ELLIPTIC VARIATIONAL PROBLEMS WITH INDEFINITE NONLINEARITIES

J. Chabrowski

Dedicated to Olga Ladyzhenskaya

1. Introduction

The purpose of this paper is to study the semilinear elliptic problem

$$
\left\{\begin{array}{l}
-\Delta u+u=\lambda|u|^{q-2} u-h(x)|u|^{p-2} u \quad \text { in } \mathbb{R}^{N} \\
u>0 \quad \text { on } \mathbb{R}^{N}
\end{array}\right.
$$

where $h>0$ is a positive continuous function on \mathbb{R}^{N} satisfying some integrability condition, $\lambda>0$ is a positive parameter and $2<q<p<2^{*}=2 N /(N-2)$, $N \geq 3$. We establish the existence of at least one solution (see Sections 2 and 3). In the final Section 4 we study the equation in $\left(1_{\lambda}\right)$ with the nonlinearity replaced by $k(x)|u|^{q-2} u-\mu|u|^{p-2} u$, with $1<q<2<p<2^{*}$, where k is a positive function satisfying an appropriate integrability condition and $\mu>0$ is a parameter. In this case we prove the existence of infinitely many solutions.

Some existence results for elliptic problems on unbounded domains with indefinite nonlinearities were obtained in [11] and [12]. In [12] a nonlinearity f has the form $f(x, u)=Q_{1}(x)|u|^{p-2} u-Q_{2}(x)|u|^{q-2} u$ with $2<q<p<2^{*}$, where Q_{i} are continuous positive bounded functions satisfying $Q_{1}(x) \geq \lim _{|x| \rightarrow \infty} Q_{1}(x)$ >0 and $Q_{2}(x) \leq \lim _{|x| \rightarrow \infty} Q_{2}(x)>0$ on \mathbb{R}^{N}. Under these assumptions the corresponding elliptic problem has a variational structure with a mountain pass level satisfying the Palais-Smale condition. We point out here that the nonlinearity f in [12] has a different order of terms $|u|^{p-2} u$ and $|u|^{q-2} u$ than in equation

[^0]$\left(1_{\lambda}\right)$, which means that problem $\left(1_{\lambda}\right)$ does not have a mountain pass structure. The paper [11] deals with a nonlinearity f involving concave and convex terms
$$
f(x, u)=\frac{\lambda}{(1+|x|)^{a}}|u|^{q-2} u+\frac{\mu}{(1+|x|)^{b}}|u|^{p-2} u
$$
with $1<q<2<p<2^{*}$. If $a>0$ and $b>0$ are sufficiently large then a nonlinear functional generated by f is completely continuous on $H^{1}\left(\mathbb{R}^{N}\right)$. The existence of infinitely many solutions was obtained using the Bartsch-Willem fountain theorem [5] (see also [6]). In this paper motivated by [1] and [3] we study in both cases problem (1_{λ}) under different assumptions. In Section 3 we obtain the existence of a solution as a minimizer of a variational functional for problem $\left(1_{\lambda}\right)$. In the case of a nonlinearity combining convex and concave terms we prove the existence of infinitely many solutions also using the Bartsch-Willem fountain theorem. For related problems for Dirichlet problem on bounded domains we refer to [1] and [2].

In this paper we use standard notation and terminology. We denote by $H^{1}\left(\mathbb{R}^{N}\right)$ the Sobolev space equipped with the norm

$$
\|u\|^{2}=\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+u^{2}\right) d x
$$

By $L_{r}^{p}\left(\mathbb{R}^{N}\right), 1 \leq p<\infty$, we denote the weighted Lebesgue space

$$
L_{r}^{p}\left(\mathbb{R}^{N}\right)=\left\{u: \int_{\mathbb{R}^{N}}|u(x)|^{p} r(x) d x<\infty\right\}
$$

where r is a positive continuous function on \mathbb{R}^{N}, equipped with the norm

$$
\|u\|_{r, p}^{p}=\int_{\mathbb{R}^{N}}|u(x)|^{p} r(x) d x
$$

If $r \equiv 1$ on \mathbb{R}^{N}, the norm is denoted by $\|\cdot\|_{p}$.
In this work we always denote weak convergence in a given Banach space by " \rightharpoonup " and strong convergence by " \rightarrow ". The duality pairing between X and X^{*} is denoted by $\langle\cdot, \cdot\rangle$.

2. Preliminaries

In this and the next section we consider problem $\left(1_{\lambda}\right)$ under the assumption $2<q<p<2^{*}$. We assume that h is a positive and continuous function on \mathbb{R}^{N} satisfying

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \frac{d x}{h^{q /(p-q)}}<\infty \tag{H}
\end{equation*}
$$

By E we denote the subspace of $H^{1}\left(\mathbb{R}^{N}\right)$ defined by

$$
E=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right): \int_{\mathbb{R}^{N}} h(x)|u|^{p} d x<\infty\right\}
$$

and equipped with the norm

$$
\|u\|_{E}^{2}=\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+u^{2}\right) d x+\left(\int_{\mathbb{R}^{N}} h(x)|u|^{p} d x\right)^{2 / p}
$$

It is clear that E is a Banach space. Solutions to problem (1_{λ}) will be found as critical points of the functional $\Phi: E \rightarrow \mathbb{R}$ given by

$$
\Phi(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+u^{2}\right) d x-\frac{\lambda}{q} \int_{\mathbb{R}^{N}}|u|^{q} d x+\frac{1}{p} \int_{\mathbb{R}^{N}} h(x)|u|^{p} d x .
$$

We commence by showing that there exists $\lambda^{*}>0$ such that for $0<\lambda<\lambda^{*}$ the problem does not admit a solution.

Proposition 1. There exists $\lambda^{*}>0$ such that for $0<\lambda<\lambda^{*} \operatorname{problem}\left(1_{\lambda}\right)$ does not have a solution.

Proof. Suppose that $u>0$ is a solution in E of $\left(1_{\lambda}\right)$. Then u satisfies

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+u^{2}\right) d x+\int_{\mathbb{R}^{N}} h|u|^{p} d x=\lambda \int_{\mathbb{R}^{N}}|u|^{q} d x . \tag{2}
\end{equation*}
$$

It follows from the Young inequality that

$$
\lambda \int_{\mathbb{R}^{N}}|u|^{q} d x \leq \lambda^{p /(p-q)} \frac{p-q}{p} \int_{\mathbb{R}^{N}} \frac{d x}{h^{q /(p-q)}}+\frac{q}{p} \int_{\mathbb{R}^{N}} h|u|^{p} d x .
$$

This combined with (2) gives

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+u^{2}\right) d x \leq \lambda^{p /(p-q)} \frac{p-q}{p} \int_{\mathbb{R}^{N}} \frac{d x}{h^{q /(p-q)}} \tag{3}
\end{equation*}
$$

By (2) and the Sobolev embedding theorem we have

$$
\begin{equation*}
C_{q}\left(\int_{\mathbb{R}^{N}}|u|^{q} d x\right)^{2 / q} \leq \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+u^{2}\right) d x \leq \lambda \int_{\mathbb{R}^{N}}|u|^{q} d x \tag{4}
\end{equation*}
$$

for some constant $C_{q}>0$. We deduce from this inequality the estimate

$$
\left(C_{q} \lambda^{-1}\right)^{q /(q-2)} \leq \int_{\mathbb{R}^{N}}|u|^{q} d x
$$

which combined with (4) leads to the inequality

$$
C_{q}\left(C_{q} \lambda^{-1}\right)^{2 /(q-2)} \leq \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+u^{2}\right) d x
$$

Combining this and (3) we obtain

$$
\begin{equation*}
C_{q}\left(C_{q} \lambda^{-1}\right)^{2 /(q-2)} \leq \lambda^{p /(p-q)} \frac{p-q}{p} \int_{\mathbb{R}^{N}} \frac{d x}{h^{q /(p-q)}} \tag{5}
\end{equation*}
$$

If we take

$$
\lambda^{*}=\left[C_{q}^{q /(q-2)} \frac{p}{p-q}\left(\int_{\mathbb{R}^{N}} \frac{d x}{h^{q /(p-q)}}\right)^{-1}\right]^{(p-q)(q-2) /(q(p-2))},
$$

the result follows.

To proceed further we need the following inequality: for every $h>0, k>0$ and $0<s<r$ we have

$$
\begin{equation*}
k|u|^{s}-h|u|^{r} \leq C_{r s} k\left(\frac{k}{h}\right)^{s /(r-s)} \tag{6}
\end{equation*}
$$

for all $u \in \mathbb{R}$, where $C_{r s}>0$ is a constant depending on s and r (see [1], p. 166).
Lemma 1. The functional Φ is coercive.
Proof. By virtue of (6) we write the following estimate

$$
\begin{aligned}
\int_{\mathbb{R}^{N}}\left(\frac{\lambda}{q}|u|^{q}-\frac{h}{2 p}|u|^{p}\right) d x & \leq C_{p q} \int_{\mathbb{R}^{N}} \lambda\left(\frac{\lambda}{h}\right)^{q /(p-q)} d x \\
& =C_{p q} \lambda^{p /(p-q)} \int_{\mathbb{R}^{N}} \frac{d x}{h^{q /(p-q)}}=C_{1}
\end{aligned}
$$

It therefore follows that

$$
\Phi(u) \geq \frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+u^{2}\right) d x+\frac{1}{2 p} \int_{\mathbb{R}^{N}} h|u|^{p} d x-C_{1}
$$

and the coercivity follows.

Lemma 2. Let $\left\{u_{m}\right\}$ be a sequence in E such that $\Phi\left(u_{m}\right)$ is bounded. Then there exists a subsequence of $\left\{u_{m}\right\}$, relabelled again by $\left\{u_{m}\right\}$, such that $u_{m} \rightharpoonup u_{0}$ in E and

$$
\Phi\left(u_{0}\right) \leq \liminf _{m \rightarrow \infty} \Phi\left(u_{m}\right)
$$

Proof. Since Φ is coercive in E we see that $\left\|u_{m}\right\|$ and $\int_{\mathbb{R}^{N}} h\left|u_{m}\right|^{p} d x$ are bounded. We may also assume that $u_{m} \rightharpoonup u_{0}$ in $H^{1}\left(\mathbb{R}^{N}\right), u_{m} \rightharpoonup u_{0}$ in $L_{h}^{p}\left(\mathbb{R}^{N}\right)$ and $u_{m} \rightarrow u_{0}$ in $L_{\mathrm{loc}}^{s}\left(\mathbb{R}^{N}\right)$ for $2 \leq s<2^{*}$. Writing

$$
F(x, u)=\frac{\lambda}{q}|u|^{q}-h(x) \frac{|u|^{p}}{p} \quad \text { and } \quad f(x, u)=F_{u}(x, u),
$$

we see that
(7) $\quad f_{u}(x, u)=(q-1) \lambda|u|^{q-2}-(p-1) h|u|^{p-2} \leq C_{p q} \lambda\left(\frac{\lambda}{h}\right)^{(q-2) /(p-q)}$,
where the last inequality follows from (6) and $C_{p q}>0$ is a constant depending only on p and q.

We now use (7) to derive the following estimate for $\Phi\left(u_{0}\right)-\Phi\left(u_{m}\right)$:

$$
\begin{aligned}
\Phi\left(u_{0}\right)-\Phi\left(u_{m}\right)= & \frac{1}{2} \int_{\mathbb{R}^{N}}\left(\left|\nabla u_{0}\right|^{2}+u_{0}^{2}\right) d x-\frac{1}{2} \int_{\mathbb{R}^{N}}\left(\left|\nabla u_{m}\right|^{2}+u_{m}^{2}\right) d x \\
& +\int_{\mathbb{R}^{N}}\left(F\left(x, u_{m}\right)-F\left(x, u_{0}\right)\right) d x \\
= & \frac{1}{2} \int_{\mathbb{R}^{N}}\left(\left|\nabla u_{0}\right|^{2}+u_{0}^{2}\right) d x-\frac{1}{2} \int_{\mathbb{R}^{N}}\left(\left|\nabla u_{m}\right|^{2}+u_{m}^{2}\right) d x \\
& +\int_{\mathbb{R}^{N}}\left(\int_{0}^{1} \int_{0}^{s} f_{u}\left(x, u_{0}+t\left(u_{m}-u_{0}\right)\right) d t d s\right)\left(u_{m}-u_{0}\right)^{2} d x \\
\leq & \frac{1}{2} \int_{\mathbb{R}^{N}}\left(\left|\nabla u_{0}\right|^{2}+u_{0}^{2}\right) d x-\frac{1}{2} \int_{\mathbb{R}^{N}}\left(\left|\nabla u_{m}\right|^{2}+u_{m}^{2}\right) d x \\
& +C_{2} \int_{\mathbb{R}^{N}} \frac{\left(u_{m}-u_{0}\right)^{2}}{h^{(q-2) /(p-q)}} d x
\end{aligned}
$$

where $C_{2}=C_{p q} \lambda^{(p-2) /(p-q)}$. It remains to show that the last integral tends to 0 as $m \rightarrow \infty$. Towards this end we use the following estimate for $R>0$:

$$
\begin{align*}
& \int_{\mathbb{R}^{N}} \frac{\left(u_{m}-u_{0}\right)^{2}}{h^{(q-2) /(p-2)}} d x \tag{8}\\
& \leq\left(\int_{|x| \leq R} \frac{d x}{h^{q /(p-q)}}\right)^{(q-2) / q}\left(\int_{|x| \leq R}\left|u_{m}-u_{0}\right|^{q} d x\right)^{2 / q} \\
&+\left(\int_{|x| \geq R} \frac{d x}{h^{q /(p-q)}}\right)^{(q-2) / q}\left(\int_{|x| \geq R}\left|u_{m}-u_{0}\right|^{q} d x\right)^{2 / q}
\end{align*}
$$

Taking $R>0$ sufficiently large and using the fact that $\left\{u_{m}\right\}$ is bounded in $L^{q}\left(\mathbb{R}^{N}\right)$ and $\left(u_{m}-u_{0}\right)^{2} \rightarrow 0$ in $L_{\text {loc }}^{q / 2}\left(\mathbb{R}^{N}\right)$ we see that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{\mathbb{R}^{N}} \frac{\left(u_{m}-u_{0}\right)^{2}}{h^{(q-2) /(p-q)}} d x=0 \tag{9}
\end{equation*}
$$

Since the norm in $H^{1}\left(\mathbb{R}^{N}\right)$ is lower semicontinuous with respect to weak convergence we easily derive from (8) and (9) that

$$
\Phi\left(u_{0}\right) \leq \liminf _{m \rightarrow \infty} \Phi\left(u_{m}\right)
$$

Lemma 3. If u is a solution of problem $\left(1_{\lambda}\right)$, then

$$
\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+u^{2}\right) d x+\frac{p-q}{p} \int_{\mathbb{R}^{N}} h|u|^{p} d x \leq \lambda \frac{p-q}{p} \int_{\mathbb{R}^{N}} \frac{d x}{h^{q /(p-q)}}
$$

and

$$
\|u\| \geq \lambda^{1 /(q-2)} K
$$

where $K>0$ is a constant independent of u.

Proof. If u is a solution of $\left(1_{\lambda}\right)$, then

$$
\begin{aligned}
\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+u^{2}\right) d x+\int_{\mathbb{R}^{N}} h|u|^{p} d x & =\lambda \int_{\mathbb{R}^{N}}|u|^{q} d x \\
& \leq \lambda \frac{p-q}{p} \int_{\mathbb{R}^{N}} \frac{d x}{h^{q /(p-q)}}+\frac{q}{p} \int_{\mathbb{R}^{N}} h|u|^{p} d x
\end{aligned}
$$

and the first part of the assertion follows. To show the second part we use the Sobolev inequality to get

$$
\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+u^{2}\right) d x \leq \lambda C_{q}\|u\|^{q},
$$

where $C_{q}>0$ and the result readily follows.

3. Existence result

According to Lemmas 1 and 2, Φ is coercive and lower semicontinuous. Therefore there exists $\bar{u} \in E$ such that $\Phi(\bar{u})=\inf _{E} \Phi(u)$. To ensure that $\bar{u} \not \equiv 0$ we shall show that $\inf _{E} \Phi<0$. This can be achieved by taking the parameter $\lambda>0$ sufficiently large.

Theorem 1. There exists $\lambda_{0}>0$ such that for $\lambda \geq \lambda_{0} \operatorname{problem}\left(1_{\lambda}\right)$ admits a solution in E. If $0<\lambda<\lambda_{0}$, then a solution does not exist.

Proof. We set

$$
\tilde{\lambda}=\inf \left\{\frac{q}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+u^{2}\right) d x+\frac{q}{p} \int_{\mathbb{R}^{N}} h(x)|u|^{p} d x: u \in E, \int_{\mathbb{R}^{N}}|u|^{q} d x=1\right\}
$$

First we check that $\widetilde{\lambda}>0$. To show this we consider the constrained minimization problem

$$
M=\inf \left\{\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+u^{2}\right) d x: u \in H^{1}\left(\mathbb{R}^{N}\right), \int_{\mathbb{R}^{N}}|u|^{q} d x=1\right\}
$$

It is well known [9] that $M>0$ and there exists a radially symmetric function $v \in H^{1}\left(\mathbb{R}^{1}\right)$ such that

$$
M=\int_{\mathbb{R}^{N}}\left(|\nabla v|^{2}+v^{2}\right) d x \quad \text { and } \quad \int_{\mathbb{R}^{N}}|v|^{q} d x=1
$$

Since $E \subset H^{1}\left(\mathbb{R}^{N}\right)$,

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+u^{2}\right) d x \geq M \tag{10}
\end{equation*}
$$

for all $u \in E$ with $\int_{\mathbb{R}^{N}}|u|^{q} d x=1$. On the other hand, applying the Hölder inequality we get

$$
\begin{equation*}
1=\int_{\mathbb{R}^{N}}|u|^{q} d x \leq\left(\int_{\mathbb{R}^{N}} \frac{d x}{h^{q /(p-q)}}\right)^{(p-q) / p}\left(\int_{\mathbb{R}^{N}} h|u|^{p} d x\right)^{q / p} . \tag{11}
\end{equation*}
$$

It then follows that

$$
\tilde{\lambda} \geq \frac{q}{2} M+\frac{q}{2}\left(\int_{\mathbb{R}^{N}} \frac{d x}{h^{q /(p-q)}}\right)^{-(p-q) / q}
$$

and our claim follows.
Let $\lambda>\tilde{\lambda}$. Then there exists a function $u \in E$ with $\int_{\mathbb{R}^{N}}|u|^{q} d x=1$ such that

$$
\lambda>\frac{q}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+u^{2}\right) d x+\frac{q}{2} \int_{\mathbb{R}^{N}} h|u|^{p} d x
$$

This can be rewritten as

$$
\Phi(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+u^{2}\right) d x-\frac{\lambda}{q} \int_{\mathbb{R}^{N}}|u|^{q} d x+\frac{1}{p} \int_{\mathbb{R}^{N}} h(x)|u|^{p} d x<0
$$

and consequently $\inf _{u \in E} \Phi(u)<0$. By Lemmas 1 and 2 , problem (1_{λ}) has a solution. We now set

$$
\lambda_{0}=\inf \left\{\lambda>0:\left(1_{\lambda}\right) \text { admits a solution }\right\} .
$$

According to Lemma $1, \lambda_{0}>0$.
We now show that for each $\lambda>\lambda_{0}$ problem (1_{λ}) admits a solution. Indeed, given $\lambda>\lambda_{0}$ there exists $\mu \in\left(\lambda_{0}, \lambda\right)$ such that problem $\left(1_{\mu}\right)$ has a solution u_{μ} which is a subsolution of problem $\left(1_{\lambda}\right)$. We now consider the variational problem

$$
\inf \left\{\Phi(u): u \in E \text { and } u \geq u_{\mu}\right\}
$$

By Lemmas 1 and 2 this problem admits a solution \bar{u} (see Theorem 1.2 in [10]). Since u_{μ} is a subsolution of $\left(1_{\lambda}\right)$ a minimizer \bar{u} is a solution of problem (1_{λ}). Since $\Phi(\bar{u})=\Phi(|\bar{u}|)$ we may assume that $u \geq 0$ on \mathbb{R}^{N}. By Theorem 14.1 of [8] (p. 234), u is continuous on \mathbb{R}^{N}. Therefore applying the Harnack inequality (see Theorem 8.18 of [7], p. 194) we deduce that $u>0$ on \mathbb{R}^{N}. It remains to show that problem ($1_{\lambda_{0}}$) has also a solution. Let $\lambda_{m} \rightarrow \lambda_{0}$ and $\lambda_{m}>\lambda_{0}$ for each m. By the preceding part of the proof problem ($1_{\lambda_{m}}$) has a solution u_{m} for each m. By Lemma 3 the sequence $\left\{u_{m}\right\}$ is bounded in E. Therefore we may assume that $u_{m} \rightharpoonup u_{0}$ in $E, u_{m} \rightharpoonup u_{0}$ in $L_{h}^{p}\left(\mathbb{R}^{N}\right)$ and $u_{m} \rightarrow u_{0}$ in $L_{\mathrm{loc}}^{q}\left(\mathbb{R}^{N}\right)$. Obviously u_{0} is a solution of $\left(1_{\lambda_{0}}\right)$. Since u_{m} and u_{0} are solutions of $\left(1_{\lambda_{m}}\right)$ and $\left(1_{\lambda_{0}}\right)$, respectively, we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}\left|\nabla\left(u_{m}-u_{0}\right)\right|^{2} d x+\int_{\mathbb{R}^{N}} h\left(\left|u_{m}\right|^{p-2} u_{m}-\left|u_{0}\right|^{p-2} u_{0}\right)\left(u_{m}-u_{0}\right) d x \\
&= \lambda_{m} \int_{\mathbb{R}^{N}}\left(\left|u_{m}\right|^{q-2} u_{m}-\left|u_{0}\right|^{q-2} u_{0}\right)\left(u_{m}-u_{0}\right) d x \\
&+\left(\lambda_{m}-\lambda_{0}\right) \int_{\mathbb{R}^{N}}\left|u_{0}\right|^{q-2} u_{0}\left(u_{m}-u_{0}\right) d x=J_{1, m}+J_{2, m}
\end{aligned}
$$

We now observe that $\left\{u_{m}\right\}$ is bounded in $L^{q}\left(\mathbb{R}^{N}\right)$ and consequently $J_{2, m} \rightarrow 0$ as $m \rightarrow \infty$. It follows from the Hölder inequality that

$$
\begin{aligned}
\left|J_{1, m}\right| \leq & \sup _{m \geq 1} \lambda_{m}\left[\left(\int_{|x| \leq R}\left|u_{m}\right|^{q} d x\right)^{(q-1) / q}\left(\int_{|x| \leq R}\left|u_{m}-u_{0}\right|^{q} d x\right)^{1 / q}\right. \\
& +\left(\int_{|x| \leq R}\left|u_{0}\right|^{q} d x\right)^{(q-1) / q}\left(\int_{|x| \leq R}\left|u_{m}-u_{0}\right|^{q} d x\right)^{1 / q} \\
& +\left(\int_{|x|>R} h^{-p /(p-q)} d x\right)^{(p-q) / p}\left(\int_{|x|>R} h\left|u_{m}\right|^{p} d x\right)^{q / p} \\
& +\left(\int_{|x|>R}\left|u_{m}\right|^{q} d x\right)^{1 / q}\left(\int_{|x|>R}\left|u_{0}\right|^{q} d x\right)^{(1-q) / q} \\
& \left.+\left(\int_{|x|>R}\left|u_{0}\right|^{q} d x\right)^{(q-1) / q}\left(\int_{|x|>R}\left|u_{m}-u_{0}\right|^{q} d x\right)^{1 / q}\right]
\end{aligned}
$$

For a given $\varepsilon>0$ we choose $R_{\varepsilon}>0$ such that

$$
\int_{|x|>R} \frac{d x}{h^{q /(p-q)}}<\varepsilon \quad \text { and } \quad \int_{|x|>R}\left|u_{0}\right|^{q} d x<\varepsilon
$$

Then letting $m \rightarrow \infty$ we see that $\limsup _{m \rightarrow \infty} J_{1, m} \leq C \varepsilon$ for some constant $C>0$ independent of m and ε. Since $\varepsilon>0$ is arbitrary, $\lim _{m \rightarrow \infty} J_{1, m}=0$. Hence $u_{m} \rightarrow u$ in $H^{1}\left(\mathbb{R}^{N}\right)$ and by Lemma $3, u_{0} \not \equiv 0$. By the Harnack inequality, $u_{0}>0$ on \mathbb{R}^{N} and this completes the proof.

4. Convex and concave nonlinearities

In the case where the right-hand side of the equation in $\left(1_{\lambda}\right)$ involves convex and concave nonlinearities we establish the existence of infinitely many solutions. Our approach is based on the Bartsch-Willem fountain theorem [5]. We consider the equation

$$
\begin{equation*}
-\Delta u+u=k(x)|u|^{q-2} u-\mu|u|^{p-2} u \quad \text { in } \mathbb{R}^{N} \tag{12}
\end{equation*}
$$

where $1<q<2<2^{*}=2 N /(N-2), N \geq 3$, and $\mu>0$ is a parameter. Throughout this section it is assumed that k is a positive continuous function on \mathbb{R}^{N} such that
(K)

$$
k \in L^{s}\left(\mathbb{R}^{N}\right) \quad \text { with } \quad s=\frac{2 N}{2 N-q N+2 q} .
$$

It follows from the Hölder and Sobolev inequalities that
$(*) \int_{\mathbb{R}^{N}} k(x)|u|^{q} d x \leq\left(\int_{\mathbb{R}^{N}}|u|^{2^{*}} d x\right)^{q / 2^{*}}\left(\int_{\mathbb{R}^{N}}|k|^{s} d x\right)^{1 / s} \leq S^{-q / 2^{*}}\|u\|^{q}\|k\|_{s}$,
where S is the best Sobolev constant for the embedding of $H^{1}\left(\mathbb{R}^{N}\right)$ into $L^{2^{*}}\left(\mathbb{R}^{N}\right)$.
It is easy to check that the functional $u \rightarrow \int_{\mathbb{R}^{N}} k(x)|u|^{q} d x$ (from $H^{1}\left(\mathbb{R}^{N}\right)$ into \mathbb{R})
is completely continuous. By $\Psi: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ we denote the variational functional for (12) defined by

$$
\Psi(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+u^{2}\right) d x-\frac{1}{2} \int_{\mathbb{R}^{N}} k(x)|u|^{q} d x+\frac{\mu}{p} \int_{\mathbb{R}^{N}}|u|^{p} d x
$$

Let $\left\{e_{k}\right\}, k=1,2, \ldots$, be an orthonormal basis for $H^{1}\left(\mathbb{R}^{N}\right)$. We set

$$
\begin{gathered}
X(j)=\operatorname{span}\left(e_{1}, \ldots, e_{j}\right) \\
X_{k}=\bigoplus_{j \geq k} X(j) \quad \text { and } \quad X^{k}=\bigoplus_{j \leq k} X(j) .
\end{gathered}
$$

Theorem 2 (Bartsch-Willem [5]). Let $F: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ be a C^{1}-functional satisfying the following conditions:
$\left(A_{1}\right)$ There exists an integer k_{0} such that for every $k \geq k_{0}$ there exists $R_{k}>0$ such that $F(u) \geq 0$ for every $u \in X_{k}$ with $\|u\|=R_{k}$.
$\left(A_{2}\right) b_{k}=\inf _{B_{k}} F(u) \rightarrow 0$ as $k \rightarrow \infty$, where $B_{k}=\left\{u \in X_{k}:\|u\| \leq R_{k}\right\}$.
$\left(A_{3}\right)$ For every $k \geq 1$ there exist $r_{k} \in\left(0, R_{k}\right)$ and $d_{k}<0$ such that $F(u) \leq d_{k}$ for every $u \in X^{k}$ with $\|u\|=r_{k}$.
$\left(A_{4}\right)$ Every sequence $u_{n} \in X^{n}$ with $F\left(u_{n}\right)<0$ and $\left.F^{\prime}\right|_{X^{n}}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ has a subsequence which converges to a critical point of F.
Then for each $k \geq k_{0}$, F has a critical value $c_{k} \in\left[d_{k}, b_{k}\right]$.
Theorem 3. Equation (12) admits infinitely many solutions in $H^{1}\left(\mathbb{R}^{N}\right)$.
Proof. It suffices to check that the functional Ψ satisfies the assumptions of Theorem 2. Let

$$
\lambda_{k}=\sup _{u \in X_{k}-\{0\}} \frac{\|u\|_{k, q}}{\|u\|}
$$

It is clear that $\left\{\lambda_{k}\right\}$ is a decreasing sequence. Since $u \rightarrow \int_{\mathbb{R}^{N}} k(x)|u|^{q} d x$ is a completely continuous functional on $H^{1}\left(\mathbb{R}^{N}\right)$, we can show as in [11] that $\lambda_{k} \rightarrow 0$ as $k \rightarrow \infty$. By C_{p} we denote the best Sobolev constant for the embedding of $H^{1}\left(\mathbb{R}^{N}\right)$ into $L^{p}\left(\mathbb{R}^{N}\right), 2 \leq p \leq 2^{*}$, that is,

$$
C_{p}=\inf \left\{\|u\|^{2}: u \in H^{1}\left(\mathbb{R}^{N}\right), \int_{\mathbb{R}^{N}}|u|^{p} d x=1\right\}
$$

If $p=2^{*}$, then $C_{p}=S$. Let $u \in X_{k}$. Then

$$
\Psi(u) \geq \frac{1}{2}\|u\|^{2}-\frac{\lambda_{k}^{q}}{q}\|u\|^{q}+\frac{\mu}{p} C_{p}\|u\|^{p} \geq \frac{1}{2}\|u\|^{2}-\frac{\lambda_{k}^{q}}{q}\|u\|^{q}
$$

Letting $R_{k}=\left(2 \lambda_{k}^{q} / q\right)^{1 /(2-q)}$, we see that $\frac{1}{2} R_{k}^{2}=\left(\lambda_{k}^{q} / q\right) R_{k}^{q}$. It is clear that $R_{k} \rightarrow 0$ as $k \rightarrow \infty$ and $\Psi(u) \geq 0$ for $\|u\|=R_{k}, u \in X_{k}, k \geq k_{0}$. This proves
$\left(A_{1}\right)$ and since $R_{k} \rightarrow 0,\left(A_{2}\right)$ also holds. To check $\left(A_{3}\right)$ we observe that on the finite-dimensional space X^{k} all norms are equivalent. Hence

$$
\Psi(u) \leq \frac{1}{2}\|u\|^{2}-A\|u\|^{q}+B \mu\|u\|^{p}
$$

for some constants $A>0$ and $B>0$. Since $q<2<p$, taking r_{k} sufficiently small, we satisfy $\left(A_{3}\right)$.

It remains to check the Palais-Smale condition $\left(A_{4}\right)$. First, for n sufficiently large we have

$$
\begin{aligned}
1+\left\|u_{n}\right\| & \geq \Psi\left(u_{n}\right)-\frac{1}{p}\left\langle\Psi^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
& =\left(\frac{1}{2}-\frac{1}{p}\right)\left\|u_{n}\right\|^{2}+\left(\frac{1}{q}-\frac{1}{p}\right)\left\|u_{n}\right\|_{k, s} \\
& \geq\left(\frac{1}{2}-\frac{1}{p}\right)\left\|u_{n}\right\|^{2}-\left|\frac{1}{p}-\frac{1}{q}\right| S^{-2^{*} / q}\|k\|_{s}\left\|u_{n}\right\|^{q} .
\end{aligned}
$$

by $(*)$. This inequality shows that $\left\{u_{n}\right\}$ is bounded in $H^{1}\left(\mathbb{R}^{N}\right)$. Therefore we may assume that $u_{n} \rightharpoonup u$ in $H^{1}\left(\mathbb{R}^{N}\right), u_{n} \rightarrow u$ in $L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{N}\right)$ for all $1<p<2^{*}$ and $u_{n} \rightarrow u$ in $L_{k}^{q}\left(\mathbb{R}^{N}\right)$. This obviously implies that

$$
\begin{equation*}
\left\langle\Psi\left(u_{n}\right)-\Psi(u), u_{n}-u\right\rangle \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{13}
\end{equation*}
$$

Finally, we observe that

$$
\begin{aligned}
& \left\|u_{n}-u\right\|^{2} \\
& \quad \leq \mu \int_{\mathbb{R}^{N}}\left(\left|\nabla u_{n}\right|^{p-2} u_{n}-|u|^{p-2}\right)\left(u_{n}-u\right) d x+\left\|u_{n}-u\right\|^{2} \\
& \quad=\left\langle\Psi^{\prime}\left(u_{n}\right)-\Psi^{\prime}(u), u_{n}-u\right\rangle+\int_{\mathbb{R}^{N}} k(x)\left(\left|u_{n}\right|^{q-2} u_{n}-|u|^{q-2} u\right)\left(u_{n}-u\right) d x \rightarrow 0
\end{aligned}
$$

and this completes the proof.
We close with the following remark. Assumption (K) used in the proof of Theorem 3 guarantees the complete continuity of the functional $u \rightarrow \int_{\mathbb{R}^{N}} k(x)|u|^{q} d x$ on $H^{1}\left(\mathbb{R}^{N}\right)$. This assumption can be replaced by a more general condition which also ensures the complete continuity of this functional. Namely, let $Q(x, l)$ be a cube of the form

$$
Q(x, l)=\left\{y \in \mathbb{R}^{N}:\left|y_{j}-x_{j}\right|<l / 2, j=1, \ldots, N\right\}, \quad l>0
$$

It can be shown that if $k \in L^{1}\left(\mathbb{R}^{N}\right) \cap L_{\text {loc }}^{(q+\varepsilon) / \varepsilon}\left(\mathbb{R}^{N}\right)$ for some $2<r<r+\varepsilon<2^{*}$ and

$$
\lim _{|x| \rightarrow \infty} \int_{Q(x, l)} k^{(r+\varepsilon) / \varepsilon}(y) d y=0
$$

for some $l>0$, then the functional $u \rightarrow \int_{\mathbb{R}^{N}} k|u|^{q} d x$, with $1<q<2$ is completely continuous on $H^{1}\left(\mathbb{R}^{N}\right)$ (for details we refer to [6], Proposition A.3.1 in the Appendix, p. 256).

References

[1] S. Alama and G. Tarantello, Elliptic problems with nonlinearities indefinite in sign, J. Funct. Anal. 141 (1996), 159-215.
[2] _ On semilinear elliptic equation with indefinite nonlinearities, Calc. Var. Partial Differential Equations 1 (1993), 439-479.
[3] A. Ambrosetti, H. Brézis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519-543.
[4] T. Bartsch, Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear Anal. 20 (1993), 1205-1216.
[5] T. Bartsch and M. Willem, On elliptic equations with concave and convex nonlinearities, Proc. Amer. Math. Soc. 123 (1995), 3555-3561.
[6] J. Chabrowski, Variational Methods for Potential Operator Equations, de Gruyter, Berlin, 1997.
[7] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, New York, 1983.
[8] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Equations of Elliptic Type, Nauka, Moscow, 1964. (Russian)
[9] W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149-162.
[10] M. Struwe, Variational Methods, Springer-Verlag, Berlin, 1990.
[11] S. B. Tshinanga, On multiple solutions of semilinear elliptic equation on unbounded domains with concave and convex nonlinearities, Nonlinear Anal. 28 (1997), 809-814.
[12] J. Yang and X. Zhu, On the existence of nontrivial solution of a quasilinear elliptic boundary value problem for unbounded domain. (I) Positive mass case, Acta Math. Sci. 7 (1987), 341-359.

J. Chabrowski

Department of Mathematics
The University of Queensland
St. Lucia 4072, Queensland, AUSTRALIA
E-mail address: jhc@theorem.maths.uq.edu.au

[^0]: 1991 Mathematics Subject Classification. 35J65.

