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1. Introduction

The purpose of this paper is to study the semilinear elliptic problem

(1λ)

{
−∆u + u = λ|u|q−2u− h(x)|u|p−2u in RN ,

u > 0 on RN ,

where h > 0 is a positive continuous function on RN satisfying some integrability
condition, λ > 0 is a positive parameter and 2 < q < p < 2∗ = 2N/(N − 2),
N ≥ 3. We establish the existence of at least one solution (see Sections 2 and 3).
In the final Section 4 we study the equation in (1λ) with the nonlinearity replaced
by k(x)|u|q−2u−µ|u|p−2u, with 1 < q < 2 < p < 2∗, where k is a positive function
satisfying an appropriate integrability condition and µ > 0 is a parameter. In
this case we prove the existence of infinitely many solutions.

Some existence results for elliptic problems on unbounded domains with in-
definite nonlinearities were obtained in [11] and [12]. In [12] a nonlinearity f has
the form f(x, u) = Q1(x)|u|p−2u−Q2(x)|u|q−2u with 2 < q < p < 2∗, where Qi

are continuous positive bounded functions satisfying Q1(x) ≥ lim|x|→∞ Q1(x)
> 0 and Q2(x) ≤ lim|x|→∞ Q2(x) > 0 on RN . Under these assumptions the
corresponding elliptic problem has a variational structure with a mountain pass
level satisfying the Palais–Smale condition. We point out here that the nonlin-
earity f in [12] has a different order of terms |u|p−2u and |u|q−2u than in equation
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(1λ), which means that problem (1λ) does not have a mountain pass structure.
The paper [11] deals with a nonlinearity f involving concave and convex terms

f(x, u) =
λ

(1 + |x|)a
|u|q−2u +

µ

(1 + |x|)b
|u|p−2u,

with 1 < q < 2 < p < 2∗. If a > 0 and b > 0 are sufficiently large then a nonlinear
functional generated by f is completely continuous on H1(RN ). The existence
of infinitely many solutions was obtained using the Bartsch–Willem fountain
theorem [5] (see also [6]). In this paper motivated by [1] and [3] we study in
both cases problem (1λ) under different assumptions. In Section 3 we obtain
the existence of a solution as a minimizer of a variational functional for problem
(1λ). In the case of a nonlinearity combining convex and concave terms we prove
the existence of infinitely many solutions also using the Bartsch–Willem fountain
theorem. For related problems for Dirichlet problem on bounded domains we
refer to [1] and [2].

In this paper we use standard notation and terminology. We denote by
H1(RN ) the Sobolev space equipped with the norm

‖u‖2 =
∫

RN

(|∇u|2 + u2) dx.

By Lp
r(RN ), 1 ≤ p < ∞, we denote the weighted Lebesgue space

Lp
r(RN ) =

{
u :

∫
RN

|u(x)|pr(x) dx < ∞
}

,

where r is a positive continuous function on RN , equipped with the norm

‖u‖p
r,p =

∫
RN

|u(x)|pr(x) dx.

If r ≡ 1 on RN , the norm is denoted by ‖ · ‖p.
In this work we always denote weak convergence in a given Banach space by

“⇀” and strong convergence by “→”. The duality pairing between X and X∗

is denoted by 〈·, ·〉.

2. Preliminaries

In this and the next section we consider problem (1λ) under the assumption
2 < q < p < 2∗. We assume that h is a positive and continuous function on RN

satisfying

(H)
∫

RN

dx

hq/(p−q)
< ∞.

By E we denote the subspace of H1(RN ) defined by

E =
{

u ∈ H1(RN ) :
∫

RN

h(x)|u|p dx < ∞
}
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and equipped with the norm

‖u‖2
E =

∫
RN

(|∇u|2 + u2) dx +
( ∫

RN

h(x)|u|p dx

)2/p

.

It is clear that E is a Banach space. Solutions to problem (1λ) will be found as
critical points of the functional Φ : E → R given by

Φ(u) =
1
2

∫
RN

(|∇u|2 + u2) dx− λ

q

∫
RN

|u|q dx +
1
p

∫
RN

h(x)|u|p dx.

We commence by showing that there exists λ∗ > 0 such that for 0 < λ < λ∗

the problem does not admit a solution.

Proposition 1. There exists λ∗ > 0 such that for 0 < λ < λ∗ problem (1λ)
does not have a solution.

Proof. Suppose that u > 0 is a solution in E of (1λ). Then u satisfies

(2)
∫

RN

(|∇u|2 + u2) dx +
∫

RN

h|u|p dx = λ

∫
RN

|u|q dx.

It follows from the Young inequality that

λ

∫
RN

|u|q dx ≤ λp/(p−q) p− q

p

∫
RN

dx

hq/(p−q)
+

q

p

∫
RN

h|u|p dx.

This combined with (2) gives

(3)
∫

RN

(|∇u|2 + u2) dx ≤ λp/(p−q) p− q

p

∫
RN

dx

hq/(p−q)
.

By (2) and the Sobolev embedding theorem we have

(4) Cq

( ∫
RN

|u|q dx

)2/q

≤
∫

RN

(|∇u|2 + u2) dx ≤ λ

∫
RN

|u|q dx

for some constant Cq > 0. We deduce from this inequality the estimate

(Cqλ
−1)q/(q−2) ≤

∫
RN

|u|q dx,

which combined with (4) leads to the inequality

Cq(Cqλ
−1)2/(q−2) ≤

∫
RN

(|∇u|2 + u2) dx.

Combining this and (3) we obtain

(5) Cq(Cqλ
−1)2/(q−2) ≤ λp/(p−q) p− q

p

∫
RN

dx

hq/(p−q)
.

If we take

λ∗ =
[
Cq/(q−2)

q

p

p− q

(∫
RN

dx

hq/(p−q)

)−1](p−q)(q−2)/(q(p−2))

,

the result follows.
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To proceed further we need the following inequality: for every h > 0, k > 0
and 0 < s < r we have

(6) k|u|s − h|u|r ≤ Crsk

(
k

h

)s/(r−s)

for all u ∈ R, where Crs > 0 is a constant depending on s and r (see [1], p. 166).

Lemma 1. The functional Φ is coercive.

Proof. By virtue of (6) we write the following estimate

∫
RN

(
λ

q
|u|q − h

2p
|u|p

)
dx ≤ Cpq

∫
RN

λ

(
λ

h

)q/(p−q)

dx

= Cpqλ
p/(p−q)

∫
RN

dx

hq/(p−q)
= C1.

It therefore follows that

Φ(u) ≥ 1
2

∫
RN

(|∇u|2 + u2) dx +
1
2p

∫
RN

h|u|p dx− C1

and the coercivity follows.

Lemma 2. Let {um} be a sequence in E such that Φ(um) is bounded. Then
there exists a subsequence of {um}, relabelled again by {um}, such that um ⇀ u0

in E and

Φ(u0) ≤ lim inf
m→∞

Φ(um).

Proof. Since Φ is coercive in E we see that ‖um‖ and
∫

RN h|um|p dx are
bounded. We may also assume that um ⇀ u0 in H1(RN ), um ⇀ u0 in Lp

h(RN )
and um → u0 in Ls

loc(RN ) for 2 ≤ s < 2∗. Writing

F (x, u) =
λ

q
|u|q − h(x)

|u|p

p
and f(x, u) = Fu(x, u),

we see that

(7) fu(x, u) = (q − 1)λ|u|q−2 − (p− 1)h|u|p−2 ≤ Cpqλ

(
λ

h

)(q−2)/(p−q)

,

where the last inequality follows from (6) and Cpq > 0 is a constant depending
only on p and q.
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We now use (7) to derive the following estimate for Φ(u0)− Φ(um):

Φ(u0)− Φ(um) =
1
2

∫
RN

(|∇u0|2 + u2
0) dx− 1

2

∫
RN

(|∇um|2 + u2
m) dx

+
∫

RN

(F (x, um)− F (x, u0)) dx

=
1
2

∫
RN

(|∇u0|2 + u2
0) dx− 1

2

∫
RN

(|∇um|2 + u2
m) dx

+
∫

RN

(∫ 1

0

∫ s

0

fu(x, u0 + t(um − u0)) dt ds

)
(um − u0)2 dx

≤ 1
2

∫
RN

(|∇u0|2 + u2
0) dx− 1

2

∫
RN

(|∇um|2 + u2
m) dx

+ C2

∫
RN

(um − u0)2

h(q−2)/(p−q)
dx,

where C2 = Cpqλ
(p−2)/(p−q). It remains to show that the last integral tends to

0 as m →∞. Towards this end we use the following estimate for R > 0:

(8)
∫

RN

(um − u0)2

h(q−2)/(p−2)
dx

≤
( ∫

|x|≤R

dx

hq/(p−q)

)(q−2)/q( ∫
|x|≤R

|um − u0|q dx

)2/q

+
( ∫

|x|≥R

dx

hq/(p−q)

)(q−2)/q( ∫
|x|≥R

|um − u0|q dx

)2/q

.

Taking R > 0 sufficiently large and using the fact that {um} is bounded in
Lq(RN ) and (um − u0)2 → 0 in L

q/2
loc (RN ) we see that

(9) lim
m→∞

∫
RN

(um − u0)2

h(q−2)/(p−q)
dx = 0.

Since the norm in H1(RN ) is lower semicontinuous with respect to weak conver-
gence we easily derive from (8) and (9) that

Φ(u0) ≤ lim inf
m→∞

Φ(um).

Lemma 3. If u is a solution of problem (1λ), then∫
RN

(|∇u|2 + u2) dx +
p− q

p

∫
RN

h|u|p dx ≤ λ
p− q

p

∫
RN

dx

hq/(p−q)

and

‖u‖ ≥ λ1/(q−2)K,

where K > 0 is a constant independent of u.
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Proof. If u is a solution of (1λ), then∫
RN

(|∇u|2 + u2) dx +
∫

RN

h|u|p dx = λ

∫
RN

|u|q dx

≤ λ
p− q

p

∫
RN

dx

hq/(p−q)
+

q

p

∫
RN

h|u|p dx

and the first part of the assertion follows. To show the second part we use the
Sobolev inequality to get∫

RN

(|∇u|2 + u2) dx ≤ λCq‖u‖q,

where Cq > 0 and the result readily follows.

3. Existence result

According to Lemmas 1 and 2, Φ is coercive and lower semicontinuous.
Therefore there exists u ∈ E such that Φ(u) = infE Φ(u). To ensure that u 6≡ 0
we shall show that infE Φ < 0. This can be achieved by taking the parameter
λ > 0 sufficiently large.

Theorem 1. There exists λ0 > 0 such that for λ ≥ λ0 problem (1λ) admits
a solution in E. If 0 < λ < λ0, then a solution does not exist.

Proof. We set

λ̃ = inf
{

q

2

∫
RN

(|∇u|2 + u2) dx +
q

p

∫
RN

h(x)|u|p dx : u ∈ E,

∫
RN

|u|q dx = 1
}

.

First we check that λ̃ > 0. To show this we consider the constrained minimization
problem

M = inf
{ ∫

RN

(|∇u|2 + u2) dx : u ∈ H1(RN ),
∫

RN

|u|q dx = 1
}

.

It is well known [9] that M > 0 and there exists a radially symmetric function
v ∈ H1(R1) such that

M =
∫

RN

(|∇v|2 + v2) dx and
∫

RN

|v|q dx = 1.

Since E ⊂ H1(RN ),

(10)
∫

RN

(|∇u|2 + u2) dx ≥ M

for all u ∈ E with
∫

RN |u|q dx = 1. On the other hand, applying the Hölder
inequality we get

(11) 1 =
∫

RN

|u|q dx ≤
(∫

RN

dx

hq/(p−q)

)(p−q)/p(∫
RN

h|u|p dx

)q/p

.
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It then follows that

λ̃ ≥ q

2
M +

q

2

(∫
RN

dx

hq/(p−q)

)−(p−q)/q

and our claim follows.
Let λ > λ̃. Then there exists a function u ∈ E with

∫
RN |u|q dx = 1 such

that

λ >
q

2

∫
RN

(|∇u|2 + u2) dx +
q

2

∫
RN

h|u|p dx.

This can be rewritten as

Φ(u) =
1
2

∫
RN

(|∇u|2 + u2) dx− λ

q

∫
RN

|u|q dx +
1
p

∫
RN

h(x)|u|p dx < 0

and consequently infu∈E Φ(u) < 0. By Lemmas 1 and 2, problem (1λ) has a
solution. We now set

λ0 = inf{λ > 0 : (1λ) admits a solution}.

According to Lemma 1, λ0 > 0.
We now show that for each λ > λ0 problem (1λ) admits a solution. Indeed,

given λ > λ0 there exists µ ∈ (λ0, λ) such that problem (1µ) has a solution uµ

which is a subsolution of problem (1λ). We now consider the variational problem

inf{Φ(u) : u ∈ E and u ≥ uµ}.

By Lemmas 1 and 2 this problem admits a solution u (see Theorem 1.2 in [10]).
Since uµ is a subsolution of (1λ) a minimizer u is a solution of problem (1λ).
Since Φ(u) = Φ(|u|) we may assume that u ≥ 0 on RN . By Theorem 14.1 of
[8] (p. 234), u is continuous on RN . Therefore applying the Harnack inequality
(see Theorem 8.18 of [7], p. 194) we deduce that u > 0 on RN . It remains to
show that problem (1λ0) has also a solution. Let λm → λ0 and λm > λ0 for
each m. By the preceding part of the proof problem (1λm

) has a solution um for
each m. By Lemma 3 the sequence {um} is bounded in E. Therefore we may
assume that um ⇀ u0 in E, um ⇀ u0 in Lp

h(RN ) and um → u0 in Lq
loc(RN ).

Obviously u0 is a solution of (1λ0). Since um and u0 are solutions of (1λm
) and

(1λ0), respectively, we have∫
RN

|∇(um − u0)|2 dx +
∫

RN

h(|um|p−2um − |u0|p−2u0)(um − u0) dx

= λm

∫
RN

(|um|q−2um − |u0|q−2u0)(um − u0) dx

+ (λm − λ0)
∫

RN

|u0|q−2u0(um − u0) dx = J1,m + J2,m.



228 J. Chabrowski

We now observe that {um} is bounded in Lq(RN ) and consequently J2,m → 0
as m →∞. It follows from the Hölder inequality that

|J1,m| ≤ sup
m≥1

λm

[(∫
|x|≤R

|um|q dx

)(q−1)/q(∫
|x|≤R

|um − u0|q dx

)1/q

+
(∫

|x|≤R

|u0|q dx

)(q−1)/q(∫
|x|≤R

|um − u0|q dx

)1/q

+
(∫

|x|>R

h−p/(p−q) dx

)(p−q)/p(∫
|x|>R

h|um|p dx

)q/p

+
(∫

|x|>R

|um|q dx

)1/q(∫
|x|>R

|u0|q dx

)(1−q)/q

+
(∫

|x|>R

|u0|q dx

)(q−1)/q(∫
|x|>R

|um − u0|q dx

)1/q]
.

For a given ε > 0 we choose Rε > 0 such that∫
|x|>R

dx

hq/(p−q)
< ε and

∫
|x|>R

|u0|q dx < ε.

Then letting m → ∞ we see that lim supm→∞ J1,m ≤ Cε for some constant
C > 0 independent of m and ε. Since ε > 0 is arbitrary, limm→∞ J1,m = 0.
Hence um → u in H1(RN ) and by Lemma 3, u0 6≡ 0. By the Harnack inequality,
u0 > 0 on RN and this completes the proof.

4. Convex and concave nonlinearities

In the case where the right-hand side of the equation in (1λ) involves convex
and concave nonlinearities we establish the existence of infinitely many solutions.
Our approach is based on the Bartsch–Willem fountain theorem [5]. We consider
the equation

(12) −∆u + u = k(x)|u|q−2u− µ|u|p−2u in RN ,

where 1 < q < 2 < 2∗ = 2N/(N − 2), N ≥ 3, and µ > 0 is a parameter.
Throughout this section it is assumed that k is a positive continuous function
on RN such that

(K) k ∈ Ls(RN ) with s =
2N

2N − qN + 2q
.

It follows from the Hölder and Sobolev inequalities that

(∗)
∫

RN

k(x)|u|q dx ≤
(∫

RN

|u|2
∗
dx

)q/2∗(∫
RN

|k|s dx

)1/s

≤ S−q/2∗‖u‖q‖k‖s,

where S is the best Sobolev constant for the embedding of H1(RN ) into L2∗(RN ).
It is easy to check that the functional u →

∫
RN k(x)|u|q dx (from H1(RN ) into R)
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is completely continuous. By Ψ : H1(RN ) → R we denote the variational
functional for (12) defined by

Ψ(u) =
1
2

∫
RN

(|∇u|2 + u2) dx− 1
2

∫
RN

k(x)|u|q dx +
µ

p

∫
RN

|u|p dx.

Let {ek}, k = 1, 2, . . . , be an orthonormal basis for H1(RN ). We set

X(j) = span(e1, . . . , ej),

Xk =
⊕
j≥k

X(j) and Xk =
⊕
j≤k

X(j).

Theorem 2 (Bartsch–Willem [5]). Let F : H1(RN ) → R be a C1-functional
satisfying the following conditions:

(A1) There exists an integer k0 such that for every k ≥ k0 there exists Rk > 0
such that F (u) ≥ 0 for every u ∈ Xk with ‖u‖ = Rk.

(A2) bk = infBk
F (u) → 0 as k →∞, where Bk = {u ∈ Xk : ‖u‖ ≤ Rk}.

(A3) For every k ≥ 1 there exist rk ∈ (0, Rk) and dk < 0 such that F (u) ≤ dk

for every u ∈ Xk with ‖u‖ = rk.
(A4) Every sequence un ∈ Xn with F (un) < 0 and F ′|Xn(un) → 0 as n →∞

has a subsequence which converges to a critical point of F .

Then for each k ≥ k0, F has a critical value ck ∈ [dk, bk].

Theorem 3. Equation (12) admits infinitely many solutions in H1(RN ).

Proof. It suffices to check that the functional Ψ satisfies the assumptions
of Theorem 2. Let

λk = sup
u∈Xk−{0}

‖u‖k,q

‖u‖
.

It is clear that {λk} is a decreasing sequence. Since u →
∫

RN k(x)|u|q dx is a
completely continuous functional on H1(RN ), we can show as in [11] that λk → 0
as k → ∞. By Cp we denote the best Sobolev constant for the embedding of
H1(RN ) into Lp(RN ), 2 ≤ p ≤ 2∗, that is,

Cp = inf
{
‖u‖2 : u ∈ H1(RN ),

∫
RN

|u|p dx = 1
}

.

If p = 2∗, then Cp = S. Let u ∈ Xk. Then

Ψ(u) ≥ 1
2
‖u‖2 −

λq
k

q
‖u‖q +

µ

p
Cp‖u‖p ≥ 1

2
‖u‖2 −

λq
k

q
‖u‖q.

Letting Rk = (2λq
k/q)1/(2−q), we see that 1

2R2
k = (λq

k/q)Rq
k. It is clear that

Rk → 0 as k → ∞ and Ψ(u) ≥ 0 for ‖u‖ = Rk, u ∈ Xk, k ≥ k0. This proves
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(A1) and since Rk → 0, (A2) also holds. To check (A3) we observe that on the
finite-dimensional space Xk all norms are equivalent. Hence

Ψ(u) ≤ 1
2
‖u‖2 −A‖u‖q + Bµ‖u‖p

for some constants A > 0 and B > 0. Since q < 2 < p, taking rk sufficiently
small, we satisfy (A3).

It remains to check the Palais–Smale condition (A4). First, for n sufficiently
large we have

1 + ‖un‖ ≥ Ψ(un)− 1
p
〈Ψ′(un), un〉

=
(

1
2
− 1

p

)
‖un‖2 +

(
1
q
− 1

p

)
‖un‖k,s

≥
(

1
2
− 1

p

)
‖un‖2 −

∣∣∣∣1p − 1
q

∣∣∣∣S−2∗/q‖k‖s‖un‖q.

by (∗). This inequality shows that {un} is bounded in H1(RN ). Therefore we
may assume that un ⇀ u in H1(RN ), un → u in Lp

loc(RN ) for all 1 < p < 2∗

and un → u in Lq
k(RN ). This obviously implies that

(13) 〈Ψ(un)−Ψ(u), un − u〉 → 0 as n →∞.

Finally, we observe that

‖un − u‖2

≤ µ

∫
RN

(|∇un|p−2un − |u|p−2)(un − u) dx + ‖un − u‖2

= 〈Ψ′(un)−Ψ′(u), un − u〉+
∫

RN

k(x)(|un|q−2un − |u|q−2u)(un − u) dx → 0

and this completes the proof.

We close with the following remark. Assumption(K)used in the proof of The-
orem 3 guarantees the complete continuity of the functional u →

∫
RN k(x)|u|q dx

on H1(RN ). This assumption can be replaced by a more general condition which
also ensures the complete continuity of this functional. Namely, let Q(x, l) be a
cube of the form

Q(x, l) = {y ∈ RN : |yj − xj | < l/2, j = 1, . . . , N}, l > 0.

It can be shown that if k ∈ L1(RN ) ∩ L
(q+ε)/ε
loc (RN ) for some 2 < r < r + ε < 2∗

and

lim
|x|→∞

∫
Q(x,l)

k(r+ε)/ε(y) dy = 0
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for some l > 0, then the functional u →
∫

RN k|u|q dx, with 1 < q < 2 is com-
pletely continuous on H1(RN ) (for details we refer to [6], Proposition A.3.1 in
the Appendix, p. 256).
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