometry of the sets Ŝk is very simple, as we
learn from the following application of Theorem 1.8. We say that the simplified
operator F̂ is k-regular if 0 is a strong regular value of

Σ̂ : B1 → R
k, u �→ (Σ̂1, . . . , Σ̂k)

Corollary 3.2. Assume F̂ is k-regular. Then there is a global homeomor-
phism Ξ of B1 taking each Ŝi (1 ≤ i ≤ k) to a closed linear subspace of B1 of
codimension i; Ξ can be chosen to be a diffeomorphism if B1 = H1.

Combining Lemma 3.1 and Corollary 3.2 we have

Corollary 3.3. Assume F̂ is 2-regular. Then there is a global homeomor-
phism Ξ of B1 taking each Si, i = 1, 2, to a closed linear subspace of B1 of
codimension i; Ξ can be chosen to be a diffeomorphism if B1 = H1.

It seems hard to give an operational criterion to decide for larger k even
whether Sk is non-empty. We now present a partial criterion.

Definition 3.4. Let f : R → R be a smooth function. f is said to be k-good
if γ̂k never vanishes and the image of any open interval by γ̂k is not contained
in a hyperplane through the origin in R

k.

Generic smooth functions are k-good, as well as generic polynomials of fixed
degree at least k. It is easy to see that if f is k + 1-good, then the simplified
operator F̂ is k-regular.

Lemma 3.5. Let f : R → R be a k-good function and F be the related
operator. Then Ŝk �= ∅ if and only if 0 ∈ R

k is in the interior of the convex hull
of the image of γ̂k. Also, Ŝk �= ∅ implies Sk �= ∅.

In Section 6, we give an example of a polynomial of degree 4 (and hence for
which Ŝ4 = ∅) having S4 �= ∅.

Proof. Clearly, if Ŝk �= ∅, 0 is in the convex hull of the curve γ̂k (but not
on the curve itself). If 0 is on the boundary of the convex hull, by a standard
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support theorem ([G, p. 12]), the image of γ̂k is contained in a closed half-space
defined by ν(p) ≥ 0 for some linear functional ν. Since f is k-good, for any
non-constant v ∈ H1, ν(

∫
γ̂k(v)) > 0 and Ŝk = ∅.

Conversely, assume 0 in the interior of the convex hull of the image of γ̂k.
By Steinitz’s theorem ([G]), there are points γ̂k(xj), j = 0, . . . , 2k − 1 such
that 0 is in the interior of their convex hull. For ε ∈ (0, 1) and aj ≥ 0, j =
0, . . . , 2k − 1,

∑
aj = 1 − ε, consider a smooth function υε,a of period 1, defined

as follows. We split the domain [0, 1] into intervals I0, J0, . . . , I2k−1, J2k−1 of
lengths a0, ε/2k, . . . , a2k−1, ε/2k; inside Ij , υε,a is constant equal to xj and inside
each Jj, υε,a is the appropriate affine transformation of a fixed smooth arc joining
two steps. As ε tends to 0, υε,a approaches a step function. Let φ(ε, a) =∫

γ̂k(υε,a): this function is affine in ε and a (i.e., linear plus constant) and to
show that Ŝk is non-empty, we need to find a zero of φ. The function φ extends
continuously to ε = 0 and 0 is then in the interior of the image of the simplex
spanned by the aj ’s: there exists therefore a straight segment parametrized by
small positive values of ε on which φ is zero and Ŝk is thus non-empty. More,
for a fixed small ε0, take a k-subspace V of R

2k such that, for a ∈ V , φ(ε0, a) is
surjective. The image under φ of a small sphere around the origin in V is some
ellipsoid containing the origin in its interior. �

Remark. For k = 2, k-goodness may be weakened to f ′ and f ′′ having no
common zeros.

4. Some examples

In this section, we describe the global geometry of F : B1 → B0 for several
special classes of smooth functions f : S

1×R → R. The first rather simple propo-
sition illustrates the use of fibres and adapted coordinates in three technically
different scenarios.

Proposition 4.1.

(a) If f is proper and D2f(t, x) > 0 then F is a diffeomorphism.
(b) Assume D2f(t, x) > 0. Let f±(t) = limx→±∞ f(t, x). Then F is a

diffeomorphism from B1 to the horizontal strip

S =
{

v ∈ B0
∣∣∣∣

∫
f−(t) dt <

∫
v(t) dt <

∫
f+(t) dt

}
.

(c) If f is proper and strictly increasing in the second variable then F is a
homeomorphism.

Proof. (a) Recall that, by Theorem 1.2, B1 is foliated by fibres, B0 is folia-
ted by vertical lines and there is a diffeomorphism between the space of fibres and
the space of vertical lines. From the characterization of S1 in Proposition 1.1,
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we see that F has no critical points. Thus, F takes each fibre strictly mono-
tonically to its related vertical line in B0 — by Proposition 1.4, F is actually a
diffeomorphism from fibre to vertical line and the result follows.

(b) As in the previous item, fibres are bijectively taken to open subintervals
of vertical lines. More explicitly, a function u in the fibre (ΠB̃0 ◦F )−1(ṽ) is taken
to u′ + f(t, u(t)) = ṽ +

∫
f(t, u(t)) dt and the extremes of the image of this fibre

are lima→∞
∫

f(t, ua(t)) dt and lima→−∞
∫

f(t, ua(t)) dt, where ua is the element
of average a in the fibre. From Proposition 1.3

lim
a→∞

min
t

ua(t) = ∞, lim
a→−∞

max
t

ua(t) = −∞.

Thus

lim
a→∞

∫
f(t, ua(t)) dt =

∫
f+(t) dt, lim

a→−∞

∫
f(t, ua(t)) dt =

∫
f−(t) dt,

and the result follows.
(c) By properness (Proposition 1.4), it suffices to prove that F is strictly

increasing on each fibre (notice that F restricted to fibres may have critical
points where W F = 0). Let u0 < u1 be elements of the fibre (ΠB̃0 ◦ F )−1(ṽ) so
that

F (ui)(t) = u′
i(t) + f(t, ui(t)) = ṽ + vi.

Integrating in t ∈ S
1 and using the monotonicity of f , we obtain v0 < v1,

concluding the proof. �

Remarks. 1. A more standard proof of (a), without making use of Theo-
rem 1.2 (and the consequent fibre-sheet-adapted coordinates vocabulary), could
be as follows. As before, S1 = ∅ and from Proposition 1.4, F is proper. Since
B0 is simply connected, by covering space theory, F is a diffeomorphism. Notice
that this argument does not extend easily to the other items.

2. Similar results and proofs hold if instead D2f < 0.
3. In item (b), if both

∫
f+(t) dt and

∫
f−(t) dt diverge, then F is a global

diffeomorphism. In particular, F may be proper even if f is not.

Theorem 4.2. If f is proper and D2
2f(t, x) > 0 then F is a global fold.

We call an operator G : B1 → B0 a global fold if there exist diffeomorphisms
Ξ1 : B1 → R×B̃0 and Ξ0 : B0 → R×B̃0 such that (Ξ0 ◦G◦Ξ−1

1 )(x, ṽ) = (x2, ṽ),
for all (x, ṽ) ∈ R × B̃0. Similarly, we call G a topological global fold if there exist
homeomorphisms Ξi as above.

Proof. From D2
2f(t, x) > 0, we conclude that D2(t, x) is strictly increasing

in x for any fixed t and hence that Σa(u) =
∫

D2(t, u(t)) dt is strictly increasing
on fibres. Thus, each fibre contains a unique critical point u0 and, for arbitrary
u− and u+ in the same fibre as u0 satisfying u− < u0 < u+, we have Σa(u−) < 0
and Σa(u+) > 0 and, from Lemma 1.6, W Φ(u−) = Σc(u−) < 0 and W Φ(u+) =
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Σc(u+) > 0 and the restriction of Φ to a fibre is a global fold from R to R. Thus,
on each fibre, we have diffeomorphisms Ξi as above and the problem is whether
such diffeomorphisms can be chosen so as to depend smoothly on the fibre.

In adapted coordinates, we must define ξ1 : B0 ×R → R and ξ0 : B0 ×R → R

so that the vertical columns of the diagram below are diffeomorphisms and the
diagram commutes, i.e.,

ξ0(ṽ, φ(ṽ, u)) = (ξ1(ṽ, u))2.

We construct the ξi explicitly. For each ṽ, let aṽ be the unique critical point
of u �→ φ(ṽ, u). Clearly, aṽ and its image bṽ = φ(ṽ, aṽ) depend smoothly on ṽ.
Also, write φ(ṽ, u) − bṽ = (u − aṽ)2g(ṽ, u). From the previous paragraph, g is a
smooth positive function. Set ξ0(ṽ, v) = v−bṽ and ξ1(ṽ, u) = (u−aṽ)

√
g(ṽ, u).�

Remarks. 1. McKean and Scovel ([McKS]) studied this scenario with a
different set of fibres for B1 and its image under F . Our choice of fibering B0 by
vertical lines and inverting them under F to get a fibration of B1 is more helpful
in our examples.

2. Slight variations (as in Proposition 4.1) are possible and can be handled
similarly; we omit the tedious details.

In the autonomous case, Theorem 4.2 admits a partial converse.

Theorem 4.3. Let f : R → R be a smooth function which is both 2- and
3-good, with limx→±∞ f(x) = ∞. If 0 is in the interior of the convex hull of the
image of γ̂2 then F has cusps. Otherwise, F is a (differentiable) global fold.

Recall that γ̂2(t) = (f ′(t), f ′′(t)). Notice that once F is known to have a cusp,
from the normal form we have image points with three regular pre-images near
the cusp. Since deg(F ) = 0, such points have at least one additional pre-image.

Proof. If 0 is in the interior of the convex hull of the image of γ̂2, S2 �= ∅
by Lemma 3.5. We must prove that some points u in S2 are differentiable cusps,
i.e., satisfy Σ3(u) �= 0 and DΣ1(u) �= 0. As remarked after Proposition 2.2,
DΣ1(u) = 0 only when f ′′(u(t)) = 0 for all t, which implies, given 2-goodness,
that u is constant equal to a root of f ′′. Again from 2-goodness, f ′ and f ′′ have
no common roots and Σ1(u) =

∫
f ′(u(t)) dt �= 0, thus u is not in the critical set.

It remains to verify that we may choose u so that Σ3(u) �= 0. From 3-goodness,
the curve γ̂3(t) = (f ′(t), f ′′(t), f ′′′(t)) does not intersect the origin. The convex
hull of the image of γ̂3 meets the vertical axis and must contain points (0, 0, A)
distinct from the origin, otherwise the image of γ̂3 would have to be contained
in a hyperplane, contradicting 3-goodness. Imitating the proof of Lemma 3.5,
we may construct u with Σ1(u) = Σ2(u) = 0, Σ3(u) ≈ A, which is the required
cusp.
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Conversely, assume 0 not to be in the interior of the convex hull of the image
of γ̂2. Again from Lemma 3.5, all critical points are folds. Notice that if m

is the minimum of f , f ′(m) = 0 and, by 2-goodness, f ′′(m) > 0. Thus, the
intersection of the convex hull with the second axis consists of points with non-
negative second coordinate. From the proof of Lemma 3.5, Σ1(u) = 0 now implies
Σ2(u) > 0. Thus the fold points have concavity upwards in the restriction of F

to each fibre. From the behaviour of f at infinity, F has exactly one fold point
per fibre. The rest of the argument is similar to the proof of Theorem 4.2. �

Corollary 4.4.

(a) Let f : R → R be a 2- and 3-good polynomial of even degree and positive
leading coefficient. If f ′′ assumes both signs then the operator F has a
cusp and there are points in the image of F with four pre-images.

(b) There are non-convex smooth proper functions f : R → R for which F

is a global fold.

Proof. To prove (a), notice that, by hypothesis, there is a point in the
lower half-plane (f ′′ < 0). Also, since f is a polynomial, the argument of γ̂2(t)
approaches 0 from above (resp., π from below) when t goes to ∞ (resp., −∞).
This suffices to show that 0 is in the interior of the convex hull of the image
of γ̂2(t).

As for (b), we deviate from the previous argument by considering functions
for which f ′ and f ′′ are comparable for large x, such as cosh x. More precisely, let
f be such that f ′′ coincides with cosh t outside a small interval of large positive
numbers in which we subtract from cosh t a narrow positive bump — if the bump
is sufficiently high and narrow, f ′′ changes sign, f ′(x) > 0 for all positive x and 0
is not in the convex hull of the image of γ̂2. �

We can also characterize global folds in a purely local way.

Theorem 4.5. If f : S
1 × R → R is proper, 0 is a regular value of Σ1 and

all singularities of F are folds, then F is a global fold.

Proof. For the operators F being considered, there is a sign associated to
each fold: it is the sign of Σ2, which can also be interpreted as saying whether the
concavity of the restriction of F to fibres points up or down. This splits the set
of folds into two open subsets. Since by hypothesis S2 = ∅ and by Corollary 1.9
S1 is connected it follows that one of these sets is empty. In other words, all
folds are concave upwards, say, and the restriction of F to any fibre thus has at
most one critical point. The result follows by properness and juxtaposition of
fibres as in Theorems 4.2 and 4.3. �
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5. Global cusps

The results in the previous section describe the global geometry of F when
f satisfies D2f > 0 or D2

2f > 0. In the autonomous case, we are able to handle
another kind of nonlinearity.

Theorem 5.1. Let f : R → R be a proper function such that

(a) f ′′′(x) ≥ 0,
(b) f ′′′(x) has isolated roots,
(c) f ′(x) assumes both signs.

Then F is a topological global cusp; in the H case, F is a smooth global cusp.

A similar result holds if (a) is replaced by f ′′′(x) ≤ 0.

The scenarios of the previous section are simple enough to allow for rather
explicit global changes of variable to normal form. This is partly due to the fact
that restrictions of F to arbitrary fibres have similar behaviours: in a sense, we
may consider fibres individually. For the operators in the statement of Theo-
rem 5.1, instead, such restrictions vary according to the fibre, as illustrated in
Figure 5.1: we must therefore treat them collectively. In the process, explicitness
is lost: from the theorem (and its proof), in the H case the domain and image are
foliated by smooth surfaces, diffeomorphic to R

2, which are in turn foliated by
fibres. More, F takes surfaces to surfaces and, on each surface, F is a global cusp.
Still, we have no idea how to exhibit such foliations: they are shown to exist by
topological methods in Hilbert manifolds ([Ku], [MST]). For Banach spaces, we
use an additional existential argument depending on the homeomorphism of all
infinite dimensional separable Banach spaces ([Ka]).

An operator G : H1 → H0 is a smooth global cusp if there exist diffeo-
morphisms Ξ1 : H1 → H × R

2 and Ξ0 : H0 → H × R
2 such that (Ξ0 ◦ G ◦

Ξ−1
1 )(Z, x, y) = (Z, x, y3 +xy), for all (Z, x, y) ∈ H ×R

2, where H is a separable
infinite dimensional Hilbert space. Similarly, we call G : C1 → C0 a topological
global cusp if there exist homeomorphisms Ξi : Ci → H × R

2 as above.

The following lemma is an exercise in integration by parts.

Lemma 5.2. Let g : R → R be a smooth function. Given a < b, we have

(b − a)(g′(a) + g′(b)) − 2(g(b) − g(a)) = −
∫ b

a

(t − a)(t − b)g′′′(t) dt.

An additional topological ingredient is an infinite-dimensional version of the
corollary to Theorem 1 in [S]. The proof is similar for Hilbert spaces and makes
use of results in [BH] for Banach spaces (see [MST] for additional information).
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Lemma 5.3.

(a) Given a contractible connected smooth submanifold H ′ of codimension 1
of a separable Hilbert space H of infinite dimension, there is a diffeo-
morphism of H to itself taking H ′ to a closed subspace of codimension 1.

(b) Let B′ be a closed subset of a separable infinite-dimensional Banach
space B. Assume that B′ is connected, contractible, and a bicollared
topological submanifold of codimension 1 in B. Then there is a home-
omorphism from B to itself taking B′ to a closed subspace of codimen-
sion 1.

Actually, a contractible connected closed bicollared topological submanifold
of codimension 1 always splits the ambient space in (exactly) two components.

Finally, we make use of a canonical construction to bring planar global cusps
to normal form. A sketch of proof is given at the end of this section.

Lemma 5.4. Let Z be a topological space of parameters. Let G : Z × R
2 →

Z × R
2 be a continuous function of the form

G(Z, x, y) = (Z, x, gZ(x, y))

with the following properties:

• For all Z ∈ Z, gZ(0, 0) = 0.
• For all Z ∈ Z and x ∈ R, limy→±∞ gZ(x, y) = ±∞.
• For all Z ∈ Z and x ≤ 0 the function y �→ gZ(x, y) is strictly increasing.
• There exist continuous functions m, M : Z × [0, ∞) → R with m(Z, 0) =

M(Z, 0) = 0 such that, for all Z ∈ Z and x > 0 the function y �→
gZ(x, y) is strictly increasing in (−∞, m(Z, x)] and [M(Z, x), ∞) but
strictly decreasing in [m(Z, x), M(Z, x)].

(a) There exist homeomorphisms Wd and Wi of Z × R
2 keeping the Z and

x coordinates fixed such that

(Wi ◦ G ◦ W −1
d )(Z, x, y) = (Z, x, y3 + xy).

(b) If Z is a smooth Hilbert manifold and G is smooth with

D2gZ(0, 0) = D2
2gZ(0, 0) = 0, D3

2gZ(0, 0) > 0, D1D2gZ(0, 0) < 0,

then Wd and Wi can be taken to be diffeomorphisms.

Proof of Theorem 5.1. We first classify the singularities, next we study
the behaviour of the restriction of F to fibres and finally obtain global results
by juxtaposing fibres.
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All critical points of F are folds or cusps. Clearly, Σ3 is always positive and
we only have to check transversality when Σ1 = Σ2 = 0, i.e., we have to verify
that DΣ1 �= 0 at such points. Since Σ1 =

∫
f ′(u(t)) dt,

DΣ1(u) · v =
∫

f ′′(u(t))v(t) dt.

We show that the function f ′′(u(t)) is not identically zero. First, there is a
unique x0 for which f ′′(x0) = 0; from (c), we have f ′(x0) < 0. Thus, the function
f ′′(u(t)) is identically zero only if u(t) = x0 for all t but then

∫
f ′(xt)dt < 0 and

u /∈ S1.
We now consider F restricted to fibres. From Theorem 1.4, such restrictions

take ±∞ to ±∞. Also, regular and fold points of F are regular or fold points
of the restriction. Furthermore, the restrictions are locally increasing at cusp
points. Indeed, Σ3 > 0 and, at cusp points, Σ3 is a positive multiple of W 3Φ,
the third derivative of the restriction.

The operator F has at most two critical points per fibre. Let u1 < u2 be two
critical points of F in the same fibre:

(∗)
∫

f ′(u1(t)) dt =
∫

f ′(u2(t)) dt = 0

and

(†) u′
1(t) + f(u1(t)) = u′

2(t) + f(u2(t)) + C

for some constant C. We first show that C > 0. From Lemma 5.2

f ′(u2(t)) + f ′(u1(t)) − f(u2(t)) − f(u1(t))
u2(t) − u1(t)

> 0

and, integrating and making use of (∗),∫
f(u2(t)) − f(u1(t))

u2(t) − u1(t)
dt < 0.

From (†)

(u2 − u1)′(t)
(u2 − u1)(t)

+
f(u2(t)) − f(u1(t))

u2(t) − u1(t)
+

C

u2(t) − u1(t)
= 0

and, integrating, we obtain

C

∫
dt

u2(t) − u1(t)
> 0

implying C > 0. This means that the restriction of F to fibres, if further
restricted to critical points, is decreasing: u1 < u2 implies F (u1) > F (u2). It
follows that, if there are at least three critical points on a fibre, F is decreasing
near the second one: from the previous paragraph, this second critical point can
thus be neither a fold nor a cusp.
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At this point we already know that regular values have one or three pre-
images, images of folds have two pre-images and images of cusps have a single
pre-image (as in [CD] and [CT]). But we have more: F restricted to a fibre
is topologically equivalent to one of the three graphs on Figure 5.1. Fibres
containing a cusp, on which F behaves as depicted in (b), split the space of
fibres into two subsets, on which restrictions of F behave as in either (a) (no
critical points) or (c) (two folds). Let F = B̃1 be, as before, the space of fibres:
we have the natural partition F = Fa ∪ Fb ∪ Fc into sets of fibres of types (a),
(b) and (c), respectively.

(a) (b) (c)

Figure 5.1.

The sets Fa and Fc are open in F ; Fb is closed. Let u0 ∈ Fc; there exist
elements u1 < u2 in the u0-fibre with F (u1) > F (u2). The hyperplanes parallel
to B̃1 passing through u1 and u2 transversally intersect fibres. In particular,
fibres sufficiently close to the u0-fibre contain point u′

1 < u′
2 in these hyperplanes

for which F (u′
1) > F (u′

2), proving the openness of Fc.
Assuming by contradiction that Fa is not open, let un be a sequence of critical

points whose corresponding fibres converge to the fibre u∞ ∈ Fa. If the averages
of un are bounded, we may assume by compactness that these averages converge;
this, however, implies that the sequence un itself converges to the element of the
u∞-fibre with limiting average. Since this limit is clearly a critical point of F

we have the contradiction in this case and may assume from now on that the
averages of un tend monotonically to ∞.

Let M be such that x > M implies f ′(x) > 0. Notice in particular that for
all u ∈ S1 there is a t ∈ S

1 such that f ′(u(t)) = 0 and therefore u(t) < M . For
each n, let tn ∈ S

1 be such that un(tn) < M . From the compactness of S
1, we

may assume that the sequence tn converges to, say, t∞. Let unm (m < n) be
the element in the un-fibre with average um; clearly, unm < un. Define similarly
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u∞m: the sequence unm (for fixed m) tends to u∞m. Since unm(tn) < M for all
n, u∞m(t∞) ≤ M for all m, in contradiction with Lemma 1.3.

The set S2 of cusps of F is a smooth contractible submanifold of codimen-
sion 2 of B1. From Lemma 3.1, there is a diffeomorphism of B1 to itself taking
the sets S1 and S2 to S1 = Ŝ1 and Ŝ2, respectively and it suffices to show that
Ŝ2 is contractible. We may thus use Corollary 3.3: we check that F̂ is 2-regular,
i.e., that 0 is a regular value for both Σ̂1 and (Σ̂1, Σ̂2). We have already seen
that DΣ1 = D(Σ̂1) is never zero in the critical set. Also,

D(Σ̂1, Σ̂2)(u) · v =
( ∫

f ′′(u(t))v(t) dt,

∫
f ′′′(u(t))v(t) dt

)
and we are left with showing the linear independence of the functions f ′′(u(t))
and f ′′′(u(t)) for u satisfying

∫
f ′(u(t)) dt =

∫
f ′′(u(t)) dt = 0. The first function

is non-zero but of average zero and the second is strictly positive.
In particular, from Corollary 3.3, there is a homeomorphism of B1 to itself

taking S1 and S2 to nested subspaces of codimensions 1 and 2. This homeomor-
phism, however, does not respect fibres: we now show how to do better. It is
convenient from this point on to work in adapted coordinates, i.e., to consider
F : B0 → B0, its critical set S1 = Ψ(S1) and set of cusps S2 = Ψ(S2). Recall
that Ψ : B1 → B0 takes fibres to vertical lines and that F is in adapted coordi-
nates: in other words, vertical lines are fibres for F. Similarly, B̃0 = Fa∪Fb ∪Fc,
the disjoint images under Ψ of Fa, Fb and Fc.

In the next claims, we construct a number of auxiliary changes of variable,
leading eventually to the global normal form for the cusp. In the H case, all
constructions are smooth. In the C case, however, we make use of homeomor-
phisms and folds and cusps have to be interpreted topologically. Figure 5.2 may
be helpful.

There is a homeomorphism Υ1 of B0 to itself taking vertical lines to verti-
cal lines and Fb to a subspace C of codimension 1 of B̃0. In the H case, this
homeomorphism can be taken to be a diffeomorphism. From the local normal
form for cusps, vertical lines intersect S2 transversally: the vertical projection
is then a natural diffeomorphism between S2 and Fb. In particular, Fb ⊂ B̃0

is a contractible submanifold of codimension 1 for which Lemma 5.3 applies:
smoothness guarantees the existence of local tubular neighbourhoods which can
be consistently glued because the complement of Fb has two connected compo-
nents. Thus, there is a homeomorphism Υ0 : B̃0 → B̃0 taking Fb to a closed
subspace C of codimension 1. Define Υ1 : B0 → B0 as the only extension of Υ0

respecting vertical lines and horizontal hyperplanes — Υ1 is clearly a homeo-
morphism.

Notice that the conjugation F1 = Υ1 ◦F◦Υ−1
1 is still in adapted coordinates,

i.e., vertical lines are invariant. Also, the vertical projection of Υ1(S2) and
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Υ1(F(S2)) are both equal to C ; Υ1(S2) is the set of cusps (or, in the C case,
topological cusps) of F1 and Υ1(F(S2)) is its image.

Identify

B0 = C ⊕ 〈r〉 ⊕ 〈1〉,

for r ∈ B̃0 not in C and now write a typical element of B0 as (Z, x, y) ∈ C × R
2

making use of the natural projections. Notice that the sign of x determines the
type of the (Z, x, 0)-fibre: without loss, the cases x < 0, x = 0 and x > 0 are set
to correspond to fibres of types (a), (b) and (c), respectively.

There are homeomorphisms Υ2 and Υ3 of B0 to itself keeping each vertical
line invariant and such that Υ2(Υ1(S2)) = Υ3(Υ1(F(S2))) = C . In the H case,
these maps are diffeomorphisms. Set Υ2(Z, x, y) = (Z, x, y − y′) where y′ is
the only real number such that Υ−1

1 (Z, 0, y′) ∈ S2. Similarly, set Υ3(Z, x, y) =
(Z, x, y − y′′) where y′′ satisfies Υ−1

1 (Z, 0, y′′) ∈ F(S2).

The composition F2 = Υ3 ◦ F1 ◦ Υ−1
2 is almost in normal form: for each Z,

F2 restricted to the Z-plane is a global 2-dimensional cusp. We are now ready
to apply Lemma 5.4 to get two further changes of variable Υ4 and Υ5 such that
F3 = Υ5 ◦ F2 ◦ Υ−1

4 is the desired normal form

F3(Z, x, y) = (Z, x, y3 + xy). �

Sketch of proof of Lemma 5.4. Item (a) is straightforward. As to
item (b), we begin by invoking Whitney’s construction ([W]) which obtains, for
any given Z, diffeomorphisms υZ,6 and υZ,7 of neighbourhoods of the origin
taking the restriction GZ(x, y) = (x, gZ(x, y)) to the normal form k(x, y) =
(x, y3 + xy), i.e., k = υZ,7 ◦ GZ ◦ υ−1

Z,6. The diffeomorphisms υZ,6 and υZ,7 so
constructed are of the form (x, y) �→ (x, y′) and preserve orientation.

Actually (and here we omit the verification), the construction allows υZ,6,
υZ,7 and the size of the neighbourhoods to be chosen smoothly as functions
of the parameter Z. More exactly, we have diffeomorphisms ΥT,6 and ΥT,7

defined on tubular neighbourhoods of Z × (0, 0) taking G to the normal form
K(Z, x, y) = (Z, x, y3 + xy) near Z × (0, 0), i.e., K = ΥT,7 ◦ G ◦ Υ−1

T,6 whenever
the right hand side is defined. Now extend ΥT,6 and ΥT,7 to diffeomorphisms
Υ6 and Υ7 from Z × R

2 to itself of the form (Z, x, y) �→ (Z, x, y′) which coincide
with the identity outside a tubular neighbourhood of Z × (0, 0) — notice that
this extension is just a one-dimensional problem, parametrized by (Z, x). The
composition G1 = Υ7 ◦ G ◦ Υ−1

6 satisfies all the original conditions in Lemma 5.4
and coincides with the normal form K in a tubular neighbourhood of Z × (0, 0).
The hard part of bringing the cusps into normal form being done, we give explicit
instructions to take G1 to normal form.
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Let SG1 and SK be the critical sets of G1 and K. Their images G1(SG1) and
K(SK ) have two points in each vertical line (Z, x, ·), x > 0. Construct Υ9 by
juxtaposing 1-dimensional maps to be a diffeomorphism of Z × (0, 0) satisfying

• Υ9(Z, x, y) = (Z, x, y′),
• for each Z there is a positive xZ such that Υ9(Z, x, y) = (Z, x, y) for

x < xZ,
• Υ9(G1(SG1 )) = K(SK ).

Let G2 = Υ9 ◦ G1. Notice that G2(SG2) = K(SK ), where SG2 is the critical
set of G2. There is now a unique diffeomorphism Υ8 satisfying G2◦Υ−1

8 = K. In-
deed, if x ≤ 0, let Υ8(Z, x, y) be the only point (Z, x, y′) for which G2(Z, x, y) =
K(Z, x, y′). For positive x, given (Z, x, y) there are at most three points satisfy-
ing G2(Z, x, y) = K(Z, x, y′): we define Υ8(Z, x, y) to be the only point (Z, x, y′)
which is in the same position with respect to the two critical points of K in the
vertical line (Z, x, · ) as (Z, x, y) is with respect to the two critical points of G2

in the same vertical line. Clearly, Υ8 is a homeomorphism: we check smoothness
of Υ8 and its inverse. At regular points, this is the inverse function theorem. At
fold points, one may use the square root trick in the proof of Theorem 4.2, but
we omit the details. Finally, smoothness at cusps is guaranteed from the simple
fact that Υ8 turns out to be the identity near Z × (0, 0). �

As a corollary, we obtain a global cusp form for the Cafagna–Donati operator
([CD], [CT]):

Corollary 5.5. Let f(x) = ax+bx2 +cx2k+1 where k is a positive integer,
a ≥ 0, a2 + b2 > 0 and c < 0. Then the operator F : H1 → H0 is a smooth
global cusp and F : C1 → C0 is a topological global cusp.

6. A numerical counter-example

It is of course tempting to speculate about the possible consequences of
D4

2f > 0: does this condition at least guarantee that points have at most four
pre-images? In [L], Lins Neto shows that, if f(x, t) is a polynomial of degree
four in x with coefficients depending on t and positive highest degree coefficient,
then the number of solutions may be arbitrarily large.

In this section, we obtain a polynomial f of degree 4 and a smooth periodic
ub such that ub is a Morin singularity of order 4 (a butterfly). From Morin’s
normal form, some points v near F (ub) have five regular pre-images close to ub.
Since the degree of F is zero, there is yet a sixth pre-image and we thus obtain
a smooth periodic function v for which the equation

u′ + f(u) = v(t), u(0) = u(1)

has six solutions.
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We briefly describe the numerical procedure used in the identification of ub.
Without loss of generality, f(x) = x4 − bx2 + cx and we try to find a butterfly
ub of the form

ub(t) = a0 + a1 cos(t) + a2 cos(2t) + b2 sin(2t) + . . . + b4 sin(2t).

We now write the four scalar equations Σi(ub) = 0, i = 1, . . . , 4, in terms
of the ten parameters b, c, a0, . . . , b4 and search for a zero with a Newton-
like method with pseudo-inverses [AG]. Actually, for appropriate b and c, four
extra parameters should be enough to locate a butterfly, but the numerical
analysis becomes more robust with additional parameters. One example is
b = 4, c = −0.3, a0 = −0.01173378, a1 = −0.8836063, a2 = 0.2428734,
b2 = −0.6855379, a3 = 0.4465347, b3 = 0.1853376, a4 = −0.01881213 and
b4 = 0.2105862. The Newton method itself checks for the surjectivity of (the
restriction of) the derivative of (Σ1, . . . , Σ4) and the program also verifies that
Σ5(ub) �= 0.

Figure 6.1.

Again by Newton’s method, we try to solve

(Σ1, . . . , Σ4)(u1) = (−0.0000005, 0, 0.00008, 0),

where the non-zero constants on the right hand side were adjusted somewhat
empirically — in a nutshell, we are trying to perturb the polynomial x5 to get
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five distinct real roots, which can be accomplished by adding small multiples of
x3 and x. The parameters for u1 are

a0 = −0.011367708203969, a1 = −0.883600656945802,

a2 = 0.243308077825844, a3 = 0.446085678376277,

a4 = −0.018458472190807,

b2 = −0.685621717642052, b3 = 0.185481811055651,

b4 = 0.210509692732880.

In Figure 6.1 we plot ρv(x) − x, where v = u′
1 + f(u1) = F (u1), so that roots of

this auxiliary function correspond to periodic solutions of u′ + f(u) = v. This
graph was obtained by solving the differential equation with a Runge–Kutta
method of order 4 for initial conditions ranging from −0.4 to 0.4. The vertical
scale is stretched by a factor of 2.5 · 106 and the time step for the method had
to be taken as 2 · 10−4. Notice the clustering of the first five roots, stemming
from the butterfly: actually it is this clustering and the quintic behaviour of the
butterfly which account for the need of a huge vertical stretching factor. Another
consequence of the quintic behaviour is the great sensitivity of the coefficients:
for instance, a change of 10−6 in a0 destroys four of the six solutions. Still, this
final direct check is far easier (and more reliable) than the process of obtaining
the coefficients for the example.
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R. Marquês de S. Vicente 225
Rio de Janeiro, RJ 22453-900, BRAZIL

E-mail address : tomei@mat.puc-rio.br

TMNA : Volume 10 – 1997 – No 1


