A HAMILTONIAN SYSTEM WITH AN EVEN TERM

Gregory S. Spradlin

1. Introduction

In this paper we study, using variational methods, a Hamiltonian system of the form $-u^{\prime \prime}+u=h(t) V(u)$, where h and V are differentiable, h is positive, bounded, and bounded away from zero, and V is a "superquadratic" potential. That is, V behaves like q to a power greater than 2 , so $|V(q)|=o\left(|q|^{2}\right)$ for $|q|$ small and $V(q)>O\left(|q|^{2}\right)$ for $|q|$ large. To prove that a solution homoclinic to zero exists, one must assume additional hypotheses on h (see [EL] for a counterexample). In [R1], solutions were found when h is assumed to be periodic. In [STT], solutions were found when h is almost periodic (a weaker condition than periodicity). In [MNT], a condition yet weaker than almost periodic is defined, and solutions to the equation are found when h satisfies that condition. Like periodicity and almost periodicity, this condition assumes basically that h is similar to translates of itself, that is, for certain large values of T, the functions $t \mapsto h(t)$ and $t \mapsto h(t+T)$ are close to each other. Other ways to guarantee solutions involve making $\left|h^{\prime}\right|$ small: see papers such as [FW], [WZ], and [FdP] on the nonlinear Schrödinger equation, and [A] for a novel example of an h which "oscillates slowly".

In this paper we attempt to find solutions to the system without assuming that h satisfies any kind of time-recurrence property or restriction on h^{\prime}. We assume two conditions: first, that h is even $(h(-t)=h(t))$. Therefore it is convenient to treat the system as a system on the half-line $\mathbb{R}^{+}=[0, \infty)$. Second,
h only takes on a small range of values, with the variation in h depending on V. Here is a statement of the theorem:

THEOREM 1.0. Let $n \geq 1$ and V satisfy
$\left(\mathrm{V}_{1}\right) V \in C^{2}\left(\mathbb{R}^{n}, \mathbb{R}\right)$,
$\left(\mathrm{V}_{2}\right) V^{\prime}(0)=0, V^{\prime \prime}(0)=0$ and
$\left(\mathrm{V}_{3}\right)$ there exists $p>1$ such that $V^{\prime \prime}(q) q \cdot q \geq p V^{\prime}(q) \cdot q>0$ for all $q \in \mathbb{R}^{n} \backslash\{0\}$.
Then there exists $d>0$ with the property that if h satisfies
$\left(\mathrm{h}_{1}\right) h \in C^{1}\left(\mathbb{R}^{+}, \mathbb{R}\right)$,
$\left(\mathrm{h}_{2}\right) h^{\prime}(0)=0$ and
$\left(\mathrm{h}_{3}\right) 1 \leq h(t) \leq 1+d$ for all $t \in \mathbb{R}$,
then the Hamiltonian system

$$
\begin{equation*}
-u^{\prime \prime}+u=h(t) V^{\prime}(u) \tag{*}
\end{equation*}
$$

has a non-zero solution v on \mathbb{R}^{+}, satisfying $v^{\prime}(0)=0$ and $v(t) \rightarrow 0, v^{\prime}(t) \rightarrow 0$ as $t \rightarrow \infty$.

An example of V satisfying $\left(\mathrm{V}_{1}\right)-\left(\mathrm{V}_{3}\right)$ is $V(q)=|q|^{p+1}$ with $p>1$. Condition $\left(\mathrm{V}_{3}\right)$ is a little stronger than growth conditions found in previous papers such as [Sé] or [CMN]. The conditions on h are fairly weak; h need not be periodic, or monotone, or tend to a single value as $t \rightarrow \infty$ like in [BL]. If h has a lower bound other than 1 , then h and V can be rescaled so that $\left(\mathrm{h}_{3}\right)$ is satisfied and the problem reduces to the one in the theorem statement.

Plan of Proof. We give a variational formulation of the problem. Let $E=W^{1,2}\left(\mathbb{R}^{+}\right)$along with the inner product

$$
(u, w)=\int_{0}^{\infty}\left(u^{\prime} \cdot w^{\prime}+u w\right) d t
$$

for $u, w \in E$ and the associated norm $\|u\| \equiv\|u\|_{W^{1,2}\left(\mathbb{R}^{+}\right)}$. Then the functional $I \in C^{2}(E, \mathbb{R})$ corresponding to $(*)$ is

$$
I(u)=\frac{1}{2}\|u\|^{2}-\int_{0}^{\infty} h(t) V(u(t)) d t
$$

Any critical point v of I satisfies the differential system $(*)$, with $v(t) \rightarrow 0$ and $v^{\prime}(t) \rightarrow 0$ as $t \rightarrow \infty$. Also, any critical point of I satisfies the boundary condition $v^{\prime}(0)=0$. Suppose v is a critical point of I. Define $h_{2}(t)=h(|t|)$ for $t \in \mathbb{R}$. Then, since $h^{\prime}(0)=0, h_{2} \in C^{1}(\mathbb{R}, \mathbb{R})$. Define the functional I_{2} on $W^{1,2}(\mathbb{R})$ by $I_{2}(u)=\|u\|_{W^{1,2}(\mathbb{R})}^{2} / 2-\int_{\mathbb{R}} h_{2}(t) V(u(t)) d t$ and $v_{2} \in W^{1,2}(\mathbb{R})$ by $v_{2}(t)=v(|t|)$. Then it is easy to verify that v_{2} is a critical point of I_{2}, and therefore a classical solution of the system $-u^{\prime \prime}+u=h_{2}(t) V^{\prime}(u)$ on the entire real line. Since h_{2} is an even function of t, and $h_{2} \in C^{1}(\mathbb{R}), v_{2}^{\prime}(0)=0$, so $v^{\prime}(0)=0$.

We will prove via an indirect argument that a critical point of I exists. First we define a submanifold \mathcal{S} of $E=W^{1,2}\left(\mathbb{R}^{+}\right)$with the property that $\inf _{u \in \mathcal{S}} I(u)=$ c, where c is the mountain-pass value associated with I. Then we take a sequence $\left(u_{m}\right) \subset E$ with $I\left(u_{m}\right) \rightarrow c$ and $I^{\prime}\left(u_{m}\right) \rightarrow 0$ as $m \rightarrow \infty$. It is not apparent whether I satisfies the Palais-Smale condition, so it is not clear whether $\left(u_{m}\right)$ converges. But we can show that $\left(u_{m}\right)$ is a bounded sequence, so it has a weak limit. This weak limit point must be a critical point of I. If the limit point is not zero, then Theorem 1.0 is proven.

If $\left(u_{m}\right)$ converges weakly to zero, then matters are more complicated. In this case, we can construct a sequence $\left(y_{m}\right)$ with $I\left(y_{m}\right) \leq c / 2+o(m)$, where $o(m) \rightarrow 0$ as $m \rightarrow \infty$, and y_{m} "close" to \mathcal{S}. For large enough m, we can use y_{m} to construct $z \in \mathcal{S}$ with $I(z)<c$. This is impossible, so $\left(u_{m}\right)$ has a nonzero weak limit, and there exists v satisfying Theorem 1.0.

This paper is organized as follows: in Section 2 we explore the mountain-pass structure of the functional I, define the manifold \mathcal{S}, and obtain some quantitative estimates. Section 3 contains the main proof of Theorem 1.0, the "splitting" argument to obtain the sequence $\left(y_{m}\right) \subset \mathcal{S}$ in the indirect argument above. Section 4 contains a computation of d for a specific function V.

2. Mountain-pass structure of I

Before defining \mathcal{S}, let us explore the related mountain-pass structure of I. Define the set of paths

$$
\begin{equation*}
\Gamma=\{\gamma \in C([0,1], E) \mid \gamma(0)=0, I(\gamma(1))<0\} \tag{2.0}
\end{equation*}
$$

Integrating (V_{3}) yields

$$
\begin{equation*}
V^{\prime}(q) q \geq(p+1) V(q) \tag{2.1}
\end{equation*}
$$

for all $q \in \mathbb{R}^{n}$. For $\lambda>1$, the above implies

$$
\begin{equation*}
V(\lambda q) \geq \lambda^{p+1} V(q) \tag{2.2}
\end{equation*}
$$

for all $q \in \mathbb{R}^{n}$. Thus it is easy to show that for any $u \in E \backslash\{0\}, I(\lambda u) \rightarrow-\infty$ as $\lambda \rightarrow \infty$, and Γ is well defined. Define the minimax value

$$
\begin{equation*}
c=\inf _{\gamma \in \Gamma} \max _{\theta \in[0,1]} I(\gamma(\theta)) \tag{2.3}
\end{equation*}
$$

Let us obtain a positive lower bound for c. Let $\beta>0$ satisfy

$$
\begin{equation*}
|q| \leq \beta \Rightarrow V^{\prime}(q) \cdot q \leq|q|^{2} / 8 \tag{2.4}
\end{equation*}
$$

This is possible by $\left(\mathrm{V}_{1}\right)-\left(\mathrm{V}_{2}\right)$. From now on assume, without loss of generality, that

$$
\begin{equation*}
d \leq 1 \tag{2.5}
\end{equation*}
$$

Then $h(t) \leq 2$ for all $t \geq 0$. If $\|u\| \leq \beta$, then $\|u\|_{L^{\infty}\left(\mathbb{R}^{+}\right)} \leq \beta$ (see Appendix), and (by (2.1))

$$
\begin{align*}
I(u) & =\frac{1}{2}\|u\|^{2}-\int_{0}^{\infty} h(t) V(u) d t \geq \frac{1}{2}\|u\|^{2}-\frac{2}{p+1} \int_{0}^{\infty} V^{\prime}(u) \cdot u d t \tag{2.6}\\
& \geq \frac{1}{2}\|u\|^{2}-(1) \int_{0}^{\infty} \frac{1}{8}|u|^{2} d t \geq \frac{1}{2}\|u\|^{2}-\frac{1}{8}\|u\|^{2}=\frac{3}{8}\|u\|^{2} \geq 0
\end{align*}
$$

Therefore any mountain-pass curve must cross the sphere $\{\|u\|=\beta\}$, that is, if $\gamma \in \Gamma$, there exists $\theta^{*} \in[0,1]$ with $\left\|\gamma\left(\theta^{*}\right)\right\|=\beta$. So the above implies

$$
\begin{equation*}
\max _{\theta \in[0,1]} I(\gamma(\theta)) \geq I\left(\gamma\left(\theta^{*}\right)\right) \geq 3\left\|\gamma\left(\theta^{*}\right)\right\|^{2} / 8=3 \beta^{2} / 8 \tag{2.7}
\end{equation*}
$$

Since γ is an arbitrary element of Γ,

$$
\begin{equation*}
c \geq 3 \beta^{2} / 8 \tag{2.8}
\end{equation*}
$$

Note that this estimate does not depend on d, as long as $d \leq 1$.
There is another way to describe c (we will need both characterizations). Define

$$
\begin{equation*}
\mathcal{S}=\left\{u \in E \mid u \neq 0, I^{\prime}(u) u=0\right\} \tag{2.9}
\end{equation*}
$$

In [R2] it is proven, under weaker growth hypotheses on V than $\left(\mathrm{V}_{3}\right)$, that

$$
\begin{equation*}
\inf _{u \in \mathcal{S}} I(u)=c \tag{2.10}
\end{equation*}
$$

In fact, for any $u \in \mathcal{S}$, the function $s \mapsto I(s u)$ is strictly increasing on $0<s<1$, attains a maximum of $I(u)$ at $s=1$, and decreases to $-\infty$ on $1<s<\infty$. The following lemma gives estimates how quickly $I(s u)$ changes when s is near 1 .

Lemma 2.11. Let $u \in E$ and define $g(s)=I(s u)$ for $s \geq 0$. Assume $p \leq 2$.
Then

$$
\begin{equation*}
s \geq 1 \Rightarrow g^{\prime}(s) \leq g^{\prime}(1) s^{p}-(p-1)(s-1)\|u\|^{2} / 4 \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
1 / 2 \leq s \leq 1 \Rightarrow g^{\prime}(s) \geq g^{\prime}(1) s^{p}+(p-1)(1-s)\|u\|^{2} / 4 \tag{ii}
\end{equation*}
$$

Proof. Let $u \in E$ and define $g(s)=I(s u)$. Then

$$
\left\{\begin{align*}
g(s) & =\frac{1}{2} s^{2}\|u\|^{2}-\int_{0}^{\infty} h(t) V(s u) d t \tag{2.12}\\
g^{\prime}(s) & =s\|u\|^{2}-\int_{0}^{\infty} h(t) V^{\prime}(s u) \cdot u d t \\
g^{\prime \prime}(s) & =\|u\|^{2}-\int_{0}^{\infty} h(t) V^{\prime \prime}(s u) u \cdot u d t
\end{align*}\right.
$$

By $\left(\mathrm{V}_{3}\right)$, we have

$$
\begin{align*}
g^{\prime \prime}(s) & =\|u\|^{2}-\frac{1}{s^{2}} \int_{0}^{\infty} h(t) V^{\prime \prime}(s u)(s u) \cdot(s u) d t \tag{2.13}\\
& \leq\|u\|^{2}-\frac{p}{s^{2}} \int_{0}^{\infty} h(t) V^{\prime}(s u) \cdot(s u) d t \\
& =\|u\|^{2}-\frac{p}{s} \int_{0}^{\infty} h(t) V^{\prime}(s u) \cdot u d t \\
& =\|u\|^{2}-p\left(s\|u\|^{2}-g^{\prime}(s)\right) / s=p g^{\prime}(s) / s-(p-1)\|u\|^{2} .
\end{align*}
$$

Therefore,

$$
\begin{align*}
\frac{d}{d s}\left[s^{-p} g^{\prime}(s)\right] & =s^{-p} g^{\prime \prime}(s)-p s^{-p-1} g^{\prime}(s) \tag{2.14}\\
& =s^{-p}\left(g^{\prime \prime}(s)-p g^{\prime}(s) / s\right) \leq-(p-1) s^{-p}\|u\|^{2}
\end{align*}
$$

If $s \geq 1$, then integrating the above from 1 to s yields

$$
\begin{align*}
s^{-p} g^{\prime}(s)-g^{\prime}(1) & \leq-(p-1)\|u\|^{2} \int_{1}^{t} s^{-p} d s=-\left(1-s^{-p+1}\right)\|u\|^{2}, \tag{2.15}\\
g^{\prime}(s) & \leq s^{p} g^{\prime}(1)-\left(s^{p}-s\right)\|u\|^{2} .
\end{align*}
$$

If $s \leq 1$, then integrating (2.14) from s to 1 yields

$$
\begin{align*}
g^{\prime}(1)-s^{-p} g^{\prime}(s) & \leq-(p-1)\|u\|^{2} \int_{s}^{1} t^{-p} d t=\left(1-s^{-p+1}\right)\|u\|^{2}, \tag{2.16}\\
g^{\prime}(s) & \geq s^{p} g^{\prime}(1)+\left(s-s^{p}\right)\|u\|^{2} .
\end{align*}
$$

If $s \geq 1$, then by the mean value theorem, there exists $\lambda \geq s \geq 1$ with

$$
\begin{equation*}
s^{p}-s \geq s^{p-1}-1 \geq(p-1) \lambda^{p-2}(s-1) \geq(p-1)(t-1) . \tag{2.17}
\end{equation*}
$$

If $s \in[1 / 2,1]$, then $1 / s \geq 1$, so by the above,

$$
\begin{align*}
s-s^{p} & =s^{p+1}\left(1 / s^{p}-1 / s\right) \geq(p-1) s^{p+1}(1 / s-1) \tag{2.18}\\
& =(p-1) s^{p}(1-s)=(1 / 2)^{p}(p-1)(1-s) \\
& \geq(p-1)(1-s) / 4
\end{align*}
$$

Lemma 2.11 follows from (2.15)-(2.18).
We have a lower bound for c that is independent of d. We also need an upper bound for c that is independent of d. Define the functional

$$
\begin{equation*}
I^{+}(u)=\frac{1}{2}\|u\|^{2}-\int_{0}^{\infty} V(u(t)) d t . \tag{2.19}
\end{equation*}
$$

Then $I^{+}(u) \geq I(u)$ for all $u \in E$. Define the mountain-pass value c^{+}, similar to c, by defining the set of paths

$$
\begin{equation*}
\left.\Gamma^{+}=\left\{g \in C([0,1], E) \mid g(0)=0, I^{+}(g(1))\right)<0\right\} \tag{2.20}
\end{equation*}
$$

and setting

$$
\begin{equation*}
c^{+}=\inf _{g \in \Gamma^{+}} \max _{\theta \in[0,1]} I^{+}(g(\theta)) . \tag{2.21}
\end{equation*}
$$

c^{+}depends only on V, not on d. Using the mountain-pass characterization of c (2.3), it is easy to see that $c^{+} \geq c$ because $I^{+}(u) \geq I(u)$ for all $u \in E$. We will estimate c^{+}in terms of β and V in Section 4.

It is well known that $\left(\mathrm{V}_{3}\right)$ or a weaker condition implies that Palais-Smale sequences of I are bounded, even that $\mathcal{S} \cap\{u \mid I(u) \leq D\}$ is bounded for any $D \in \mathbb{R}$. We want an estimate on $\|u\|$ for when $I(u)$ is small and u is "almost" in \mathcal{S} :

Lemma 2.22. If $p \leq 2,\left|I^{\prime}(u) u\right| \leq c^{+}$and $I(u) \leq 2 c^{+}$, then

$$
\begin{equation*}
\|u\| \leq \sqrt{\frac{14 c^{+}}{p-1}} \equiv B \tag{2.23}
\end{equation*}
$$

Proof. By (2.1) we have

$$
\begin{aligned}
-c^{+} & \leq I^{\prime}(u) u=\|u\|^{2}-\int_{\mathbb{R}} h V^{\prime}(u) \cdot u \leq\|u\|^{2}-(p+1) \int_{\mathbb{R}} h V(u)= \\
& =(p+1) I(u)-\left(\frac{p-1}{2}\right)\|u\|^{2} \leq 6 c^{+}-\left(\frac{p-1}{2}\right)\|u\|^{2}
\end{aligned}
$$

so

$$
\|u\|^{2} \leq\left(\frac{2}{p-1}\right) 7 c^{+}=\frac{14 c^{+}}{p-1}
$$

3. Splitting

This section contains the "splitting" argument that is the core of the proof of Theorem 1.0. By Ekeland's Variational Principle ([MW]), there exists a PalaisSmale sequence $\left(u_{m}\right) \subset E$ with $I\left(u_{m}\right) \rightarrow c$ and $I^{\prime}\left(u_{m}\right) \rightarrow 0$ as $m \rightarrow \infty$. By arguments of [CR], $\left(u_{m}\right)$ is bounded. Therefore it has a subsequential weak limit \bar{u}. Also by $[\mathrm{CR}], \bar{u}$ is a critical point of I, and u_{m} converges to \bar{u} in $W^{1,2}([0, R])$ for each $R>0$. If $\bar{u} \neq 0$, then Theorem 1.0 is proven. In fact, in this case, $I(\bar{u}) \leq c$ (see [CR]). $I(\bar{u}) \geq c$ because by the observations following (2.10), for large enough $T, \theta \mapsto T \theta \bar{u}$ defines a path in Γ, along which the maximum value of I is c. Thus $I(\bar{u})=c$.

We will show that if d is chosen small enough, in terms of V, then the case $\bar{u}=0$ is impossible. The argument is indirect. Suppose $\bar{u}=0$. Define the cutoff function $\varphi \in C\left(\mathbb{R}^{+},[0,1]\right)$ by $\varphi(t)=t$ for $0 \leq t \leq 1, \varphi \equiv 1$ on $[1, \infty)$. Define $w_{m}=\varphi u_{m} .\left\|u_{m}\right\|_{W^{1,2}([0,1])} \rightarrow 0$ as $m \rightarrow \infty$, and it is easy to verify that $\left\|u_{m}-w_{m}\right\| \rightarrow 0$ as $m \rightarrow \infty$. $I^{\prime \prime}, I^{\prime}$, and I are bounded on bounded subsets of E. For example, to prove for $I^{\prime \prime}$, let $K>0$ and suppose $\|u\| \leq K$. Then
$\|u\|_{L^{\infty}\left(\mathbb{R}^{+}\right)} \leq K$ (see Appendix). Let $C>0$ satisfy $\left|V^{\prime \prime}(q) x y\right| \leq C$ for all $|q| \leq K$, $|x| \leq 1,|y| \leq 1$. Let $v, w \in E$. Then

$$
\begin{align*}
\left|I^{\prime \prime}(u)(v, w)\right| & =\left|(v, w)-\int_{0}^{\infty} h(t) V^{\prime \prime}(u) v \cdot w d t\right| \tag{3.0}\\
& \leq\|v\|\|w\|+\int_{0}^{\infty} 2 C|v \| w| d t \\
& \leq\|v\|\|w\|+2 C\|v\|_{L^{2}\left(\mathbb{R}^{+}\right)}\|w\|_{L^{2}\left(\mathbb{R}^{+}\right)} \\
& \leq(1+2 C)\|v\|\|w\|
\end{align*}
$$

Since $I^{\prime \prime}, I^{\prime}$ and I are bounded on bounded subsets of E, and $\left(u_{m}\right)$ is a bounded sequence, it follows that $I\left(w_{m}\right) \rightarrow c$ and $I^{\prime}\left(w_{m}\right) w_{m} \rightarrow 0$ as $m \rightarrow \infty$.

Let $\varepsilon>0$ satisfy

$$
\begin{equation*}
\varepsilon<\beta^{2} / 4 \tag{3.1}
\end{equation*}
$$

where β is from (2.4). ε will fixed more precisely later. Since $w_{m} \rightarrow 0$ in $W^{1,2}([0,1])$ (and thus in $L^{\infty}([0,1])$), we may choose m large enough so that

$$
\begin{align*}
\left\|w_{m}\right\|_{L^{\infty}([0,1])} & <\beta \tag{3.2}\\
I\left(w_{m}\right) & <7 c / 6 \tag{3.3}
\end{align*}
$$

and

$$
\begin{equation*}
\left|I^{\prime}\left(w_{m}\right) w_{m}\right|<\varepsilon \tag{3.4}
\end{equation*}
$$

For convenience define

$$
\begin{equation*}
w=w_{m} \tag{3.5}
\end{equation*}
$$

We will choose a "cutting point" $\widehat{t}>0$, and split w into two functions, $w^{(1)}=$ $\left.w\right|_{[0, \widehat{t}]}$ (the restriction of w to $\left.[0, \widehat{t}]\right)$, and $w^{(2)}=\left.w\right|_{\widehat{t}, \infty]}$. Functions $w^{(1)}$ and $w^{(2)}$ can be transformed into z_{1} and z_{2} respectively in E : $w^{(1)}$ into z_{1}, by reflecting over $t=\widehat{t} / 2$; and $w^{(2)}$ into z_{2}, by translating by a factor of \widehat{t} to the left. If d is small enough and \widehat{t} is chosen carefully, $I^{\prime}\left(z_{1}\right) z_{1}$ and $I^{\prime}\left(z_{2}\right) z_{2}$ are both very close to zero, but either $I\left(z_{1}\right)$ or $I\left(z_{2}\right)$ is significantly less than c. Using Lemma 2.11, we then choose \bar{s} very close to 1 so that $\bar{s} z_{*} \in \mathcal{S}$ but $I\left(\bar{s} z_{*}\right)<c$, where $*=1$ or 2 . This contradicts the fact that $\inf \{I(u) \mid u \in \mathcal{S}\}=c$, proving Theorem 1.0.

Let us choose \widehat{t}. We claim that $\left\|w_{m}\right\|_{L^{\infty}\left(\mathbb{R}^{+}\right)}>\beta$ for large m : since $I\left(w_{m}\right) \rightarrow$ c and $I(0) \neq c,\left\|w_{m}\right\|$ is bounded away from 0 for large m. If $\left\|w_{m}\right\|_{L^{\infty}\left(\mathbb{R}^{+}\right)} \leq \beta$, then by (2.4),

$$
\begin{align*}
I^{\prime}\left(w_{m}\right)\left(w_{m}\right) & =\left\|w_{m}\right\|^{2}-\int_{0}^{\infty} h V^{\prime}\left(w_{m}\right) \cdot w_{m} d t \tag{3.6}\\
& \geq\left\|w_{m}\right\|^{2}-\int_{0}^{\infty} 2\left(\frac{1}{8}\right)\left|w_{m}\right|^{2} d t \geq \frac{3}{4}\left\|w_{m}\right\|^{2}
\end{align*}
$$

This cannot happen for large m, since $\left\|w_{m}\right\|$ is bounded away from 0 for large m and $I^{\prime}\left(w_{m}\right) w_{m} \rightarrow 0$. Since $\left\|w_{m}\right\|_{L^{\infty}\left(\mathbb{R}^{+}\right)}>\beta$ for large m, we may define

$$
\begin{equation*}
t_{0}=\min \{t| | w(t) \mid \geq \beta\}<t_{1}=\max \{t| | w(t) \mid \geq \beta\} \tag{3.7}
\end{equation*}
$$

By (3.2), $1<t_{0}<t_{1}$. By (3.4),

$$
\begin{equation*}
\left|I^{\prime}(w) w\right|=\left.\left|\int_{0}^{\infty}\right| w^{\prime}\right|^{2}+|w|^{2}-h(t) V^{\prime}(w) \cdot w d t \mid<\varepsilon \tag{3.8}
\end{equation*}
$$

We will choose the cutting point \widehat{t} between t_{0} and t_{1} so that the integral above, evaluated only from 0 to \widehat{t}, is zero (and the integral evaluated from \widehat{t} to ∞ is also close to zero). For $t<t_{0},|w(t)|<\beta$, and since by (2.5) $h(t) \leq 2$ for all $t \geq 0$,

$$
\begin{equation*}
\left|h(t) V^{\prime}(w(t)) w(t)\right| \leq 2|w(t)|^{2} / 8=|w(t)|^{2} / 4 \tag{3.9}
\end{equation*}
$$

by the definition (2.4) of β. Therefore

$$
\begin{align*}
\int_{0}^{t_{0}}\left|w^{\prime}\right|^{2} & +|w|^{2}-h(t) V^{\prime}(w(t)) \cdot w(t) d t \tag{3.10}\\
& \geq \frac{3}{4} \int_{0}^{t_{0}}\left|w^{\prime}\right|^{2}+|w|^{2} d t=\frac{3}{4}\|w\|_{W^{1,2}\left(\left[0, t_{0}\right]\right)}^{2} \\
& \geq \frac{3}{4}\|w\|_{W^{1,2}\left(\left[0, t_{0}\right]\right)}^{2} \geq \frac{3}{16}\|w\|_{L^{\infty}\left(\left[0, t_{0}\right]\right)}^{2}=\frac{16}{3} \beta^{2}
\end{align*}
$$

using an embedding in the Appendix, and the fact that $\|w\|_{L^{\infty}\left(\left[0, t_{0}\right]\right)}=\beta$. By similar reasoning to (3.9)-(3.10), and using the other embedding in the Appendix,

$$
\begin{align*}
\int_{t_{1}}^{\infty}\left|w^{\prime}\right|^{2} & +|w|^{2}-h(t) V^{\prime}(w(t)) \cdot w(t) d t \tag{3.11}\\
& \geq \frac{3}{4}\|w\|_{W^{1,2}\left(\left[t_{1}, \infty\right]\right)}^{2} \geq \frac{3}{4}\|w\|_{L^{\infty}\left(\left[t_{1}, \infty\right]\right)}^{2}=\frac{3}{4} \beta^{2}
\end{align*}
$$

By (3.8), (3.11), and (3.1),

$$
\begin{align*}
\int_{0}^{t_{1}}\left|w^{\prime}\right|^{2} & +|w|^{2}-h(t) V(w(t)) w(t) d t \tag{3.12}\\
= & \int_{0}^{\infty}\left|w^{\prime}\right|^{2}+|w|^{2}-h(t) V^{\prime}(w) \cdot w d t \\
& -\int_{t_{1}}^{\infty}\left|w^{\prime}\right|^{2}+|w|^{2}-h(t) V^{\prime}(w) \cdot w d t \\
< & \varepsilon-\frac{3}{4} \beta^{2}<\frac{1}{4} \beta^{2}-\frac{3}{4} \beta^{2}<0
\end{align*}
$$

The above integral is negative but the integral from 0 to t_{0} of the same integrand is positive by (3.10). Therefore there exists $\widehat{t} \in\left(t_{0}, t_{1}\right)$ with

$$
\begin{equation*}
\int_{0}^{\widehat{t}}\left|w^{\prime}\right|^{2}+|w|^{2}-h(t) V^{\prime}(w(t)) \cdot w(t) d t=0 \tag{3.13i}
\end{equation*}
$$

By the above and (3.8), we have similarly,

$$
\begin{equation*}
\left.\left|\int_{\hat{t}}^{\infty}\right| w^{\prime}\right|^{2}+|w|^{2}-h(t) V^{\prime}(w(t)) \cdot w(t) d t \mid<\varepsilon . \tag{3.13ii}
\end{equation*}
$$

By (3.3),

$$
\begin{equation*}
\int_{0}^{\hat{t}} \frac{1}{2}\left|w^{\prime}\right|^{2}+\frac{1}{2}|w|^{2}-h(t) V(w(t)) d t<\frac{7}{12} c \tag{3.14i}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{\widehat{t}}^{\infty} \frac{1}{2} \dot{w}^{2}+\frac{1}{2} w^{2}-h(t) V(w(t)) d t<\frac{7}{12} c . \tag{3.14ii}
\end{equation*}
$$

If the former case, (3.14)(i), holds, define $z \in E$ by reflecting w over $t=\widehat{t} / 2$, that is,

$$
z(t)= \begin{cases}w(\widehat{t}-t) & 0 \leq t \leq \widehat{t} \tag{3.15}\\ 0 & t \geq \widehat{t}\end{cases}
$$

If the latter case, (3.14ii), holds, define $z \in E$ by $z(t)=w(t+\widehat{t})$. In future arguments, we assume for convenience that the latter case holds. Arguments for the former case are very similar.

By the discussion preceding Lemma 2.11, there exists a unique $\bar{s}>0$ with the property that $\bar{s} z \in \mathcal{S}$. We will prove that, if one assumes d to be small enough, then $I(\bar{s} z)<c$. This is impossible, and Theorem 1.0 follows. Recall ε from (3.1), and define ε more precisely by

$$
\begin{equation*}
\varepsilon=\frac{(p-1) \beta^{2}}{60} \tag{3.16}
\end{equation*}
$$

Set

$$
\begin{equation*}
d=\frac{\varepsilon}{B^{2}}=\frac{(p-1) \beta^{2}}{60} \cdot \frac{(p-1)}{14 c^{+}}=\frac{(p-1)^{2} \beta^{2}}{840 c^{+}} . \tag{3.17}
\end{equation*}
$$

Assume from now on that

$$
\begin{equation*}
p \leq 2 \tag{3.18}
\end{equation*}
$$

Then, as we have been assuming, $d \leq 1$, using (2.8) and $c^{+} \geq c$. The following estimate, which uses (2.8), will be useful later:

$$
\begin{equation*}
\varepsilon=\frac{(p-1) \beta^{2}}{60} \leq \frac{(p-1)}{60} \cdot \frac{8}{3} c<\frac{(p-1) c}{22} \leq \frac{c}{22} \leq \frac{c^{+}}{22} \tag{3.19}
\end{equation*}
$$

We will show that $\left|I^{\prime}(z) z\right|<3 \varepsilon$, while $I(z)<2 c / 3$. This will imply that the function $g(s)=I(s z)$ has a maximum for $s \geq 0$ that is less than c, which is
impossible. We estimate $I^{\prime}(z) z$ by comparing the integral for $I^{\prime}(z) z$ to that for $I^{\prime}(w) w$ in (3.13ii) and by (3.13ii) and $\left(\mathrm{V}_{3}\right)$

$$
\begin{align*}
\left|I^{\prime}(z) z\right|= & \left.\left|\int_{0}^{\infty}\right| z^{\prime}(t)\right|^{2}+|z(t)|^{2}-h(t) V^{\prime}(z(t)) \cdot z(t) d t \mid \tag{3.20}\\
= & \left.\left|\int_{0}^{\infty}\right| w^{\prime}(t+\widehat{t})\right|^{2}+|w(t+\widehat{t})|^{2}-h(t) V^{\prime}(w(t+\widehat{t})) \cdot w(t+\widehat{t}) d t \mid \\
= & \left.\left|\int_{\widehat{t}}^{\infty}\right| w^{\prime}(t)\right|^{2}+|w(t)|^{2}-h(t-\widehat{t}) V^{\prime}(w(t)) \cdot w(t) d t \mid \\
= & \left.\left|\int_{\widehat{t}}^{\infty}\right| w^{\prime}(t)\right|^{2}+|w(t)|^{2}-h(t) V^{\prime}(w(t)) \cdot w(t) d t \mid \\
& +\left|\int_{\widehat{t}}^{\infty}(h(t)-h(t-\widehat{t})) V^{\prime}(w(t)) \cdot w(t) d t\right| \\
= & \varepsilon+d \int_{\widehat{t}}^{\infty} V^{\prime}(w(t)) \cdot w(t) \leq \varepsilon+d \int_{0}^{\infty} V^{\prime}(w(t)) \cdot w(t) \\
= & \varepsilon+d\left(\|w\|^{2}-I^{\prime}(w) w\right) \\
\leq & \varepsilon+d\left(B^{2}+\varepsilon\right) \leq 2 \varepsilon+d B^{2} \leq 3 \varepsilon .
\end{align*}
$$

In the last line we use $(2.5)(d \leq 1)$, and Lemma 2.22 with (3.3), (3.4) and (3.19).
Now we estimate $I(z)$ by comparing the integral for $I(z)$ to that for $I(w)$; we assume case (3.14ii) holds, so z equals w translated \widehat{t} units to the left. Recall that w satisfies (3.2)-(3.4). By (3.3) and (2.1) we have

$$
\begin{align*}
I(z)= & \int_{0}^{\infty} \frac{1}{2}\left|z^{\prime}(t)\right|^{2}+\frac{1}{2}|z(t)|^{2}-h(t) V(z(t)) d t \tag{3.21}\\
= & \int_{0}^{\infty} \frac{1}{2}\left|w^{\prime}(t+\widehat{t})\right|^{2}+\frac{1}{2}|w(t+\widehat{t})|^{2}-h(t) V(w(t+\widehat{t})) d t \\
= & \int_{\hat{t}}^{\infty} \frac{1}{2}\left|w^{\prime}(t)\right|^{2}+\frac{1}{2}|w(t)|^{2}-h(t-\widehat{t}) V(w(t)) d t \\
= & \int_{\hat{t}}^{\infty} \frac{1}{2}\left|w^{\prime}(t)\right|^{2}+\frac{1}{2}|w(t)|^{2}-h(t) V(w(t)) d t \\
& +\int_{\hat{t}}^{\infty}(h(t)-h(t-\widehat{t})) V(w(t)) d t \\
< & \frac{7}{12} c+d \int_{\hat{t}}^{\infty} V(w(t)) d t \leq \frac{7}{12} c+d \int_{\hat{t}}^{\infty} V^{\prime}(w(t)) \cdot w(t) d t \\
\leq & \frac{7}{12} c+d\left(B^{2}+\varepsilon\right)<\frac{7}{12} c+2 \varepsilon<\frac{2}{3} c .
\end{align*}
$$

In the last line, we estimate the last integral using the calculation at the end of (3.20), and also use (3.16), $d \leq 1$, and (3.19).

We have $z \in E$ with $I(z)<2 c / 3$ and $\left|I^{\prime}(z) z\right|<3 \varepsilon$. By choice of the cutting point \widehat{t} between t_{0} and $t_{1}(3.7)$, and the definition of z as a reflection or translation of w (see (3.15) and the remark following it), $\|z\|_{L^{\infty}\left(\mathbb{R}^{+}\right)} \geq|z(0)|=\beta$,
so $\|z\| \geq \beta$. Defining $g(s)=I(s z)$ as in Lemma 2.11, $g(1)=I(z)<2 c / 3$ and $\left|g^{\prime}(1)\right|=\left|I^{\prime}(z) z\right|<3 \varepsilon$. We will show that $g^{\prime}(5 / 4)<0$ and $g^{\prime}(3 / 4)>0$. Therefore there exists $\bar{s} \in(3 / 4,5 / 4)$ with $g^{\prime}(\bar{s})=I^{\prime}(\bar{s} z) z=0$, so $\bar{s} z \in \mathcal{S}$. Then we prove that for all $s \in[3 / 4,5 / 4], g(s)<c$. This contradicts the fact that $I(\bar{s} z) \geq c$, proving Theorem 1.0. By Lemma 2.11(i), since $p \in(1,2]$ and $\|z\|>\beta$,

$$
\begin{equation*}
g^{\prime}(5 / 4) \leq g^{\prime}(1)-((p-1) / 4)\left(\|z\|^{2} / 4\right) \leq 3 \varepsilon-(p-1) \beta^{2} / 16<0 \tag{3.22}
\end{equation*}
$$

using the definition (3.16) of ε. Similarly,

$$
\begin{equation*}
g^{\prime}(3 / 4) \geq g^{\prime}(1)+((p-1) / 4)\left(\|z\|^{2} / 4\right) \geq-3 \varepsilon+(p-1) \beta^{2} / 16>0 \tag{3.23}
\end{equation*}
$$

$\left|g^{\prime}(1)\right|<3 \varepsilon$, so for $s \in[1,5 / 4]$, Lemma 2.11(i) gives

$$
\begin{equation*}
g^{\prime}(s) \leq g^{\prime}(1) s^{p}-(p-1)(s-1)\|z\|^{2} / 2 \leq g^{\prime}(1) s^{p}<3 \varepsilon s^{p}<3 \varepsilon(5 / 4)^{2}<5 \varepsilon \tag{3.24}
\end{equation*}
$$

and
(3.25) $g(s)=g(1)+\int_{1}^{s} g^{\prime}(r) d r<2 c / 3+5 \varepsilon(s-1)<2 c / 3+2 \varepsilon<2 c / 3+c / 11<c$
(see (3.19)). For $s \in[3 / 4,1]$, Lemma 2.11(ii) gives,

$$
\begin{align*}
g^{\prime}(s) & \geq g^{\prime}(1) s^{p}+(p-1)(s-1)\|z\|^{2} / 4 \tag{3.26}\\
& \geq g^{\prime}(1) s^{p}>-3 \varepsilon s^{p}<-3 \varepsilon(1)^{2}=-3 \varepsilon
\end{align*}
$$

so, by (3.19),
(3.27) $g(s)=g(1)-\int_{s}^{1} g^{\prime}(r) d r<2 c / 3+3 \varepsilon(1-s)<2 c / 3+\varepsilon<2 c / 3+c / 22<c$.

Therefore $g(s)=I(s z)<c$ for all $s \in[3 / 4,5 / 4]$. This is impossible because $\bar{s} z \in \mathcal{S}$ for some $\bar{s} \in[3 / 4,5 / 4]$. The assumption made at the beginning of this section is false. Theorem 1.0 is proven.

4. Determining d - an example

Here we find how to write d, satisfying Theorem 1.0, compactly in terms of β, p, and V. Then we find d for a specific function V.

To compute d using (3.17) we must estimate c^{+}as defined in (2.21). Let us find a way to estimate c^{+}for any V satisfying $\left(\mathrm{V}_{1}\right)-\left(\mathrm{V}_{3}\right)$ and write it compactly. Recall I^{+}, Γ^{+}, and c^{+}from (2.19)-(2.21). To define c^{+}, it suffices to find one element γ of Γ^{+}and choose c^{+}large enough to guarantee that $c^{+} \geq \max _{\theta>0} I^{+}(g(\theta))$. Define β as in (2.4). Let \vec{e}_{1} denote the unit vector $\left[\begin{array}{llll}1 & 0 & \ldots\end{array}\right]^{T} \in \mathbb{R}^{n}$, and define $w: \mathbb{R}^{+} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
w(t)=\beta e^{-t} \vec{e}_{1} \tag{4.0}
\end{equation*}
$$

A direct calculation yields $\|w\|=\beta$. Since $\|w\|_{L^{\infty}\left(\mathbb{R}^{+}\right)}=\beta, I^{+^{\prime}}(s w)(w)>0$ for all $s \in(0,1]$, by (3.6). Thus $I(s w)<I(w)$ for all $s \in(0,1)$. By (2.2),

$$
\begin{equation*}
I^{+}(s w)=\frac{1}{2} s^{2}\|w\|^{2}-\int_{0}^{\infty} V(s w) d t \leq \frac{1}{2} s^{2} \beta^{2}-s^{p+1} \int_{0}^{\infty} V(w) d t \tag{4.1}
\end{equation*}
$$

for all $s>1 . V\left(r \vec{e}_{1}\right)$ is increasing for positive r, so

$$
\begin{align*}
\int_{0}^{\infty} V(w) d t & \geq \int_{0}^{\ln 2} V(w) d t=\int_{0}^{\ln 2} V\left(\beta e^{-s} \vec{e}_{1}\right) d s \tag{4.2}\\
& >\int_{0}^{\ln 2} V\left(\frac{\beta \vec{e}_{1}}{2}\right) d t=(\ln 2) V\left(\frac{\beta \vec{e}_{1}}{2}\right)>\frac{1}{2} V\left(\frac{\beta \vec{e}_{1}}{2}\right)
\end{align*}
$$

Therefore

$$
\begin{equation*}
I^{+}(s w) \leq \alpha(s) \equiv \frac{1}{2} s^{2}\left[\beta^{2}-\left(\frac{1}{2} F\left(\frac{\beta}{2}\right)\right) s^{p-1}\right] \tag{4.3}
\end{equation*}
$$

for $s>1$. By elementary calculus, $\alpha(s)$ achieves a maximum over $\{s>0\}$ of

$$
\begin{equation*}
\frac{\beta^{2}}{2}\left(\frac{p-1}{p+1}\right)\left(\frac{4 \beta^{2}}{(p+1) V(\beta / 2)}\right)^{2 /(p-1)} \leq \frac{\beta^{2}}{6}\left(\frac{2 \beta^{2}}{V(\beta / 2)}\right)^{2 /(p-1)} \tag{4.4}
\end{equation*}
$$

The last expression is an upper bound for c^{+}. Using (3.17), d can be estimated by

$$
\begin{align*}
\frac{(p-1)^{2} \beta^{2}}{840 c^{+}} & \geq \frac{(p-1)^{2} \beta^{2}}{840} \cdot \frac{6}{\beta^{2}} \cdot\left(\frac{V\left(\beta \vec{e}_{1} / 2\right)}{2 \beta^{2}}\right)^{2 /(p-1)} \tag{4.5}\\
& =\frac{(p-1)^{2}}{140}\left(\frac{V\left(\beta \vec{e}_{1} / 2\right)}{2 \beta^{2}}\right)^{2 /(p-1)} \geq d
\end{align*}
$$

Let us compute d for the specific case $n=1,1<p \leq 2, V(q)=|q|^{p+1} /(p+1)$.
We can pick $\beta=(1 / 8)^{1 /(p-1)}$, because

$$
\begin{equation*}
V^{\prime}(q) \cdot q=|q|^{p+1}=|q|^{p-1}|q|^{2} \leq \beta|q|^{2} \tag{4.6}
\end{equation*}
$$

for $|q| \leq \beta$. Now,

$$
\begin{equation*}
V\left(\frac{\beta}{2}\right)=\frac{1}{p+1}\left(\frac{1}{8}\right)^{(p+1) /(p-1)} \geq \frac{1}{3}\left(\frac{1}{8}\right)^{3 /(p-1)} \tag{4.7}
\end{equation*}
$$

so, using (4.5), d can be estimated by

$$
\begin{aligned}
\frac{(p-1)^{2}}{140}\left(\frac{V(\beta / 2)}{2 \beta^{2}}\right)^{2 /(p-1)} & \geq \frac{(p-1)^{2}}{140}\left(\frac{1}{6 \cdot 8^{3 /(p-1)} \cdot 8^{2 /(p-1)}}\right)^{2 /(p-1)} \\
& >\frac{(p-1)^{2}}{140}\left(\frac{1}{8}\right)^{(p+4) /(p-1) \cdot(2 /(p-1)} \\
& \geq \frac{(p-1)^{2}}{140}\left(\frac{1}{8}\right)^{12 /(p-1)^{2}} \geq d
\end{aligned}
$$

Appendix

This brief appendix contains two well-known Sobolev inequalities, along with embedding constants.

Lemma 1. If $u \in W^{1,2}\left([0, \infty) ; \mathbb{R}^{n}\right)$ then

$$
\begin{equation*}
\|u\|_{L^{\infty}([0, \infty))} \leq\|u\|_{W^{1,2}\left([0, \infty) ; \mathbb{R}^{n}\right)} \tag{i}
\end{equation*}
$$

If $a \geq 1$ and $u \in W^{1,2}([0, a])$, then

$$
\begin{equation*}
\|u\|_{L^{\infty}([0, a])} \leq 2\|u\|_{W^{1,2}\left([0, \infty) ; \mathbb{R}^{n}\right)} \tag{ii}
\end{equation*}
$$

Proof of (i). Let $u \in W^{1,2}\left([0, \infty) ; \mathbb{R}^{n}\right)$ and $x_{1} \in[0, \infty)$. Let $\varepsilon>0$. Choose $x_{0} \in[0, \infty)$ with $\left|u\left(x_{0}\right)\right|<\varepsilon$. Then

$$
\begin{aligned}
\left|u\left(x_{1}\right)\right|^{2} & =\left|u\left(x_{0}\right)\right|^{2}+\left(\left|u\left(x_{1}\right)\right|^{2}-\left|u\left(x_{0}\right)\right|^{2}\right) \\
& <\varepsilon^{2}+\left.\left|\int_{x_{0}}^{x_{1}} \frac{d}{d x}\right| u\right|^{2} d x\left|=\varepsilon^{2}+\left|\int_{x_{0}}^{x_{1}} 2 u \cdot u^{\prime} d x\right|\right. \\
& \leq \varepsilon^{2}+\left.\left|\int_{x_{0}}^{x_{1}}\right| u^{\prime}\right|^{2}+|u|^{2} d x \mid \leq \varepsilon^{2}+\|u\|_{W^{1,2}\left([0, \infty) ; \mathbb{R}^{n}\right)}^{2}
\end{aligned}
$$

via the Cauchy-Schwarz inequality. So $\left|u\left(x_{1}\right)\right| \leq\|u\|_{W^{1,2}\left([0, \infty) ; \mathbb{R}^{n}\right)}$ when ε go to zero. Since x_{1} is arbitrary, (i) is proven.

Proof of (ii). Let $a \geq 1$ and $u \in W^{1,2}([0, a])$. Assume $\|u\|_{L^{\infty}([0, a])} \geq 1$. We will show that $\|u\|_{W^{1,2}\left([0, \infty) ; \mathbb{R}^{n}\right)} \geq 1 / 2$.

If $|u(x)|>1 / 2$ for all $x \in[0, a]$, then $\|u\|_{W^{1,2}([0, \infty))}^{2} \geq \int_{0}^{a} u^{2}>a / 4 \geq 1 / 4$. So suppose $\left|u\left(x_{0}\right)\right| \leq 1 / 2$ for some $x_{0} \in[0, a]$. Let $x_{1} \in[0, a]$ with $\left|u\left(x_{1}\right)\right| \geq 1$. Arguing as in part (i) above,

$$
\begin{aligned}
1 \leq\left|u\left(x_{1}\right)\right|^{2} & =\left|u\left(x_{0}\right)\right|^{2}+\left(\left|u\left(x_{1}\right)\right|^{2}-\left|u\left(x_{0}\right)\right|^{2}\right) \\
& <\frac{1}{4}+\left|\int_{x_{0}}^{x_{1}} \frac{d}{d x} u^{2} d x\right|=\frac{1}{4}+\left|\int_{x_{0}}^{x_{1}} 2 u u^{\prime} d x\right| \\
& \leq \frac{1}{4}+\left|\int_{x_{0}}^{x_{1}}\left(u^{\prime}\right)^{2}+u^{2} d x\right| \leq \frac{1}{4}+\|u\|_{W^{1,2}([0,1])}^{2} .
\end{aligned}
$$

Therefore $\|u\|_{W^{1,2}([0,1])}^{2} \geq 3 / 4>1 / 4$. Part (ii) is proven.

References

[A] F. Alessio, Homoclinic solutions for second order systems with expansive time dependence, preprint.
[AR] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381.
[BL] A. Bahri and Y-Y. Li, On a Min-Max Procedure for the existence of a positive solution for a certain scalar field equations in \mathbb{R}^{N}, Rev. Mat. Iberoamericana 6.
[CMN] V. Coti Zelati, P. Montecchiari and M. Nolasco, Multibump solutions for a class of second order, almost periodic Hamiltonian systems, Nonlinear Ordinary Differential Equations and Applications (to appear).
[CR] V. Coti Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc. 4 (1991), 693-627.
[EL] M. J. Esteban and P. L. Lions, Existence and non existence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh, Sect. A 93 (1982), 1-14.
[FdP] P. Felmer and M. del Piño, Semi-classical states for nonlinear Schrödinger equations, preprint.
[FW] A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69 (1986), 397-408.
[L] P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Ann. Inst. H. Poincaré, Anal. Non Linéaire 1 (1984), 102145, 223-283.
[MNT] P. Montecchiari, M. Nolasco and S. Terracini, Multiplicity of homoclinics for a class of time recurrent second order Hamiltonian systems, Calculus of Variations (to appear).
[MW] J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, Sprin-ger-Verlag, Berlin, 1989.
[R1] P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh, Sect. A 114A (1990), 33-38.
[R2] , On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), 270-291.
[Sé] E. SÉré, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z. 209 (1992), 27-42.
[STT] E. Serra, M. Tarallo and S. Terracini, On the existence of homoclinic solutions to almost periodic second order systems, Ann. Inst. H. Poincaré, Anal. Non Linéaire (to appear).
[WZ] X. Wang and B. Zeng, On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions, Comm. Math. Phys. 153 (1993), 229-244.

E-mail address: spradlin@math.ucdavis.edu

