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A HAMILTONIAN SYSTEM WITH AN EVEN TERM

Gregory S. Spradlin

1. Introduction

In this paper we study, using variational methods, a Hamiltonian system of
the form −u′′ + u = h(t)V (u), where h and V are differentiable, h is positive,
bounded, and bounded away from zero, and V is a “superquadratic” potential.
That is, V behaves like q to a power greater than 2, so |V (q)| = o(|q|2) for |q|
small and V (q) > O(|q|2) for |q| large. To prove that a solution homoclinic to
zero exists, one must assume additional hypotheses on h (see [EL] for a coun-
terexample). In [R1], solutions were found when h is assumed to be periodic.
In [STT], solutions were found when h is almost periodic (a weaker condition
than periodicity). In [MNT], a condition yet weaker than almost periodic is
defined, and solutions to the equation are found when h satisfies that condition.
Like periodicity and almost periodicity, this condition assumes basically that h

is similar to translates of itself, that is, for certain large values of T , the functions
t 7→ h(t) and t 7→ h(t + T ) are close to each other. Other ways to guarantee
solutions involve making |h′| small: see papers such as [FW], [WZ], and [FdP] on
the nonlinear Schrödinger equation, and [A] for a novel example of an h which
“oscillates slowly”.

In this paper we attempt to find solutions to the system without assuming
that h satisfies any kind of time-recurrence property or restriction on h′. We
assume two conditions: first, that h is even (h(−t) = h(t)). Therefore it is
convenient to treat the system as a system on the half-line R+ = [0,∞). Second,
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h only takes on a small range of values, with the variation in h depending on V .
Here is a statement of the theorem:

Theorem 1.0. Let n ≥ 1 and V satisfy

(V1) V ∈ C2(Rn, R),
(V2) V ′(0) = 0, V ′′(0) = 0 and
(V3) there exists p > 1 such that V ′′(q)q·q ≥ pV ′(q)·q > 0 for all q ∈ Rn\{0}.

Then there exists d > 0 with the property that if h satisfies

(h1) h ∈ C1(R+, R),
(h2) h′(0) = 0 and
(h3) 1 ≤ h(t) ≤ 1 + d for all t ∈ R,

then the Hamiltonian system

(∗) −u′′ + u = h(t)V ′(u)

has a non-zero solution v on R+, satisfying v′(0) = 0 and v(t) → 0, v′(t) → 0
as t →∞.

An example of V satisfying (V1)–(V3) is V (q) = |q|p+1 with p > 1 . Con-
dition (V3) is a little stronger than growth conditions found in previous papers
such as [Sé] or [CMN]. The conditions on h are fairly weak; h need not be pe-
riodic, or monotone, or tend to a single value as t → ∞ like in [BL]. If h has a
lower bound other than 1, then h and V can be rescaled so that (h3) is satisfied
and the problem reduces to the one in the theorem statement.

Plan of Proof. We give a variational formulation of the problem. Let
E = W 1,2(R+) along with the inner product

(u, w) =
∫ ∞

0

(
u′ · w′ + uw

)
dt

for u, w ∈ E and the associated norm ‖u‖ ≡ ‖u‖W 1,2(R+). Then the functional
I ∈ C2(E, R) corresponding to (∗) is

I(u) =
1
2
‖u‖2 −

∫ ∞

0

h(t)V (u(t)) dt.

Any critical point v of I satisfies the differential system (∗), with v(t) → 0 and
v′(t) → 0 as t →∞. Also, any critical point of I satisfies the boundary condition
v′(0) = 0. Suppose v is a critical point of I. Define h2(t) = h(|t|) for t ∈ R.
Then, since h′(0) = 0, h2 ∈ C1(R, R). Define the functional I2 on W 1,2(R) by
I2(u) = ‖u‖2W 1,2(R)/2 −

∫
R h2(t)V (u(t)) dt and v2 ∈ W 1,2(R) by v2(t) = v(|t|).

Then it is easy to verify that v2 is a critical point of I2, and therefore a classical
solution of the system −u′′ + u = h2(t)V ′(u) on the entire real line. Since h2 is
an even function of t, and h2 ∈ C1(R), v′2(0) = 0, so v′(0) = 0.
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We will prove via an indirect argument that a critical point of I exists. First
we define a submanifold S of E = W 1,2(R+) with the property that infu∈S I(u) =
c, where c is the mountain-pass value associated with I. Then we take a sequence
(um) ⊂ E with I(um) → c and I ′(um) → 0 as m → ∞. It is not apparent
whether I satisfies the Palais–Smale condition, so it is not clear whether (um)
converges. But we can show that (um) is a bounded sequence, so it has a weak
limit. This weak limit point must be a critical point of I. If the limit point is
not zero, then Theorem 1.0 is proven.

If (um) converges weakly to zero, then matters are more complicated. In
this case, we can construct a sequence (ym) with I(ym) ≤ c/2 + o(m), where
o(m) → 0 as m → ∞, and ym “close” to S. For large enough m, we can use
ym to construct z ∈ S with I(z) < c. This is impossible, so (um) has a nonzero
weak limit, and there exists v satisfying Theorem 1.0. �

This paper is organized as follows: in Section 2 we explore the mountain-pass
structure of the functional I, define the manifold S, and obtain some quantitative
estimates. Section 3 contains the main proof of Theorem 1.0, the “splitting”
argument to obtain the sequence (ym) ⊂ S in the indirect argument above.
Section 4 contains a computation of d for a specific function V .

2. Mountain–pass structure of I

Before defining S, let us explore the related mountain-pass structure of I.
Define the set of paths

(2.0) Γ = { γ ∈ C([0, 1], E) | γ(0) = 0, I(γ(1)) < 0 }.

Integrating (V3) yields

(2.1) V ′(q)q ≥ (p + 1)V (q)

for all q ∈ Rn. For λ > 1, the above implies

(2.2) V (λq) ≥ λp+1V (q)

for all q ∈ Rn. Thus it is easy to show that for any u ∈ E \ {0}, I(λu) → −∞
as λ →∞, and Γ is well defined. Define the minimax value

(2.3) c = inf
γ∈Γ

max
θ∈[0,1]

I(γ(θ)).

Let us obtain a positive lower bound for c. Let β > 0 satisfy

(2.4) |q| ≤ β ⇒ V ′(q) · q ≤ |q|2/8.

This is possible by (V1)–(V2). From now on assume, without loss of generality,
that

(2.5) d ≤ 1.
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Then h(t) ≤ 2 for all t ≥ 0. If ‖u‖ ≤ β, then ‖u‖L∞(R+) ≤ β (see Appendix),
and (by (2.1))

I(u) =
1
2
‖u‖2 −

∫ ∞

0

h(t)V (u) dt ≥ 1
2
‖u‖2 − 2

p + 1

∫ ∞

0

V ′(u) · u dt(2.6)

≥ 1
2
‖u‖2 − (1)

∫ ∞

0

1
8
|u|2 dt ≥ 1

2
‖u‖2 − 1

8
‖u‖2 =

3
8
‖u‖2 ≥ 0.

Therefore any mountain-pass curve must cross the sphere {‖u‖ = β}, that is, if
γ ∈ Γ, there exists θ∗ ∈ [0, 1] with ‖γ(θ∗)‖ = β. So the above implies

(2.7) max
θ∈[0,1]

I(γ(θ)) ≥ I(γ(θ∗)) ≥ 3‖γ(θ∗)‖2/8 = 3β2/8.

Since γ is an arbitrary element of Γ,

(2.8) c ≥ 3β2/8.

Note that this estimate does not depend on d, as long as d ≤ 1.
There is another way to describe c (we will need both characterizations).

Define

(2.9) S = {u ∈ E | u 6= 0, I ′(u)u = 0 }.

In [R2] it is proven, under weaker growth hypotheses on V than (V3), that

(2.10) inf
u∈S

I(u) = c.

In fact, for any u ∈ S, the function s 7→ I(su) is strictly increasing on 0 < s < 1,
attains a maximum of I(u) at s = 1, and decreases to −∞ on 1 < s < ∞. The
following lemma gives estimates how quickly I(su) changes when s is near 1.

Lemma 2.11. Let u ∈ E and define g(s) = I(su) for s ≥ 0. Assume p ≤ 2.
Then

(i) s ≥ 1 ⇒ g′(s) ≤ g′(1)sp − (p− 1)(s− 1)‖u‖2/4

and

(ii) 1/2 ≤ s ≤ 1 ⇒ g′(s) ≥ g′(1)sp + (p− 1)(1− s)‖u‖2/4.

Proof. Let u ∈ E and define g(s) = I(su). Then

(2.12)



g(s) =
1
2
s2‖u‖2 −

∫ ∞

0

h(t)V (su) dt,

g′(s) = s‖u‖2 −
∫ ∞

0

h(t)V ′(su) · u dt,

g′′(s) = ‖u‖2 −
∫ ∞

0

h(t)V ′′(su)u · u dt.
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By (V3), we have

g′′(s) = ‖u‖2 − 1
s2

∫ ∞

0

h(t)V ′′(su)(su) · (su) dt(2.13)

≤ ‖u‖2 − p

s2

∫ ∞

0

h(t)V ′(su) · (su) dt

= ‖u‖2 − p

s

∫ ∞

0

h(t)V ′(su) · u dt

= ‖u‖2 − p(s‖u‖2 − g′(s))/s = pg′(s)/s− (p− 1)‖u‖2.

Therefore,

d

ds
[s−pg′(s)] = s−pg′′(s)− ps−p−1g′(s)(2.14)

= s−p(g′′(s)− pg′(s)/s) ≤ −(p− 1)s−p‖u‖2.

If s ≥ 1, then integrating the above from 1 to s yields

(2.15)
s−pg′(s)− g′(1) ≤ −(p− 1)‖u‖2

∫ t

1

s−p ds = −(1− s−p+1)‖u‖2,

g′(s) ≤ spg′(1)− (sp − s)‖u‖2.

If s ≤ 1, then integrating (2.14) from s to 1 yields

(2.16)
g′(1)− s−pg′(s) ≤ −(p− 1)‖u‖2

∫ 1

s

t−p dt = (1− s−p+1)‖u‖2,

g′(s) ≥ spg′(1) + (s− sp)‖u‖2.

If s ≥ 1, then by the mean value theorem, there exists λ ≥ s ≥ 1 with

(2.17) sp − s ≥ sp−1 − 1 ≥ (p− 1)λp−2(s− 1) ≥ (p− 1)(t− 1).

If s ∈ [1/2, 1], then 1/s ≥ 1, so by the above,

s− sp = sp+1(1/sp − 1/s) ≥ (p− 1)sp+1(1/s− 1)(2.18)

= (p− 1)sp(1− s) = (1/2)p(p− 1)(1− s)

≥ (p− 1)(1− s)/4.

Lemma 2.11 follows from (2.15)–(2.18). �

We have a lower bound for c that is independent of d. We also need an upper
bound for c that is independent of d. Define the functional

(2.19) I+(u) =
1
2
‖u‖2 −

∫ ∞

0

V (u(t)) dt.

Then I+(u) ≥ I(u) for all u ∈ E. Define the mountain-pass value c+, similar
to c, by defining the set of paths

(2.20) Γ+ = { g ∈ C([0, 1], E) | g(0) = 0, I+(g(1))) < 0 },
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and setting

(2.21) c+ = inf
g∈Γ+

max
θ∈[0,1]

I+(g(θ)).

c+ depends only on V , not on d. Using the mountain-pass characterization of c

(2.3), it is easy to see that c+ ≥ c because I+(u) ≥ I(u) for all u ∈ E. We will
estimate c+ in terms of β and V in Section 4.

It is well known that (V3) or a weaker condition implies that Palais–Smale
sequences of I are bounded, even that S ∩ {u | I(u) ≤ D} is bounded for any
D ∈ R. We want an estimate on ‖u‖ for when I(u) is small and u is “almost”
in S:

Lemma 2.22. If p ≤ 2, |I ′(u)u| ≤ c+ and I(u) ≤ 2c+, then

(2.23) ‖u‖ ≤

√
14c+

p− 1
≡ B.

Proof. By (2.1) we have

−c+ ≤ I ′(u)u = ‖u‖2 −
∫

R
hV ′(u) · u ≤ ‖u‖2 − (p + 1)

∫
R

hV (u) =

= (p + 1)I(u)−
(

p− 1
2

)
‖u‖2 ≤ 6c+ −

(
p− 1

2

)
‖u‖2,

so

‖u‖2 ≤
(

2
p− 1

)
7c+ =

14c+

p− 1
. �

3. Splitting

This section contains the “splitting” argument that is the core of the proof of
Theorem 1.0. By Ekeland’s Variational Principle ([MW]), there exists a Palais–
Smale sequence (um) ⊂ E with I(um) → c and I ′(um) → 0 as m → ∞. By
arguments of [CR], (um) is bounded. Therefore it has a subsequential weak
limit u. Also by [CR], u is a critical point of I, and um converges to u in
W 1,2([0, R]) for each R > 0. If u 6= 0, then Theorem 1.0 is proven. In fact, in this
case, I(u) ≤ c (see [CR]). I(u) ≥ c because by the observations following (2.10),
for large enough T , θ 7→ Tθu defines a path in Γ, along which the maximum
value of I is c. Thus I(u) = c.

We will show that if d is chosen small enough, in terms of V , then the case
u = 0 is impossible. The argument is indirect. Suppose u = 0. Define the
cutoff function ϕ ∈ C(R+, [0, 1]) by ϕ(t) = t for 0 ≤ t ≤ 1, ϕ ≡ 1 on [1,∞).
Define wm = ϕum. ‖um‖W 1,2([0,1]) → 0 as m →∞, and it is easy to verify that
‖um − wm‖ → 0 as m → ∞. I ′′, I ′, and I are bounded on bounded subsets
of E. For example, to prove for I ′′, let K > 0 and suppose ‖u‖ ≤ K. Then
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‖u‖L∞(R+) ≤ K (see Appendix). Let C > 0 satisfy |V ′′(q)xy| ≤ C for all |q| ≤ K,
|x| ≤ 1, |y| ≤ 1. Let v, w ∈ E. Then

|I ′′(u)(v, w)| =
∣∣∣∣(v, w)−

∫ ∞

0

h(t)V ′′(u)v · w dt

∣∣∣∣(3.0)

≤ ‖v‖‖w‖+
∫ ∞

0

2C|v||w| dt

≤ ‖v‖‖w‖+ 2C‖v‖L2(R+)‖w‖L2(R+)

≤ (1 + 2C)‖v‖‖w‖.

Since I ′′, I ′ and I are bounded on bounded subsets of E, and (um) is a bounded
sequence, it follows that I(wm) → c and I ′(wm)wm → 0 as m →∞.

Let ε > 0 satisfy

(3.1) ε < β2/4

where β is from (2.4). ε will fixed more precisely later. Since wm → 0 in
W 1,2([0, 1]) (and thus in L∞([0, 1])), we may choose m large enough so that

‖wm‖L∞([0,1]) < β,(3.2)

I(wm) < 7c/6,(3.3)

and

(3.4) |I ′(wm)wm| < ε.

For convenience define

(3.5) w = wm.

We will choose a “cutting point” t̂ > 0, and split w into two functions, w(1) =
w|[0,bt] (the restriction of w to [0, t̂ ]), and w(2) = w|[bt,∞]. Functions w(1) and w(2)

can be transformed into z1 and z2 respectively in E: w(1) into z1, by reflecting
over t = t̂/2; and w(2) into z2, by translating by a factor of t̂ to the left. If d is
small enough and t̂ is chosen carefully, I ′(z1)z1 and I ′(z2)z2 are both very close
to zero, but either I(z1) or I(z2) is significantly less than c. Using Lemma 2.11,
we then choose s̄ very close to 1 so that s̄z∗ ∈ S but I(s̄z∗) < c, where ∗ = 1 or 2.
This contradicts the fact that inf{I(u) | u ∈ S} = c, proving Theorem 1.0.

Let us choose t̂. We claim that ‖wm‖L∞(R+) > β for large m: since I(wm) →
c and I(0) 6= c, ‖wm‖ is bounded away from 0 for large m. If ‖wm‖L∞(R+) ≤ β,
then by (2.4),

I ′(wm)(wm) = ‖wm‖2 −
∫ ∞

0

hV ′(wm) · wm dt(3.6)

≥ ‖wm‖2 −
∫ ∞

0

2
(

1
8

)
|wm|2 dt ≥ 3

4
‖wm‖2.
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This cannot happen for large m, since ‖wm‖ is bounded away from 0 for large
m and I ′(wm)wm → 0. Since ‖wm‖L∞(R+) > β for large m, we may define

(3.7) t0 = min{ t | |w(t)| ≥ β } < t1 = max{ t | |w(t)| ≥ β }.

By (3.2), 1 < t0 < t1. By (3.4),

(3.8) |I ′(w)w| =
∣∣∣∣ ∫ ∞

0

|w′|2 + |w|2 − h(t)V ′(w) · w dt

∣∣∣∣ < ε.

We will choose the cutting point t̂ between t0 and t1 so that the integral above,
evaluated only from 0 to t̂, is zero (and the integral evaluated from t̂ to ∞ is also
close to zero). For t < t0, |w(t)| < β, and since by (2.5) h(t) ≤ 2 for all t ≥ 0,

(3.9) |h(t)V ′(w(t))w(t)| ≤ 2|w(t)|2/8 = |w(t)|2/4

by the definition (2.4) of β. Therefore∫ t0

0

|w′|2 + |w|2 − h(t)V ′(w(t)) · w(t) dt(3.10)

≥ 3
4

∫ t0

0

|w′|2 + |w|2 dt =
3
4
‖w‖2W 1,2([0,t0])

≥ 3
4
‖w‖2W 1,2([0,t0])

≥ 3
16
‖w‖2L∞([0,t0])

=
16
3

β2,

using an embedding in the Appendix, and the fact that ‖w‖L∞([0,t0])
= β. By

similar reasoning to (3.9)–(3.10), and using the other embedding in the Appen-
dix, ∫ ∞

t1

|w′|2 + |w|2 − h(t)V ′(w(t)) · w(t) dt(3.11)

≥ 3
4
‖w‖2W 1,2([t1,∞]) ≥

3
4
‖w‖2L∞([t1,∞]) =

3
4
β2.

By (3.8), (3.11), and (3.1),∫ t1

0

|w′|2 + |w|2 − h(t)V (w(t))w(t) dt(3.12)

=
∫ ∞

0

|w′|2 + |w|2 − h(t)V ′(w) · w dt

−
∫ ∞

t1

|w′|2 + |w|2 − h(t)V ′(w) · w dt

< ε− 3
4
β2 <

1
4
β2 − 3

4
β2 < 0.

The above integral is negative but the integral from 0 to t0 of the same integrand
is positive by (3.10). Therefore there exists t̂ ∈ (t0, t1) with

(3.13i)
∫

bt

0

|w′|2 + |w|2 − h(t)V ′(w(t)) · w(t) dt = 0.
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By the above and (3.8), we have similarly,

(3.13ii)
∣∣∣∣ ∫ ∞

bt

|w′|2 + |w|2 − h(t)V ′(w(t)) · w(t) dt

∣∣∣∣ < ε.

By (3.3), ∫
bt

0

1
2
|w′|2 +

1
2
|w|2 − h(t)V (w(t)) dt <

7
12

c(3.14i)

or ∫ ∞

bt

1
2
ẇ2 +

1
2
w2 − h(t)V (w(t)) dt <

7
12

c.(3.14ii)

If the former case, (3.14)(i), holds, define z ∈ E by reflecting w over t = t̂/2,
that is,

(3.15) z(t) =

{
w(t̂− t) 0 ≤ t ≤ t̂,

0 t ≥ t̂.

If the latter case, (3.14ii), holds, define z ∈ E by z(t) = w(t + t̂). In future
arguments, we assume for convenience that the latter case holds. Arguments for
the former case are very similar.

By the discussion preceding Lemma 2.11, there exists a unique s̄ > 0 with
the property that s̄z ∈ S. We will prove that, if one assumes d to be small
enough, then I(s̄z) < c. This is impossible, and Theorem 1.0 follows. Recall ε

from (3.1), and define ε more precisely by

(3.16) ε =
(p− 1)β2

60
.

Set

(3.17) d =
ε

B2
=

(p− 1)β2

60
· (p− 1)

14c+
=

(p− 1)2β2

840c+
.

Assume from now on that

(3.18) p ≤ 2.

Then, as we have been assuming, d ≤ 1, using (2.8) and c+ ≥ c. The following
estimate, which uses (2.8), will be useful later:

(3.19) ε =
(p− 1)β2

60
≤ (p− 1)

60
· 8
3
c <

(p− 1)c
22

≤ c

22
≤ c+

22
.

We will show that |I ′(z)z| < 3ε, while I(z) < 2c/3. This will imply that
the function g(s) = I(sz) has a maximum for s ≥ 0 that is less than c, which is
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impossible. We estimate I ′(z)z by comparing the integral for I ′(z)z to that for
I ′(w)w in (3.13ii) and by (3.13ii) and (V3)

|I ′(z)z| =
∣∣∣∣ ∫ ∞

0

|z′(t)|2 + |z(t)|2 − h(t)V ′(z(t)) · z(t) dt

∣∣∣∣(3.20)

=
∣∣∣∣ ∫ ∞

0

|w′(t + t̂)|2 + |w(t + t̂)|2 − h(t)V ′(w(t + t̂)) · w(t + t̂) dt

∣∣∣∣
=

∣∣∣∣ ∫ ∞

bt

|w′(t)|2 + |w(t)|2 − h(t− t̂)V ′(w(t)) · w(t) dt

∣∣∣∣
=

∣∣∣∣ ∫ ∞

bt

|w′(t)|2 + |w(t)|2 − h(t)V ′(w(t)) · w(t) dt

∣∣∣∣
+

∣∣∣∣ ∫ ∞

bt

(h(t)− h(t− t̂))V ′(w(t)) · w(t) dt

∣∣∣∣
= ε + d

∫ ∞

bt

V ′(w(t)) · w(t) ≤ ε + d

∫ ∞

0

V ′(w(t)) · w(t)

= ε + d(‖w‖2 − I ′(w)w)

≤ ε + d(B2 + ε) ≤ 2ε + dB2 ≤ 3ε.

In the last line we use (2.5) (d ≤ 1), and Lemma 2.22 with (3.3), (3.4) and (3.19).
Now we estimate I(z) by comparing the integral for I(z) to that for I(w);

we assume case (3.14ii) holds, so z equals w translated t̂ units to the left. Recall
that w satisfies (3.2)–(3.4). By (3.3) and (2.1) we have

I(z) =
∫ ∞

0

1
2
|z′(t)|2 +

1
2
|z(t)|2 − h(t)V (z(t)) dt(3.21)

=
∫ ∞

0

1
2
|w′(t + t̂)|2 +

1
2
|w(t + t̂)|2 − h(t)V (w(t + t̂)) dt

=
∫ ∞

bt

1
2
|w′(t)|2 +

1
2
|w(t)|2 − h(t− t̂)V (w(t)) dt

=
∫ ∞

bt

1
2
|w′(t)|2 +

1
2
|w(t)|2 − h(t)V (w(t)) dt

+
∫ ∞

bt

(h(t)− h(t− t̂))V (w(t)) dt

<
7
12

c + d

∫ ∞

bt

V (w(t)) dt ≤ 7
12

c + d

∫ ∞

bt

V ′(w(t)) · w(t) dt

≤ 7
12

c + d(B2 + ε) <
7
12

c + 2ε <
2
3
c.

In the last line, we estimate the last integral using the calculation at the end of
(3.20), and also use (3.16), d ≤ 1, and (3.19).

We have z ∈ E with I(z) < 2c/3 and |I ′(z)z| < 3ε. By choice of the
cutting point t̂ between t0 and t1 (3.7), and the definition of z as a reflection or
translation of w (see (3.15) and the remark following it), ‖z‖L∞(R+) ≥ |z(0)| = β,
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so ‖z‖ ≥ β. Defining g(s) = I(sz) as in Lemma 2.11, g(1) = I(z) < 2c/3 and
|g′(1)| = |I ′(z)z| < 3ε. We will show that g′(5/4) < 0 and g′(3/4) > 0. Therefore
there exists s̄ ∈ (3/4, 5/4) with g′(s̄) = I ′(s̄z)z = 0, so s̄z ∈ S. Then we prove
that for all s ∈ [3/4, 5/4], g(s) < c. This contradicts the fact that I(s̄z) ≥ c,
proving Theorem 1.0. By Lemma 2.11(i), since p ∈ (1, 2] and ‖z‖ > β,

(3.22) g′(5/4) ≤ g′(1)− ((p− 1)/4)(‖z‖2/4) ≤ 3ε− (p− 1)β2/16 < 0

using the definition (3.16) of ε. Similarly,

(3.23) g′(3/4) ≥ g′(1) + ((p− 1)/4)(‖z‖2/4) ≥ −3ε + (p− 1)β2/16 > 0.

|g′(1)| < 3ε, so for s ∈ [1, 5/4], Lemma 2.11(i) gives

(3.24) g′(s) ≤ g′(1)sp− (p−1)(s−1)‖z‖2/2 ≤ g′(1)sp < 3εsp < 3ε(5/4)2 < 5ε,

and

(3.25) g(s) = g(1)+
∫ s

1

g′(r) dr < 2c/3+5ε(s−1) < 2c/3+2ε < 2c/3+c/11 < c

(see (3.19)). For s ∈ [3/4, 1], Lemma 2.11(ii) gives,

g′(s) ≥ g′(1)sp + (p− 1)(s− 1)‖z‖2/4(3.26)

≥ g′(1)sp > −3εsp < −3ε(1)2 = −3ε,

so, by (3.19),

(3.27) g(s) = g(1)−
∫ 1

s

g′(r) dr < 2c/3+3ε(1−s) < 2c/3+ε < 2c/3+c/22 < c.

Therefore g(s) = I(sz) < c for all s ∈ [3/4, 5/4]. This is impossible because
s̄z ∈ S for some s̄ ∈ [3/4, 5/4]. The assumption made at the beginning of this
section is false. Theorem 1.0 is proven.

4. Determining d — an example

Here we find how to write d, satisfying Theorem 1.0, compactly in terms of
β, p, and V . Then we find d for a specific function V .

To compute d using (3.17) we must estimate c+ as defined in (2.21). Let
us find a way to estimate c+ for any V satisfying (V1)–(V3) and write it com-
pactly. Recall I+, Γ+, and c+ from (2.19)–(2.21). To define c+, it suffices
to find one element γ of Γ+ and choose c+ large enough to guarantee that
c+ ≥ maxθ>0I

+(g(θ)). Define β as in (2.4). Let ~e1 denote the unit vector
[1 0 . . . 0]T ∈ Rn, and define w : R+ → R by

(4.0) w(t) = βe−t~e1.
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A direct calculation yields ‖w‖ = β. Since ‖w‖L∞(R+) = β, I+′(sw)(w) > 0 for
all s ∈ (0, 1], by (3.6). Thus I(sw) < I(w) for all s ∈ (0, 1). By (2.2),

(4.1) I+(sw) =
1
2
s2‖w‖2 −

∫ ∞

0

V (sw) dt ≤ 1
2
s2β2 − sp+1

∫ ∞

0

V (w) dt

for all s > 1. V (r~e1) is increasing for positive r, so∫ ∞

0

V (w) dt ≥
∫ ln 2

0

V (w) dt =
∫ ln 2

0

V (βe−s~e1) ds(4.2)

>

∫ ln 2

0

V

(
β~e1

2

)
dt = (ln 2)V

(
β~e1

2

)
>

1
2
V

(
β~e1

2

)
.

Therefore

(4.3) I+(sw) ≤ α(s) ≡ 1
2
s2

[
β2 −

(
1
2
F

(
β

2

))
sp−1

]
for s > 1. By elementary calculus, α(s) achieves a maximum over {s > 0} of

(4.4)
β2

2

(
p− 1
p + 1

)(
4β2

(p + 1)V (β/2)

)2/(p−1)

≤ β2

6

(
2β2

V (β/2)

)2/(p−1)

.

The last expression is an upper bound for c+. Using (3.17), d can be estimated
by

(p− 1)2β2

840c+
≥ (p− 1)2β2

840
· 6
β2

·
(

V (β~e1/2)
2β2

)2/(p−1)

(4.5)

=
(p− 1)2

140

(
V (β~e1/2)

2β2

)2/(p−1)

≥ d.

Let us compute d for the specific case n = 1, 1 < p ≤ 2, V (q) = |q|p+1/(p + 1).
We can pick β = (1/8)1/(p−1), because

(4.6) V ′(q) · q = |q|p+1 = |q|p−1|q|2 ≤ β|q|2

for |q| ≤ β. Now,

(4.7) V

(
β

2

)
=

1
p + 1

(
1
8

)(p+1)/(p−1)

≥ 1
3

(
1
8

)3/(p−1)

,

so, using (4.5), d can be estimated by

(p− 1)2

140

(
V (β/2)

2β2

)2/(p−1)

≥ (p− 1)2

140

(
1

6 · 83/(p−1) · 82/(p−1)

)2/(p−1)

>
(p− 1)2

140

(
1
8

)(p+4)/(p−1)·(2/(p−1)

≥ (p− 1)2

140

(
1
8

)12/(p−1)2

≥ d.
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Appendix

This brief appendix contains two well-known Sobolev inequalities, along with
embedding constants.

Lemma 1. If u ∈ W 1,2([0,∞); Rn) then

(i) ‖u‖L∞([0,∞)) ≤ ‖u‖W 1,2([0,∞);Rn).

If a ≥ 1 and u ∈ W 1,2([0, a]), then

(ii) ‖u‖L∞([0,a]) ≤ 2‖u‖W 1,2([0,∞);Rn).

Proof of (i). Let u ∈ W 1,2([0,∞); Rn) and x1 ∈ [0,∞). Let ε > 0. Choose
x0 ∈ [0,∞) with |u(x0)| < ε. Then

|u(x1)|2 = |u(x0)|2 + (|u(x1)|2 − |u(x0)|2)

< ε2 +
∣∣∣∣ ∫ x1

x0

d

dx
|u|2 dx

∣∣∣∣ = ε2 +
∣∣∣∣ ∫ x1

x0

2u · u′ dx

∣∣∣∣
≤ ε2 +

∣∣∣∣ ∫ x1

x0

|u′|2 + |u|2 dx

∣∣∣∣ ≤ ε2 + ‖u‖2W 1,2([0,∞);Rn)

via the Cauchy–Schwarz inequality. So |u(x1)| ≤ ‖u‖W 1,2([0,∞);Rn) when ε go to
zero. Since x1 is arbitrary, (i) is proven. �

Proof of (ii). Let a ≥ 1 and u ∈ W 1,2([0, a]). Assume ‖u‖L∞([0,a]) ≥ 1.
We will show that ‖u‖W 1,2([0,∞);Rn) ≥ 1/2.

If |u(x)| > 1/2 for all x ∈ [0, a], then ‖u‖2W 1,2([0,∞)) ≥
∫ a

0
u2 > a/4 ≥ 1/4.

So suppose |u(x0)| ≤ 1/2 for some x0 ∈ [0, a]. Let x1 ∈ [0, a] with |u(x1)| ≥ 1.
Arguing as in part (i) above,

1 ≤ |u(x1)|2 = |u(x0)|2 + (|u(x1)|2 − |u(x0)|2)

<
1
4

+
∣∣∣∣ ∫ x1

x0

d

dx
u2 dx

∣∣∣∣ =
1
4

+
∣∣∣∣ ∫ x1

x0

2uu′ dx

∣∣∣∣
≤ 1

4
+

∣∣∣∣ ∫ x1

x0

(u′)2 + u2 dx

∣∣∣∣ ≤ 1
4

+ ‖u‖2W 1,2([0,1]).

Therefore ‖u‖2W 1,2([0,1]) ≥ 3/4 > 1/4. Part (ii) is proven. �
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