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THE EXISTENCE OF EVOLUTION OF CLOSED TYPE

N. Ivochkina

Dedicated to Olga Ladyzhenskaya

The principal concern of the paper is the existence of an admissible solution
of the first initial boundary value problem for fully nonlinear second-order dif-
ferential equations. We consider equations nonlinear in the time derivative as
well as in the space derivatives up to the second order.

1. The evolving functions

The notion of evolution of closed type was introduced by the author in [6] in
the course of investigation of fully nonlinear second-order parabolic equations.
The principal differential operator in these equations was described in terms
of an evolving nonlinear function G = G(s, S), (s, S) ∈ D0 ⊂ R1 × Sym(n),
where Sym(n) is the set of symmetric n × n matrices. Evolution of closed type
relates to functions G independent of the scalar argument s, i.e., G = G(S),
S ∈ D0 ⊂ Sym(n).

Denote by D1 the set of positive monotonicity of G:

D1 = {S ∈ D0 : G(S + η) ≥ G(S) for all η ∈ Sym(n), η ≥ 0},

by D2 the set of concavity of G, and finally by D a connected component of
D1 ∩D2.
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234 N. Ivochkina

We always assume D to be a convex cone with vertex 0 and with I ∈ D,
−I /∈ D, and relate to the pair (G,D) the numbers

g = sup
S∈D

lim
S→∂D

G(S), g = inf
S∈D

lim
R→∞

G(RS).

Either of g, g can be infinite and the case of interest is g < g. Without loss of
generality we assume 0 < G(I) < g.

The monotonicity of G implies the inequality

(1.1) Gij(S)ξiξj > 0, |ξ| = 1, S ∈ D1,

where Gij(S) = ∂G(S)/∂Sij . Moreover, due to concavity of G the inequality

(1.2) tr(Gij(S)) ≥ ν(δ) > 0

holds for S ∈ Dδ = {S ∈ D : g < G(S) ≤ g − δ}, where δ > 0. It is worth
noting that if G is a one-homogeneous function then ν1.2 is independent of δ
and ν1.2 = G(I). Here and below we index the constants by the numbers of the
formulas where they first appear.

We also assume G to be invariant under orthogonal transformations, i.e.,
G(S) = G(Ŝ) if Ŝ = BSB′ and B′ = B−1. This requirement ensures Gii(S0) =
Gjj(S0), i, j = 1, . . . , n, if S0 = sI, s ∈ R+. Such invariance together with
concavity of G also leads to the inequality

(1.3) trS > 0

for any S ∈ D if G(S) > g. Indeed, the following holds for any ε > 0:

G(S)−G(εI) ≤ 1
n

(trS − ε) tr(Gij(εI)),

trS > n(G(S)−G(εI))/ tr(Gij(εI)).

Inequality (1.3) follows from the latter and the requirement 0 ∈ ∂D.
We now describe functions G which are uniformly monotone over D.

Definition 1.1. The function G is uniformly positively monotone over D
iff there exist constants ν, µ > 0 such that

(1.4) ν tr(Gij(S))ξ2 ≤ Gijξiξj ≤ µ tr(Gij(S))ξ2, |ξ| = 1,

for any S ∈ D.

Following the ideas of N. Krylov [10] and N. Trudinger [13] we can associate
with a pair (G,D) the pair (Gε, Dε), ε > 0, where (Gε, Dε) satisfies all the above
requirements and also Gε is uniformly monotone over Dε. Let

Sε = S + ε trS, Gε(S) = G(Sε), Dε = {S : Sε ∈ D}.
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Inequality (1.3) implies the inclusion Dε1 ⊂ Dε2 for ε1 < ε2. Moreover, since

(1.4′) Gεij(S) =
∂Gε(S)
∂Sij

=
∂G(Sε)
∂Sε

ij

+ εδij tr(∂G(Sε)/∂Sε
kl),

inequality (1.4) holds with G = Gε, D = Dε, µ1.4 = 1, ν1.4 = ε, i.e., Gε is indeed
uniformly monotone over Dε.

The above description of the pairs (G,D) assembles relevant pieces from the
theory of second-order fully nonlinear differential equations (see for instance [1],
[4], [10], [13]). One can also extract from there many examples of such pairs.
The most common example is

G(S) = Fm(S) ≡ (trm S)1/m, 1 ≤ m ≤ n,

D = Km ≡ {S ∈ Sym(n) : trl S > 0, l = 1, . . . ,m},(1.5)

where trl S is the sum of all principal l-minors of the matrix S.

2. Evolving operators and the first initial
boundary value problem for evolutionary equations

Let A = A(p) ∈ Sym(n), p ∈ Rn, be a smooth positive definite matrix and
u = u(z), z = (x, t) ∈ Q = Ω× (0, T ), Ω ⊂ Rn, be a C2,1-function. Define

(2.1) uA
(xx) = A1/2(ux)uxxA

1/2(ux),

where ux and uxx are the gradient and the Hesse matrix of u respectively. In
the sequel the matrix A will always be fixed in some way and we will omit the
upper index A in (2.1) for simplicity. We also fix a function a = a(p) > 0 and a
matrix W = W (x, p) and define the matrix operator S[u] as

(2.2) S[u] = u(xx) − a(ux)utI +W.

By definition an evolving operator G looks as

(2.3) G[u] = G(S[u]).

We qualify functions u ∈ C2,1(Q) with respect to G as follows.

Definition 2.1. A function u is a subfunction for the operator (2.1)–(2.3)
iff S[u](z) ∈ D1 for all z ∈ Q, and a superfunction iff S[u](z) /∈ D1 for all z ∈ Q.

Definition 2.2. The function u is an admissible function for the operator
(2.1)–(2.3) iff S[u](z) ∈ D for all z ∈ Q.

It is obvious that the operator (2.1)–(2.3) is parabolic on the set of subfunc-
tions in the usual sense, i.e.,

−∂G[u]
∂ut

(ξ0)2 +
∂G[u]
∂uij

ξiξj > 0, (ξ0)2 + ξ2 = 1,
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for any subfunction u ∈ C2,1(Q). Here and further on ui = du/dxi, uij =
d2u/dxidxj .

If G is uniformly monotone over D and

(2.4) a(p) > ν trA(p),

and the eigenvalues of A(p) are of order trA(p), then the operator (2.1)–(2.3) is
called uniformly parabolic and we have the inequalities

(2.5)
− ∂G
∂ut

> ν2.4H(S[u]) trA(ux),

νH(S[u]) trA(ux)ξ2 ≤ ∂G[u]
∂uij

ξiξj ≤ µH(S[u]) trA(ux)ξ2

for any subfunction u with H(S[u]) = tr(Gij(S[u])). The above holds all the
more for admissible functions.

As a source of model matrices A we take {A(σ; p) : p ≥ 1}, where

(2.6) A(σ; p) = (∂2vσ(p)/∂pi∂pj) = (1 + p2)σ/2−1

(
δij + (σ − 2)

pipj

1 + p2

)
,

v = (1 + p2)σ/2/σ. The simplest case σ = 2 (A(2) = I) gives Hessian operators.
The curvature operators correspond to σ = 1,

A(1; p) =
1√

1 + p2

(
δij − pipj

1 + p2

)
.

In contrast to σ > 1 the curvature operators are nonuniformly parabolic for any
function G. Perhaps it would be reasonable to consider evolving operators on
the base of

(2.7) S̃[u] = u(xx) −A(ux)ut +W

at least for A = A(1).
The evolutionary equation of our concern is

(2.8) G[u] = g

and we set up initial boundary values as

(2.9) u(x, 0) = ψ(x), u(x, t)|∂′′Q = Φ(x, t),

where ∂′′Q = ∂Ω× [0, T ].
In [6] the notion of proper data was defined as data which do not contradict

the admissibility of possible solution of problem (2.8), (2.9). In the simplest case
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of closed evolution which is of interest here, the functions g,Φ have to satisfy
the following relations:

g < g < g, z ∈ Q,(2.10)

Φt(x, 0)|∂Ω = v(x),(2.11)

where v is the unique solution to the equation

(2.12) G(ψ(xx) − a(ψx)vI +W (·, ψx)) = g(·, 0), x ∈ Ω,

satisfying the inclusion

(2.13) ψ(xx) − a(ψx)vI +W (·, ψx) ∈ D, x ∈ Ω.

In this setting we admit an arbitrary initial value ψ. Line (2.11) looks as a com-
patibility condition but here it has the additional task to ensure the admissibility
of our closed evolution at the start.

The problem (2.6), (2.3), (2.8), (2.9) has to be supplemented by (2.11) with
v = ṽ being the unique solution to the equation

G(ψ(xx) −A(ψx)vI +W (·, ψx)) = g(·, 0),

satisfying the analog of condition (2.13).
In fact, one more factor could a priori hinder the admissibility of solution. It

is the boundary ∂Ω. In order to eliminate this possibility we impose restrictions
on the principal curvatures k̃ = (k̃1, . . . , k̃n−1) of ∂Ω. Let R ∈ R+, p ∈ Rn and

A(R, p; k̃) = A1/2(p)


k̃1 0

. . .
k̃n−1

0 R

A1/2(p).

Assumption 2.3. There exist R0 > 0 and δ > 0 such that

A(R0; k̃(x)) = lim
|p|→∞

A(R0, p; k̃(x))/ trA(p) ∈ D,(2.14)

lim
|p|→∞

G(|p|A(R0, p; k̃(x))) > g(2.15)

for all x ∈ ∂Ω, t ∈ [0, T ].

To illustrate (2.14) and (2.15) consider A = A(σ) (see (2.6)). Then

A(R; k̃) =


k̃1 0

. . .
k̃n−1

0 (σ − 1)R

 .
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If σ > 1, then (2.14) reduces to

(2.16)


k̃1 0

. . .
k̃n−1

0 (σ − 1)R0

 ∈ D

for some R0 > 0 and then (2.15) holds. The inclusion (2.16) is exactly the
restriction discovered by the authors of [1] for Hessian elliptic equations, σ = 2.
In the case of the curvature equations, σ = 1, (2.14) amounts to (2.16) with
R0 = 0, while (2.15) this time represents an independent restriction on ∂Ω, g
and is very close to the corresponding requirement discovered by N. S. Trudinger
[13] for curvature elliptic equations.

Remark 2.4. (2.15) implies the inequality

(2.17) trA(p) ≥ ν|p|−1

and if A(p) is uniformly positive definite, only the existence of R0 in (2.16) is
sufficient for some ν under control in (2.17) to exist, that is, we do not need
(2.15) in this case.

We also complement (2.11) by

(2.18) Φ(x, 0)|∂Ω = ψ(x), Φ
ex(x, 0)|∂Ω = ψ

ex(x), Φ
exex(x, 0)|∂Ω = ψ

exex(x),

where x̃ is any direction tangent to ∂Ω.
The function a and matrix W are required to satisfy the relations

ν√
1 + p2

≤ a(p), |Wx(p, x)| ≤ µa(p), x ∈ Ω,(2.19)

lim
|p|→∞

a(p) +W (x, p)
|p| trA(p)

= 0, x ∈ ∂Ω,(2.20)

where |W |2 = trW 2.

3. The existence theorems

In order to exhibit the crucial role of the matrix W in our reasoning we prove
the existence theorems for equations (2.8), (2.3) with

(3.1) S[u] = u(xx) − a(ux)utI.

Theorem 3.1. Let 0 < α < 1. Assume the following:

(a) G ∈ C2(D) is uniformly monotone over D, A ∈ C2(Rn);
(b) ∂Ω ∈ C3 satisfies Assumption 2.3;
(c) ψ ∈ C3(Ω) is an arbitrary function;
(d) Φ ∈ C3,2(∂′′Q) satisfies (2.11), (2.18);



Existence of Evolution of Closed Type 239

(e) g ∈ C2,1(Q) satisfies (2.10), (2.15);
(f) a ∈ C2(Rn) satisfies (2.19), (2.20).

Then there exists a unique admissible solution u to problem (2.8), (2.3), (3.1),
(2.9) and u ∈ C2+α,1+α/2(Q).

The uniqueness follows from a version of the comparison principle adapted
to our case. We recall the notions of sub- and supersolutions to equation (2.2),
(2.3), (2.8) (see [3, 6]). Namely, u is a subsolution iff S[u](z) ∈ D for all z ∈ Q
and G[u] ≥ g, and u is a supersolution iff G[u] ≤ g at all points of {z ∈ Q :
S[u](z) ∈ D}.

Theorem 3.2. Let u, u ∈ C(Q) ∩ LipΩ be a super- and a subsolution to
equation (2.2), (2.3), (2.8). Then

(3.2) u− u ≤ max
∂′Q

(u− u)+.

For simplicity we restrict ourselves to u, u ∈ C2,1(Q). Assume there exists
a point z0 ∈ Q \ ∂′Q where w(z) = (u − u)(z) exp(−εt) attains its maximum
w(z0) > 0 with some ε > 0. Then (u− u)(z0) > 0, ux(z0) = ux(z0),

(3.3) (uxx − a(ux)(ut − ε(u− u))I)(z0) ≤ (uxx − a(ux)utI)(z0)

and S[u](z0) ∈ D. Inequalities (1.3), (3.3) lead to G[u](z0) < G[u](z0), which is
impossible under the assumption of Theorem 3.2. Hence there is no such z0 for
any ε > 0. This proves (3.2).

The existence of an admissible solution is obtained by the continuity method
taking the relevant homotopy from [6]:

Gτ [uτ ] = gτ , τ ∈ [0, 1],(3.4)

uτ (x, 0) = ψ(x), uτ |∂′′Q = Φτ (x, t),(3.5)

with

(3.6) Sτ [uτ ] = uτ
(xx) − a(uτ

x)(uτ
t − (1− τ)v)I,

where

Gτ [uτ ] = G(Sτ [uτ ]),

gτ = τg(x, t) + (1− τ)g(x, 0),

Φτ (x, t) = τΦ(x, t) + (1− τ)Φ(x, 0).

The matrix W τ = (1 − τ)a(uτ
x)vI appears here with v being the solution to

problem (2.2), (2.3), where W = 0. By the choice of W , if the data (3.5) are
compatible and proper for τ = 0, then they are so for all τ .
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The operators (3.4) are locally invertible on Dτ = {Sτ [u](z) ∈ D : z ∈ Q}.
We denote by {τ̂} the set of solvability of problems (3.4), (3.5) and note that
{τ̂} is nonempty since u0 = ψ is an admissible solution relating to τ = 0.

The closedness of {τ̂} validates Theorem 3.1 and it will follow from the
statements below.

Theorem 3.3. Let G ∈ C1(D), a,A ∈ C2(Rn), a > 0, A > 0. Assume that
(2.14), (2.15), (2.17)–(2.20) hold. Then any admissible solution u ∈ C3,2(Q) ∩
C2,1(Q) to problem (2.8), (2.2), (2.3), (2.9) satisfies the inequality

(3.7) ‖u‖C1,1(Q) ≤ c(ν1.2, ‖∂Ω, ψ‖C3 , ‖Φ‖C2,1 , ‖g,W‖C1,1).

Theorem 3.4. Let G ∈ C2(D), a,A ∈ C2(Rn), a > 0, A > 0. Assume G
to be uniformly monotone. Then any admissible solution u ∈ C4,2(Q) ∩C2,1(Q)
satisfies the inequality

(3.8) ‖u‖C2,1(Q) ≤ c(ν1.4, µ1.4, c3.7, α, ‖∂Ω‖C2+α , ‖Φ‖C2+α,1+α/2 , ‖g, w‖C2,1),

where α ∈ (0, 1).

By well known results of N. Krylov and M. Safonov Theorems 3.3 and 3.4
imply the a priori boundedness of ‖u‖C2+α,1+α/2(Q). Hence the continuity method
is completed, i.e., Theorem 3.1 follows from Theorems 3.3 and 3.4.

Actually, Theorem 3.4 is a particular case of a theorem concerning evolutions
of all types from the paper [9]. The proof of Theorem 3.3 is given in Section 4.

Theorem 3.1 and estimate (3.7) yield the existence of viscosity admissible
solutions for problems with nonuniformly monotone functions G.

Theorem 3.5. Let G ∈ C2(D), a,A ∈ C1(Rn), a > 0, A > 0. Assume
∂Ω ∈ C2, g ∈ C1,1(Q) and (2.14), (2.15), (2.18), (2.20) hold. Assume also that
the compatibility conditions up to the second order are satisfied and the data Φ,
ψ, g are proper. Then there exists a unique viscosity admissible solution u to
problem (3.1), (2.8), (2.9) and u ∈ LipQ.

Similarly to [6] we regularize our problem as follows:

Gε[uε] = g,(3.9)

uε(x, 0) = ψ(x), uε|∂′′Q = Φε(x, t),(3.10)

where

(3.11)
Gε[uε] = G(Sε[uε]), Sε[u] = S[u] + ε trS[u],

Φε(x, t) = Φ(x, t) + tϕε(x)

with ϕε = vε − v, v is the solution to equation (2.12) and vε solves the analog
of (2.12) corresponding to Sε. In view of (1.4′) Theorem 3.1 embraces problems
(3.9)–(3.11) for all ε > 0, i.e. there always exists an admissible solution uε ∈
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C2+α,1+α/2(Q). Letting ε tend to 0 we obtain Theorem 3.5 by the viscosity
limit passage. This does not spoil inequality (3.7) and hence u ∈ LipQ.

In this argument we adapted to our case the idea of N. Trudinger from [13].
Perhaps one could also try the Perron method which allows circumventing the
concavity of G (see [3], [11]).

Sometimes we can guarantee the existence of u ∈ C2+α,1+α/2(Q) for nonuni-
formly monotone functions G. Examples of such statements are the following
theorems.

Theorem 3.6. Let G ∈ C2(D), A = A(2) = I, a ∈ C2(Rn), g ∈ C2,1(Q),
ψ ∈ C4(Ω), Φ ∈ C4,2(∂′′Q). Assume that g, a, Φ satisfy (2.10), (2.19), (2.20),
(2.18) respectively and that there exists R0 > 0 such that

A2(x) =


k̃1 0

. . .
k̃n−1

0 R

 (x) ∈ D, x ∈ ∂Ω.

Then there exists a unique admissible solution u to problem (3.1), (2.8), (2.9)
and u ∈ C2+α,1+α/2(Q) for any α ∈ (0, 1).

Theorem 3.7. Let

G(S) = Fm,l(S) = (trm S/ trl S)1/(m−l), 0 ≤ l < m < n,

A = A(1) (see (2.6)), a = 1/
√

1 + p2. Assume that

A1(x) =


k̃1 0

. . .
k̃n−1

0 0

 (x) ∈ Km, x ∈ ∂Ω,

where Km is defined by (1.5), and

max
t
g(x, t) < Fm,l(A1)(x), x ∈ ∂Ω.

Assume also that the smoothness requirements from Theorem 3.6 as well as com-
patibility conditions are satisfied. Then there exists a unique admissible solution
u to problem (3.1), (2.8), (2.9) and u ∈ C2+α,1+α/2(Q) for any α ∈ (0, 1).

The principal point in the proof of Theorems 3.6, 3.7 is of course the esti-
mation of second spatial derivatives. But the relevant reasoning from the papers
[1], [14], [5], [8], [12] devoted to Hessian and curvature fully nonlinear equations
serves our cases as well. From such an estimate Theorems 3.6 and 3.7 can be
deduced in the same way as Theorem 3.1.

We do not know if the estimate of second derivatives can be found for A =
A(σ), σ 6= 1, 2.
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4. The estimate of ‖u‖C1,1(Q)

We start the proof of (3.7) by estimating u from above. Define Bδ(p0) =
{p ∈ Rn : |p− p0| < δ}. The following general assertion implies the boundedness
of an admissible solution from above.

Lemma 4.1. Let G ∈ C(D1), a,A ∈ C(Bδ(0)), a(0) > 0, A(0) > 0, W ∈
C(Bδ(0)× Ω). Assume that

(4.1) S− = {S ∈ Sym(n) : S < 0} /∈ D1.

Then any continuous subfunction for the operator (2.2), (2.3) satisfies the in-
equality

(4.2) max
Q

u < sup
{

0; max
Ω,|ξ|=1

(W (0, x)ξ, ξ)
λa(0)

;max
∂′Q

u

}
exp(λT )

for all λ > 0.

For simplicity we consider a subfunction u ∈ C2,1(Q). Suppose w =
u exp(−λt) attains its positive maximum at a point z0 ∈ Q\∂′Q. Then u(z0) > 0,
ux(z0) = wx(z0) = 0, ut(z0) = (exp(λt)wt + λu)(z0) ≥ λu(z0), u(xx)(z0) =
exp(λt)w(xx)(z0) ≤ 0 and

(4.3) S[u](z0) ≤ −a(0)λu(z0)I +W (0, x0).

Under condition (4.1) this yields inequality (4.2).

If W ≤ 0 the following maximum principle for subfunctions is valid.

Corollary 4.2. Under assumption (4.1) and the requirement

(4.4) W (0, x) ≤ 0, x ∈ Ω,

any subfunction for the operator (2.2), (2.3) attains its maximum on ∂′Q.

Indeed, (4.3), (4.4) we can drop the second term on the right-hand side
of (4.2) and then let λ = 0. Moreover, since S[u], G[u] are invariant under
translations {u+C}, we can omit the first term there for u = u−min∂′Q u. But
if u+ C attains its maximum on ∂′Q then so does u.

We remark here that the minimum principle for superfunctions for the oper-
ator (2.2), (2.3) with W ≥ 0 supplements Corollary 4.2 but it does not concern
our equation (2.8) even with W = 0. Generally speaking, superfunctions can
differ from supersolutions to equations (2.8), in particular, an admissible solu-
tion is not a superfunction under requirement (2.10). To bound an admissible
solution from below we assume the function w = u exp(−t) attains its negative
minimum at z0 ∈ Q \ ∂′Q. Now the relation

(4.5) S[u](z0) ≥ −a(0)u(z0)I +W (0, x0)
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replaces (4.3) and therefore equation (2.8) together with (4.5) leads to the in-
equality

g(z0) ≥ G(−a(0)u(z0)I +W (0, x0)).

Together with the right-hand inequality of (2.10) this ensures the estimate for u
from below, i.e., there exists

−M0 = −M0(max
Q

g, a(0), max
Ω,|ξ|=1

(W (0, x)ξ, ξ)−, 1/(g −max
Q

g)), M0 ≥ 0,

which bounds u from below. Here f− = max(−f, 0).
The above argument contributes to the proof of Theorem 3.3 the following

statement.

Lemma 4.3. Let G ∈ C(D), a,A ∈ C(Bδ(0)), a(0) > 0, A(0) > 0, W ∈
C(Bδ(0) × Ω) for some δ > 0. Assume g ∈ C(Q) satisfies the right-hand in-
equality of (2.10). Then any continuous admissible solution u to equation (2.8)
satisfies

− sup{M0,max
∂′Q

u−} ≤ u exp(−T )(4.6)

≤ sup
{

1
a(0)

max
Ω,|ξ|=1

(W (0, x)ξ, ξ)+,max
∂′Q

u+

}
.

We now deduce the estimate for the spatial gradient at interior points of Q.
Assume function |ux| exp(−λt), λ > 0, attains its maximum at z0 ∈ Q \ ∂′Q.
In view of invariance of G under orthogonal transformations we can assume
|ux(z0)| = u1(z0), u1(z0) > 0. Then the function w = u1(z) exp(−λt) also
attains its maximum at z0 and hence

(u1)x(z0) = 0, (u1)(xx)(z0) ≤ 0, wt(z0) = (u1t − λu1)(z0) exp(−λt0) ≥ 0

or

(4.7) −u1t(z0) ≤ −λu1(z0).

We differentiate equation (2.8) to obtain

(4.8)
∂g

∂x1
≡ g1 = − tr(Gij(S[u]))a(ux)u1t +Gij(S[u])(u1(ij) +W ij

1 ) + biu1i

with some bi = bi(ut, ux, uxx, a, w, (Gij)), i = 1, . . . , n.
Now (4.7), (4.8) and also (1.2) yield the crucial inequality

λa(ux)u1 ≤ max
Ω

|Wx|+ max
Q

|gx|/ν12.

Indeed, under conditions (2.19), (2.20) the latter implies the boundedness of
u1(z0) and consequently the estimate for |ux| in terms of max∂′Q |ux|. We remark
that the idea of fixing x1 the above way belongs to the authors of [2].
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The estimate for |ut| can be obtained similarly. We thus proved the following
statement.

Lemma 4.4. Let G ∈ C1(D), A, a ∈ C1(Rn), A ≥ 0, W ∈ C1(Rn × Ω).
Assume inequalities (2.10), (2.19), (2.20) to be satisfied. Then

(4.9) max
Q

(|ux|+ |ut|) ≤ c(ν1.2, ν2.19, µ2.19, ‖g‖C1,1(Q),max
∂′Q

(|ux|+ |ut|))

for every admissible solution u ∈ C3,2(Q) to equation (2.8).

As to the estimate on ∂′′Q, Theorem 3.2 reduces the matter to the existence
of local sub- and supersolutions to equation (2.8) attaining prescribed boundary
data, i.e. to the existence of local barriers. Here we slightly modify the known
barriers of elliptic theory (see for instance [5], [13]). Namely, relate to z0 ∈ ∂′′Q a
coordinate system (called primary) such that the vector (0, . . . , 0, 1) is directed
along the interior normal to ∂Ω at x0, the surface ∂Ω ∩ Bd(0) is the graph
of a function ω, xn = ω(x̃), x̃ = (x1, . . . , xn−1) and ω(0) = 0, ωx(0) = 0,
ωij(0) = δijωii = k̃i, i, j = 1, , . . . , n− 1. Relate also to z0 the domain

Ω̃ = {|x̃| < d : ω(x̃) < xn < ω̃(x̃) + κd2/2},

where ω̃(x̃) = ω(x̃)−κx̃2/2 and κ > 0 is some number to be chosen. Our barrier
w looks as

(4.10) w = Φ(x, t) + h(%),

where % = ω̃(x̃)− xn + κd2/2 and h(%) = exp(R%)− exp(κRd2/2), R� 1. It is
obvious that

(4.11) w|∂′′Q∩(Bd×[0,T ]) ≤ Φ, w(0) = Φ(0).

On the other hand, the function (4.10) with R = R(κ, d,M) satisfies the in-
equality

(4.12) w|(∂eΩ\(∂Ω∩Bd)×[0,T ] ≤ −M

for large M and small κ, d.
In order to find the principal parts of wx, w(xx) we introduce in Ω̃ an or-

thogonal smooth moving frame {b1, . . . , bn} with bn(x) = (−ω̃x(x), 1)/
√

1 + ω̃2
x.

Define w〈i〉 = wkb
k
i , w〈ij〉 = wklb

k
i b

l
j . Then

(4.13)

w〈i〉 = Φ〈i〉, w〈n〉 = Φ〈n〉 − h′/
√

1 + ω̃2
x,

w〈ij〉 = Φ〈ij〉 + h′ω̃〈ij〉, i = 1, . . . , n− 1, j = 1, . . . , n,

w〈nn〉 = Φ〈nn〉 + h′ω̃〈nn〉 + h′′/
√

1 + ω̃2
x.
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In a primary coordinate system formulas (4.13) turn into

(4.14)
w〈xx〉

h′
=


k̃1
0 0

. . .
k̃n−1
0

0 R

 + α, z ∈ Ω̃× [0, T ],

where k̃0 = k̃(0), α = (αij(z,κ, 1/h′)) and αij = O(d,κ, 1/h′). Consider (4.14)
as determining the matrix V = V (P,R,κ, z) so that

w〈xx〉

h′
= V (h′, R,κ, z).

In further consideration matrices A = A(p) are involved and for simplicity
we confine ourselves to matrices (2.6). Define

τ(σ; p) = (1 + p2)(1−2σ)/4A1/2(σ; p).

Then

τ i
j = (δi

j + (σ − 2)
pipj√

1 + p2
√

1 + (σ − 1)p2

and for P = pn,

(4.15) A(σ;R,κ, z) = lim
P→∞

τV τ =


k̃1
0 0

. . .
k̃n−1
0

0 (σ − 1)R

 + α

where αij =
√

(1− δi
nσ)(1− δj

nσ)αij(z,κ, 0).

The principal term in (4.15) is exactly the matrix A from Assumption 2.3
and κ, d can be chosen so small that essentially A has the properties of A for all
z ∈ Ω̃ × [0, T ]. In particular, A ∈ D if κ, d are controllably small and R > R0.
Then there is R1 � 1, and therefore h′ = R1 exp(R1%) � 1 such that

w〈xx〉

h′(1 + w2
x)(1−2σ)/2

= A(σ;R1,κ, z) +O(1/h′) ∈ D

and by the requirements (2.19), (2.20),

S[w]
h′(1 + w2

x)(1−2σ)/2
= A(σ;R1,κ, z) +O(1/(h′)ε) ∈ D.

Note that we have made the choice of R1 after having fixed κ, d.
We now separate the cases σ > 1, σ = 1. If the first holds then

(4.16) lim
R→∞

h′(1 + w2
x)(1−2σ)/2 = ∞,
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which leads to G[w] > g − δ for some R = R(δ) > R1, for any small δ > 0. This
ensures the inequality

(4.17) G[w] > g, z ∈ Ω̃× [0, T ].

If σ = 1 the limit in (4.16) equals 1 and we can by no means approach g but
can obtain (4.17) due to Assumption 2.3.

The above construction can certainly be extended to general matrices A(p)
satisfying (2.14), (2.17) and the following assertion is valid.

Proposition 4.5. Under Assumption 2.3 and requirement (2.20) there ex-
ist κ, d, R under control such that the function (4.10) is admissible, satisfies
inequality (4.17) and boundary conditions (4.11), (4.12) for all large M .

The Comparison Theorem applied in Ω̃× [0, T ] to the barrier (4.10) and our
admissible solution u yields the estimation of un|∂′′Q in the obvious way. To
complete the proof of Theorem 3.3 we consider the solution u to the quasilinear
second-order parabolic differential equation trS[u] = 0, satisfying the initial
boundary conditions (2.9). On the one hand, u does exist under our assumptions.
On the other hand, u is a superfunction for the operator G (see (1.3)). Hence
u ≥ u in Q and u = u on ∂′Q. This guarantees the boundedness of un|∂′′Q from
above.

We conclude the argument by stating

Lemma 4.6. Let u ∈ C1,0(Q) be an admissible solution to problem (2.8),
(2.3), (2.9) with W = (1 − τ)a(ux)vI, τ ∈ [0, 1]. Assume ∂Ω ∈ C3, g ∈ C(Q),
a,A ∈ C(Rn), a > 0, A ≥ 0 satisfy Assumption 2.3 and requirement (2.20)
respectively. Then

|ux|∂′′Q ≤ c(‖∂Ω‖C3 , ‖Φ‖C3(∂′′Q), ‖ψ‖C1(Ω), δ).

Lemma 4.6 and inequality (4.9) complete the proof of Theorem 3.3 and hence
our existence theorems are established.
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