REMOVABLE SINGULARITIES FOR NONLINEAR ELLIPTIC EQUATIONS

Haïm Brezis - Louis Nirenberg

Dedicated with friendship to O. A. Ladyzhenskaya

1. Introduction

In their celebrated work on nonlinear elliptic equations of the form

$$
\begin{equation*}
\partial_{x_{i}} a_{i}(x, u, \nabla u)=g(x, u, \nabla u), \tag{1}
\end{equation*}
$$

O. A. Ladyzhenskaya and N. N. Ural'tseva [L-U] proved many basic results including, in particular, regularity for solutions in $L^{\infty} \cap H^{1}$. In this paper, under some conditions, we prove a removable singularity result for a subclass of (1),

$$
\begin{equation*}
\frac{\partial}{\partial x_{i}}\left(a_{i l}(x, u) \frac{\partial u}{\partial x_{l}}\right)=g(x, u, \nabla u) . \tag{2}
\end{equation*}
$$

The interest in removable singularities arose because of recent work on the following type of problems in a domain Ω in \mathbb{R}^{n} :

$$
\begin{align*}
\Delta u-u|\nabla u|^{2} & =f(x) & & \text { in } \Omega, \tag{3}\\
u & =0 & & \text { on } \partial \Omega .
\end{align*}
$$

The first results treated f in $H^{-1}(\Omega)$, and established the existence of a solution u in $H_{0}^{1}(\Omega)$ with $u|\nabla u|$ in $L^{2}(\Omega)$; see L. Boccardo, F. Murat and J. P. Puel [B-M-P], A. Bensoussan, L. Boccardo and F. Murat [B-B-M], R. Landes [L], T. Del Vecchio [De]-other references may be found in these papers.

[^0]Subsequently, the case where f is in L^{1} was considered by L. Boccardo and T. Gallouët [B-G]; they proved the existence of a solution u in H_{0}^{1}, with $u|\nabla u|^{2}$ in L^{1}. With F. Murat (see [B-G-M]) they then treated the case of $f=f_{1}+f_{2}$, with f_{1} in H^{-1} and f_{2} in L^{1}-obtaining a solution in the same class (see also the references therein).

A natural question is whether one might permit f to be a measure-for example, a delta function. If $n=1$, any measure is in H^{-1}, so a solution exists. In this paper we make the observation that if $n \geq 2$, and f is a Dirac delta function, then no solution exists. This is a consequence of our removable singularity theorem for (2) in a domain Ω.

We now state our conditions.
We assume uniform ellipticity: for some constants $c_{0}, C_{0}>0$,

$$
\begin{equation*}
c_{0}|\xi|^{2} \leq a_{i l}(x, u) \xi_{i} \xi_{l} \leq C_{0}|\xi|^{2} \quad \forall x \in \Omega, \forall u \in \mathbb{R}, \forall \xi \in \mathbb{R}^{n} \tag{4}
\end{equation*}
$$

and that the $a_{i l}(x, u)$ and $g(x, u, p)$ are smooth. Concerning g we also assume (5)-(9) below.

$$
\left\{\begin{array}{l}
\text { For every } m \geq 0, \text { there exists } A_{m} \text { such that for }|u| \leq m, \tag{5}\\
|g(x, u, p)| \leq A_{m}\left(1+|p|^{2}\right) \quad \forall x \in \Omega, \forall p \in \mathbb{R}^{n}
\end{array}\right.
$$

There exist positive numbers α, M such that for all $x \in \Omega$ and $p \in \mathbb{R}^{n}$,

$$
\begin{equation*}
(\operatorname{sgn} u) g(x, u, p) \geq \alpha|p|^{2}-h(|u|)^{2} \quad \text { for }|u| \geq M \tag{6}
\end{equation*}
$$

Here h is a C^{1} function on $[M, \infty)$ satisfying:

$$
\begin{gather*}
h(s) \geq \varepsilon_{0}>0 \quad \forall s \geq M, \tag{7}\\
\int_{M}^{\infty} \frac{d s}{h(s)}=\infty \tag{8}
\end{gather*}
$$

and

$$
\begin{equation*}
\limsup _{s \rightarrow \infty} \frac{h^{\prime}(s)}{h(s)}<\frac{\alpha}{2 C_{0}} . \tag{9}
\end{equation*}
$$

Our first result is
Theorem 1. Let K be a compact set in a domain $\Omega \subset \mathbb{R}^{n}$, $n \geq 2$, with cap $K=0$ (here cap means Newtonian capacity). Let u be a smooth function in $\Omega \backslash K$ satisfying (2) in $\Omega \backslash K$. Assume the conditions (4)-(9). Then u is smooth in Ω.

Note that no a priori assumptions are made about the behavior of u near K. For example, the equations

$$
\begin{equation*}
-\Delta u+u|\nabla u|^{2}=f(x) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
-\Delta u+\frac{u}{\left(1+u^{2}\right)^{1 / 2}}|\nabla u|^{2}+c(x) u=f(x)+\gamma u^{2}, \quad \gamma \in \mathbb{R}, \tag{11}
\end{equation*}
$$

with $f(x)$ and $c(x)$ smooth, fit our framework.
There is a more general form of Theorem 1, which however we derive from it, where, instead of (6), we assume, for all $x \in \Omega$ and $p \in \mathbb{R}^{n}$,

$$
(\operatorname{sgn} u) g(x, u, p) \geq|u|^{a}\left(\alpha|p|^{2}-k(|u|)^{2}\right) \quad \text { for }|u| \geq M,
$$

with $\alpha>0, M>0$ and $a>-1$. Here k is a C^{1} function on $[M, \infty)$ satisfying

$$
\begin{gather*}
s^{a} k(s) \geq \varepsilon_{0}>0 \quad \forall s \geq M, \\
\int_{M}^{\infty} \frac{d s}{k(s)}=\infty
\end{gather*}
$$

and

$$
\limsup _{s \rightarrow \infty} \frac{k^{\prime}(s)}{s^{a} k(s)}<\frac{\alpha}{2 C_{0}}
$$

Corollary 1. Let K and u be as in Theorem 1. Assume (4), (5), (6'), $\left(7^{\prime}\right),\left(8^{\prime}\right)$ and $\left(9^{\prime}\right)$. Then u is smooth in Ω.

Remark 1. Condition (8) on h (or (8^{\prime}) on k) is rather sharp; see the examples in Section 5 and Theorem 2. For any $\varepsilon>0$, if we take $h(s)=s^{1+\varepsilon}$ or even $s \log ^{1+\varepsilon} s$ the conclusion need not hold.

Remark 2. A closed set K of measure zero with positive capacity need not be a removable set. If K is a smooth hypersurface it need not be removable; for example, if $K=\partial B_{1 / 2}(0)$, the function $u=0$ for $|x|<1 / 2, u=1$ for $|x|>1 / 2$ satisfies (10) with $f=0$ in $B_{1} \backslash K$.

Corollary 2, which corresponds to $a=-1$ in Corollary 1, is different-this is a borderline case. The conditions we impose on g, in addition to (5), are

$$
\begin{equation*}
(\operatorname{sgn} u) g(x, u, p) \geq \frac{1}{|u|}\left(\alpha|p|^{2}-k(|u|)^{2}\right) \quad \text { for }|u| \geq M \tag{12}
\end{equation*}
$$

with $M>0$,

$$
\begin{gather*}
\alpha>C_{0} \tag{13}\\
\frac{k(s)}{s} \geq \varepsilon_{0}>0 \quad \forall s \geq M \tag{14}\\
\int_{M}^{\infty} \frac{d s}{k(s)}=\infty \tag{15}
\end{gather*}
$$

and

$$
\begin{equation*}
\limsup _{s \rightarrow \infty} \frac{s k^{\prime}(s)}{k(s)}-1<\frac{\alpha-C_{0}}{2 C_{0}} \tag{16}
\end{equation*}
$$

Corollary 2. Let K be a compact set in a domain $\Omega \subset \mathbb{R}^{n}$, $n \geq 2$, with cap $K=0$. Let u be a smooth function in $\Omega \backslash K$ satisfying (2) in $\Omega \backslash K$. Assume the conditions (4), (5) and (12)-(16). Then u is smooth in Ω.

For example, the equation

$$
\begin{equation*}
-\Delta u+\alpha \frac{u}{1+u^{2}}|\nabla u|^{2}+c(x) u=f(x)+\gamma u \log ^{2}\left(1+u^{2}\right) \tag{17}
\end{equation*}
$$

with $f(x)$ and $c(x)$ smooth, $\alpha>1$ and $\gamma \in \mathbb{R}$ satisfies the conditions of Corollary 2.

Remark 3. When $a=-1$ the additional condition (13), $\alpha>C_{0}$, is needed; see the counterexample in Section 5 with $\alpha=C_{0}$. When (6^{\prime}) holds with $a<-1$, even with large α, removable singularity fails; see Section 5 .

For linear elliptic operators L, there are classical results stating that if u is a solution of $L u=0$ in the punctured ball $B(0) \backslash\{0\}$ then u is a solution in the entire ball provided $|u|$ satisfies a suitable growth condition near the origin. J. Serrin [Se1], [Se2] has proved similar results for a class of nonlinear equations; see the book of L. Véron [Ve2] and also the recent work for degenerate elliptic equations by L. Capogna, D. Danielli and N. Garofalo [C-D-G]. For some very special nonlinear elliptic operators, however, the same conclusion holds without any restriction near the origin. The first such example was given by L. Bers [B]; he proved that if u satisfies the minimal surface equation in a punctured disc in \mathbb{R}^{2} then it may be extended as a smooth solution to the whole disc. E. De Giorgi and G. Stampacchia [D-S] have generalized this result to higher dimensions and J. Serrin [Se3] has similar results for more general equations. Since then, a similar result was established for the equation

$$
\Delta u-|u|^{p-1} u=0 \quad \text { for } p \geq n /(n-2)
$$

in $B \backslash\{0\}$, when $n \geq 3$ (see H . Brezis and L. Véron [B-V]); the case $p=$ $(n+2) /(n-2)$ is treated by C. Loewner and L. Nirenberg [L-N]. Study of removable sets has also been made in L. Véron [Ve1] and P. Baras and M. Pierre [B-P].

In proving Theorem 1 we rely on some of the deep regularity results for $H^{1} \cap L^{\infty}$ distribution solutions of equations like (1), due to O. A. Ladyzhenskaya and N. N. Ural'tseva [L-A] (see also M. Giaquinta [G]). In particular, according to Theorem 1.2^{1} in Chapter 7 of [G], any $L^{\infty} \cap H^{1}$ weak solution of (1) in Ω belongs to $C_{\text {loc }}^{1, \alpha}$ for some α in $(0,1)$. Standard elliptic regularity theory then yields that u is smooth in Ω - even analytic if $a_{i l}$ and g are analytic.

To prove Theorem 1, we need thus only establish the following facts under the conditions of Theorem 1 :

[^1]Property 1. $u \in L_{\mathrm{loc}}^{\infty}(\Omega)$.
Property 2. $u \in H_{\mathrm{loc}}^{1}(\Omega)$.
Property 3. u is a weak (distribution) solution of (2) in all of Ω.
As we shall see in Section 4, Properties 2 and 3 follow easily from Property 1. The main ingredient for the proof of Property 1 is the following basic lemma in which

$$
L=\frac{\partial}{\partial x_{i}}\left(\alpha_{i l}(x) \frac{\partial}{\partial x_{l}}\right)
$$

is an operator with bounded measurable coefficients $\alpha_{i l}(x)$ which is elliptic (possibly degenerate):

$$
\begin{equation*}
0 \leq \alpha_{i l}(x) \xi_{i} \xi_{l} \leq C_{0}|\xi|^{2}, \quad C_{0}>0, \quad \forall \xi \in \mathbb{R}^{n} \tag{18}
\end{equation*}
$$

Lemma 1. Let K be a compact set in a domain $\Omega \subset \mathbb{R}^{n}$, $n \geq 2$, with cap $K=0$. Let v be a $C_{\text {loc }}^{0,1}$ function in $\Omega \backslash K, v \geq M>0$, satisfying (in the weak sense)

$$
\begin{equation*}
-L v+\alpha|\nabla v|^{2} \leq h(v)^{2} \quad \text { in } \Omega \backslash K \tag{19}
\end{equation*}
$$

where $\alpha>0$ and h is a C^{1} function on $[M, \infty)$ such that (7)-(9) hold. Then $v \in L_{\mathrm{loc}}^{\infty}(\Omega) \cap H_{\mathrm{loc}}^{1}(\Omega)$.

Lemma 1 is proved in Section 3.

2. Proofs of Corollaries 1 and 2 using Theorem 1

Proof of Corollary 1. Let $\varrho(t)$ be a smooth function on \mathbb{R} with $\varrho(0)=0$, $\varrho^{\prime}>0$, satisfying

$$
\varrho(t)=(\operatorname{sgn} t) \frac{|t|^{1+a}}{1+a} \quad \text { for }|t| \geq M^{\prime}>M
$$

with M^{\prime} to be chosen. Set

$$
\begin{equation*}
z=\varrho(u), \quad \text { so } \quad \nabla z=\varrho^{\prime}(u) \nabla u \tag{20}
\end{equation*}
$$

Now

$$
\begin{align*}
L z & =\varrho^{\prime}(u) L u+\varrho^{\prime \prime}(u) a_{i l}(x, u) u_{x_{i}} u_{x_{l}} \tag{21}\\
& =\varrho^{\prime}(u) g+\frac{\varrho^{\prime \prime}(u)}{\left(\varrho^{\prime}(u)\right)^{2}} a_{i l}(x, u) z_{x_{i}} z_{x_{l}}=: \widetilde{g}(x, z, \nabla z)
\end{align*}
$$

with \widetilde{g} smooth. Clearly \widetilde{g} satisfies (5), with different constants A_{m}, while for $|z| \geq\left(M^{\prime}\right)^{1+a} /(1+a)$ we have

$$
(\operatorname{sgn} z) \widetilde{g}(x, z, p) \geq \alpha|p|^{2}-|u|^{2 a} k(|u|)^{2}-\frac{|a| C_{0}|p|^{2}}{\left(M^{\prime}\right)^{1+a}} .
$$

Let α^{\prime} be less than α and such that (9^{\prime}) holds with α^{\prime} in place of α. Now fix $M^{\prime}>M$ so that

$$
\frac{|a| C_{0}}{\left(M^{\prime}\right)^{1+a}} \leq \alpha-\alpha^{\prime}
$$

Then

$$
(\operatorname{sgn} z) \widetilde{g}(x, z, p) \geq \alpha^{\prime}|p|^{2}-h(|z|)^{2}
$$

where

$$
h(s)=t^{a} k(t) \quad \text { with } s=\frac{t^{a+1}}{a+1}
$$

We have to check that h satisfies (7)-(9) with α^{\prime} in place of α. By $\left(7^{\prime}\right), k(s) \geq \varepsilon_{0}$ for $s \geq\left(M^{\prime}\right)^{1+a} /(1+a)$. From ($\left.8^{\prime}\right)$,

$$
\int^{\infty} \frac{d s}{h(s)}=\int^{\infty} \frac{t^{a} d t}{t^{a} k(t)}=\infty
$$

Moreover, for $s \geq\left(M^{\prime}\right)^{1+a} /(1+a)$,

$$
h^{\prime}(s)=\frac{d h}{d s}=\frac{d h}{d t} \cdot \frac{d t}{d s}=\left(a t^{a-1} k(t)+t^{a} k^{\prime}(t)\right) t^{-a}=a \frac{k(t)}{t}+k^{\prime}(t)
$$

Since $1+a>0$ we find

$$
\limsup _{s \rightarrow \infty} \frac{h^{\prime}(s)}{h(s)}=\limsup _{t \rightarrow \infty} \frac{k^{\prime}(t)}{t^{a} k(t)}<\frac{\alpha^{\prime}}{2 C_{0}}
$$

It follows that \widetilde{g} satisfies conditions (5) and (6) and h satisfies (7)-(9) with α^{\prime} in place of α.

Applying Theorem 1 we see that z is smooth in Ω; consequently, so is u.
Proof of Corollary 2. We may assume $M>1$. The proof is similar to the preceding. Let ϱ be a smooth function on \mathbb{R} with $\varrho(0)=0, \varrho^{\prime}>0$, satisfying

$$
\varrho(t)=(\operatorname{sgn} t) \log |t| \quad \text { for }|t| \geq M
$$

Set $z=\varrho(u)$, so $\nabla z=\varrho^{\prime}(u) \nabla u$.
As above, (21) holds, with this ϱ, and \widetilde{g} satisfies (5), with different constants A_{m}. For $|z| \geq \log M$ we have

$$
(\operatorname{sgn} z) \widetilde{g}(x, z, p) \geq \frac{1}{|u|^{2}}\left(\alpha|p|^{2}|u|^{2}-k(|u|)^{2}\right)-C_{0}|p|^{2}=\left(\alpha-C_{0}\right)|p|^{2}-\frac{k(|u|)^{2}}{u^{2}}
$$

Setting $\alpha-C_{0}=\widetilde{\alpha}>0$, and

$$
h(s)=k(t) / t \quad \text { with } s=\log t
$$

we see that

$$
(\operatorname{sgn} z) \widetilde{g}(x, z, p) \geq \widetilde{\alpha}|p|^{2}-h(|z|)^{2}
$$

Now

$$
\int^{\infty} \frac{d s}{h(s)}=\int^{\infty} \frac{d t}{k(t)}=\infty
$$

while

$$
\frac{h^{\prime}(s)}{h(s)}=\frac{t}{k(t)}\left(\frac{k^{\prime}(t)}{t}-\frac{k(t)}{t^{2}}\right) t
$$

since $d t / d s=t$. Thus

$$
\frac{h^{\prime}(s)}{h(s)}=\frac{t k^{\prime}(t)}{k(t)}-1
$$

By (16) we find

$$
\limsup _{s \rightarrow \infty} \frac{h^{\prime}(s)}{h(s)}=\limsup _{t \rightarrow \infty} \frac{t k^{\prime}(t)}{k(t)}-1<\frac{\alpha-C_{0}}{2 C_{0}}=\frac{\widetilde{\alpha}}{2 C_{0}}
$$

So \widetilde{g} satisfies the conditions of Theorem 1 with $\widetilde{\alpha}$ in place of α. By the theorem, z is smooth in Ω, and hence so is u.

3. Proof of Lemma 1

Since cap $K=0$, there is a sequence $\zeta_{j} \in C_{0}^{\infty}(\Omega), 0 \leq \zeta_{j} \leq 1$, such that each $\zeta_{j} \equiv 1$ near K, with

$$
\begin{equation*}
\int\left|\nabla \zeta_{j}\right|^{2} \rightarrow 0 \quad \text { as } j \rightarrow \infty \tag{22}
\end{equation*}
$$

(see [D-S] and [Se1]). Thus $\left\|\zeta_{j}\right\|_{L^{2}} \rightarrow 0$ as $j \rightarrow \infty$. Set $\eta_{j}=1-\zeta_{j}$. By restricting Ω we may always assume that $v \in C^{0,1}$ near and up to $\partial \Omega$. Set

$$
\begin{equation*}
\sigma(s)=\int_{M}^{s} \frac{d t}{h(t)} \quad \text { for } s \geq M \tag{23}
\end{equation*}
$$

For any $\varepsilon>0$ let χ_{ε} be a smooth nondecreasing function on $\mathbb{R}, 0 \leq \chi_{\varepsilon} \leq 1$ with $\chi_{\varepsilon}(s)=0$ for $s \leq 0, \chi_{\varepsilon}(s)=1$ for $s \geq \varepsilon$.

For $t \geq t_{0}=\max _{\partial \Omega} v$, multiply (19) by $\eta_{j}^{2} \chi_{\varepsilon}(v-t) / h(v)^{2}$ and integrate. Using Green's theorem we find that

$$
\alpha J=\alpha \int \eta_{j}^{2} \chi_{\varepsilon}(v-t)|\nabla \sigma(v)|^{2} \leq \int \eta_{j}^{2} \chi_{\varepsilon}(v-t)-\int \alpha_{i l} v_{x_{l}}\left[\eta_{j}^{2} \frac{\chi_{\varepsilon}(v-t)}{h(v)^{2}}\right]_{x_{i}}
$$

Setting

$$
\mu(t)=\operatorname{meas}\{x \in \Omega \backslash K: v(x)>t\}
$$

we see that, since $\chi_{\varepsilon}^{\prime} \geq 0$,

$$
\begin{aligned}
\alpha J \leq & \mu(t)+2 C_{0} \int \eta_{j}\left|\nabla \eta_{j}\right| \frac{\chi_{\varepsilon}(v-t)}{h(v)^{2}}|\nabla v| \\
& +2 C_{0} \int \eta_{j}^{2}|\nabla v|^{2} \frac{\chi_{\varepsilon}(v-t)}{h(v)^{2}} \cdot \frac{h^{\prime}(v)^{+}}{h(v)} .
\end{aligned}
$$

In view of (9) we may choose t_{1} so large that

$$
2 C_{0} \frac{h^{\prime}(s)}{h(s)} \leq \alpha^{\prime}<\alpha \quad \text { for } s \geq t_{1}
$$

We take $t \geq t_{1}$. Then the last integral above may be absorbed in αJ and we find, using (7),

$$
\left(\alpha-\alpha^{\prime}\right) J \leq \mu(t)+\frac{\alpha-\alpha^{\prime}}{2} \int \eta_{j}^{2} \chi_{\varepsilon}(v-t) \frac{|\nabla v|^{2}}{h(v)^{2}}+C \int\left|\nabla \eta_{j}\right|^{2}
$$

with C independent of j and ε. Thus

$$
\frac{1}{2}\left(\alpha-\alpha^{\prime}\right) J \leq \mu(t)+C \int\left|\nabla \zeta_{j}\right|^{2}
$$

Using (22) let $j \rightarrow \infty$; we obtain

$$
\begin{aligned}
\int_{\Omega \backslash K} \chi_{\varepsilon}(v-t)|\nabla \sigma(v)|^{2} & \leq C \mu(t) \\
& =C \text { meas }\{x \in \Omega \backslash K: \sigma(v(x))>\sigma(t)\}=C \nu(\sigma(t))
\end{aligned}
$$

where

$$
\nu(s)=\text { meas }\{x \in \Omega \backslash K: \sigma(v(x))>s\} .
$$

Setting $\sigma(t)=s$ we find, on letting $\varepsilon \rightarrow 0$, that

$$
\begin{equation*}
\int_{\Omega \backslash K, \sigma(v)>s}|\nabla \sigma(v)|^{2} \leq C \nu(s) \tag{24}
\end{equation*}
$$

This is true for $s \geq s_{1}=\sigma\left(t_{1}\right)$, and we rewrite it as

$$
\begin{equation*}
\int_{\Omega \backslash K}\left|\nabla(\sigma(v)-s)^{+}\right|^{2} \leq C \nu(s) \quad \text { for } s \geq s_{1} \tag{25}
\end{equation*}
$$

We pause for a moment to present a simple lemma which will be used several times.

Lemma 2. Let u be a function in $H_{\mathrm{loc}}^{1}(\Omega \backslash K)$, cap $K=0$, with

$$
\begin{equation*}
\int_{\Omega \backslash K}|\nabla u|^{2}<\infty \tag{26}
\end{equation*}
$$

Then $u \in H_{\text {loc }}^{1}(\Omega)$.
The lemma seems funny but it requires a proof; if $n=1$ and K is a point the conclusion is wrong!

Proof of Lemma 2. Let G be open with $K \subset G$ and $\bar{G} \subset \Omega$. Let $\psi \in$ $C_{0}^{\infty}(\Omega), 0 \leq \psi \leq 1$, with $\psi \equiv 1$ near G. Let

$$
\tau_{j}=\psi\left(1-\zeta_{j}\right), \quad \zeta_{j} \text { as above }
$$

For $k>0$ we consider the truncation

$$
u_{k}= \begin{cases}k & \text { where } u>k \\ u & \text { where }-k \leq u \leq k \\ -k & \text { where } u<-k\end{cases}
$$

The function $\tau_{j} u_{k}$ belongs to $H_{0}^{1}(\Omega)$ and

$$
\left\|\nabla\left(\tau_{j} u_{k}\right)\right\|_{L^{2}(\Omega)} \leq\left\|\tau_{j} \nabla u_{k}\right\|_{L^{2}(\Omega)}+\left\|u_{k} \nabla \psi\right\|_{L^{2}(\Omega)}+\left\|u_{k} \nabla \zeta_{j}\right\|_{L^{2}(\Omega)}
$$

But

$$
\left\|\tau_{j} \nabla u_{k}\right\|_{L^{2}(\Omega)}^{2} \leq \int_{\Omega \backslash K}|\nabla u|^{2}<\infty \quad \text { by }(26)
$$

and $\left\|u_{k} \nabla \psi\right\|_{L^{2}(\Omega)} \leq\|u \nabla \psi\|_{L^{2}(\Omega)}<\infty$ since $u \in H_{\text {loc }}^{1}(\Omega \backslash K)$ and $\operatorname{supp}|\nabla \psi| \subset$ $\Omega \backslash K$. Therefore

$$
\left\|\nabla\left(\tau_{j} u_{k}\right)\right\|_{L^{2}(\Omega)} \leq C+k\left\|\nabla \zeta_{j}\right\|_{L^{2}(\Omega)}
$$

where C is independent of j and k. For fixed k, let $j \rightarrow \infty$. We infer that $\psi u_{k} \in H_{0}^{1}(\Omega)$ and $\left\|\nabla\left(\psi u_{k}\right)\right\|_{L^{2}(\Omega)} \leq C$ independent of k. Letting $k \rightarrow \infty$ we conclude that $\psi u \in H_{0}^{1}(\Omega)$ and in particular $u \in H^{1}(G)$.

We now return to the proof of Lemma 1. In view of Lemma $2,(\sigma(v)-s)^{+} \in$ $H_{0}^{1}(\Omega)$ for $s \geq s_{1}$. Next we rely on a result which is implicitly contained in P. Hartman and G. Stampacchia [H-S]:

Lemma 3. Let $\varrho \in H^{1}(\Omega),|\varrho| \leq C_{1}$ on $\partial \Omega$, satisfying

$$
\begin{equation*}
\int_{|\varrho|>s}|\nabla \varrho|^{2} \leq C \nu^{a}(s) \quad \text { for all } s \geq s_{1} \geq C_{1} \tag{27}
\end{equation*}
$$

where

$$
\nu(s)=\operatorname{meas}\{x \in \Omega:|\varrho(x)|>s\} \quad \text { and } \quad a>\frac{n-2}{n} .
$$

Then $\varrho \in L^{\infty}(\Omega)$.
Proof. Replacing ϱ by $|\varrho|$ we may always assume that $\varrho \geq 0$. Using Hölder's and Sobolev inequalities we find, for all $s>C_{1}$,

$$
\left\|(\varrho-s)^{+}\right\|_{L^{1}} \leq S\left\|\nabla(\varrho-s)^{+}\right\|_{L^{2}} \nu(s)^{(n+2) /(2 n)}
$$

where S depends only on n. Combining this with (27) yields, for $s \geq s_{1}$,

$$
\int_{s}^{\infty} \nu(\sigma) d \sigma=\left\|(\varrho-s)^{+}\right\|_{L^{1}} \leq C \nu(s)^{p}
$$

with $p=(n+2) /(2 n)+a / 2>1$.
The function $f(s)=\int_{s}^{\infty} \nu(\sigma) d \sigma$ satisfies

$$
f^{\prime}(s) \leq-C f(s)^{1 / p} \quad \text { for } s \geq s_{1}
$$

Integrating this differential inequality we see that $f(s)=0$ for s sufficiently large.

Completion of Proof of Lemma 1. Since

$$
\int_{\Omega, \sigma(v)>s}|\nabla \sigma(v)|^{2} \leq C \nu(s)
$$

we find by Lemma 3 (with $a=1$) that $\sigma(v)$ is bounded. Now we use the assumption (21), which implies that $\sigma(s) \nearrow \infty$ as $s \rightarrow \infty$. Consequently, v is bounded.

Finally, we prove that $v \in H_{\mathrm{loc}}^{1}(\Omega)$. With τ_{j} as in the proof of Lemma 2, multiply (19) by τ_{j}^{2} and integrate. We find, since v is bounded,

$$
\delta \int \tau_{j}^{2}|\nabla v|^{2} \leq C+2 C_{0} \int \tau_{j}\left|\nabla \tau_{j}\right| \cdot|\nabla v|
$$

from which it follows as before that $\int \tau_{j}^{2}|\nabla v|^{2} \leq C$ independent of j. Letting $j \rightarrow \infty$ and applying Lemma 2 once more, in a smaller set, we find that $v \in$ $H_{\mathrm{loc}}^{1}(\Omega)$.

4. Proof of Theorem 1

Recall that to prove the theorem we need only establish
Property 1. $u \in L_{\mathrm{loc}}^{\infty}(\Omega)$.
Property 2. $u \in H_{\mathrm{loc}}^{1}(\Omega)$.
Property 3. u is a weak (distribution) solution of (2) in all of Ω.
We set

$$
\begin{equation*}
\alpha_{i l}(x)=a_{i l}(x, u(x)) . \tag{28}
\end{equation*}
$$

Then $\alpha_{i l}(x)$ are smooth in $\Omega \backslash K$, bounded measurable on Ω and satisfy the uniform ellipticity condition: for some $c_{0}, C_{0}>0$,

$$
c_{0}|\xi|^{2} \leq \alpha_{i l}(x) \xi_{i} \xi_{l} \leq C_{0}|\xi|^{2} \quad \forall x \in \Omega, \forall \xi \in \mathbb{R}^{n}
$$

Let

$$
L=\frac{\partial}{\partial x_{i}}\left(\alpha_{i l}(x) \frac{\partial}{\partial x_{l}}\right) .
$$

Then for $v(x)=f(u(x))$, where f is a C^{2} function,

$$
\begin{equation*}
L v=f^{\prime}(u) L u+f^{\prime \prime}(u) \alpha_{i l} u_{x_{i}} u_{x_{l}}=f^{\prime}(u) g+f^{\prime \prime}(u) \alpha_{i l} u_{x_{i}} u_{x_{l}} . \tag{29}
\end{equation*}
$$

Thus, if f is C^{2} and convex then $L f(u) \geq f^{\prime}(u) L u$. By approximation we find Kato's inequality $[\mathrm{K}]$

$$
\begin{equation*}
L w^{+} \geq\left(\operatorname{sign}^{+} w\right) L w, \quad \text { in the sense of distributions, } \tag{30}
\end{equation*}
$$

for any smooth function w.
Proof of Theorem 1. We divide the proof in 3 steps.
Proof of Property 1. Set

$$
v=M+(u-M)^{+} .
$$

We will prove that v satisfies the conditions of Lemma 1. This will imply that $v \in L_{\mathrm{loc}}^{\infty}(\Omega)$ and therefore $u^{+} \in L_{\mathrm{loc}}^{\infty}(\Omega) ;$ similarly $u^{-} \in L_{\mathrm{loc}}^{\infty}(\Omega)$.

Using (30) we see that, in the weak sense in $\Omega \backslash K$,

$$
L v \geq \operatorname{sign}^{+}(u-M) L u=\operatorname{sign}^{+}(u-M) g=: H
$$

On the set where $u>M$ we have $v=u$ and, by (6),

$$
H=g \geq \alpha|\nabla u|^{2}-h(u)^{2} .
$$

Therefore

$$
\begin{equation*}
H \geq \alpha|\nabla v|^{2}-h(v)^{2} \tag{31}
\end{equation*}
$$

While on the set where $u \leq M$ we have $H=0, v=M$ and $\nabla v=0$ a.e. (see e.g. [St] or [G-T]), so that (31) also holds there.

Hence we find that, in the weak sense, $L v \geq \alpha|\nabla v|^{2}-h(v)^{2}$ in $\Omega \backslash K$. By Lemma $1, v \in L_{\mathrm{loc}}^{\infty}(\Omega)$ and thus $u^{+} \in L_{\mathrm{loc}}^{\infty}(\Omega)$.

Proof of Property 2. Let τ_{j} be as in the proof of Lemma 2. With λ to be chosen, multiply equation (2) by $\sinh (\lambda u) \tau_{j}^{2}$ and integrate. Using Green's theorem we find

$$
\begin{aligned}
\lambda c_{0} \int \cosh (\lambda u)|\nabla u|^{2} \tau_{j}^{2} \leq & A^{\prime} \int\left(1+|\nabla u|^{2}\right)|\sinh \lambda u| \tau_{j}^{2} \\
& +2 C_{0} \int|\sinh \lambda u| \cdot|\nabla u| \tau_{j}\left|\nabla \tau_{j}\right|
\end{aligned}
$$

where $A^{\prime}=A_{m}$ is taken from assumption (5) with $m=\|u\|_{L^{\infty}(\operatorname{supp} \psi)}$. If we choose $\lambda>\left(A^{\prime}+C_{0}\right) / c_{0}$ we obtain

$$
\int|\nabla u|^{2} \tau_{j}^{2} \leq C
$$

with C independent of j. Passing to the limit as $j \rightarrow \infty$ we conclude that $\int_{\Omega \backslash K}|\nabla u|^{2} \psi^{2}<\infty$. Applying Lemma 2 once more we conclude that $u \in H_{\mathrm{loc}}^{1}(\Omega)$.

Proof of Property 3. We have to show that, for any function $\varphi \in$ $C_{0}^{\infty}(\Omega)$,

$$
\begin{equation*}
\int a_{i l} \frac{\partial u}{\partial x_{l}} \cdot \frac{\partial \varphi}{\partial x_{i}}+\int g \varphi=0 \tag{32}
\end{equation*}
$$

As before, we multiply the equation (2) by $\varphi\left(1-\zeta_{j}\right)$ and integrate. We find

$$
\int\left[a_{i l} \frac{\partial u}{\partial x_{l}} \cdot \frac{\partial \varphi}{\partial x_{i}}+g \varphi\right]\left(1-\zeta_{j}\right)=\int \varphi a_{i l} \frac{\partial u}{\partial x_{l}} \cdot \frac{\partial \zeta_{j}}{\partial x_{i}} \rightarrow 0
$$

Letting $j \rightarrow \infty$, the left hand side tends to the left hand side of (32).

5. Examples, counterexamples and connection with the strong maximum principle

As we have already mentioned in Remarks 1 and 3 the assumptions in the theorem and corollaries are rather sharp. We present simple examples where some of the assumptions fail and point singularities are not removable if $n \geq 2$.

Example 1. For any $\varepsilon>0$, the function $u(x)=r^{-1 / \varepsilon}, r=|x|$, satisfies

$$
-\Delta u+|\nabla u|^{2}=\frac{1}{\varepsilon^{2}} u^{2+2 \varepsilon}-C u^{1+2 \varepsilon} \quad \text { in } B \backslash\{0\}
$$

where

$$
B=\left\{x \in \mathbb{R}^{n}:|x|<1\right\} \quad \text { and } \quad C=\frac{1}{\varepsilon}\left(\frac{1}{\varepsilon}+2-n\right)
$$

Here, (6) holds with $h(s) \simeq \frac{1}{\varepsilon} s^{1+\varepsilon}$ as $s \rightarrow \infty$ and thus $\int^{\infty} d s / h(s)<\infty$.
Example 2. For any $\varepsilon>0$ the function $u(x)=e^{r^{-1 / \varepsilon}}$ satisfies

$$
-\Delta u+|\nabla u|^{2}=h(u)^{2} \quad \text { in } B \backslash\{0\}
$$

with $h(s) \simeq \frac{1}{\varepsilon} s \log ^{1+\varepsilon} s$ as $s \rightarrow \infty$ and thus $\int^{\infty} d s / h(s)<\infty$.
Example 3. For any positive constant C let

$$
G(x)= \begin{cases}C /|x|^{n-2} & \text { if } n \geq 3 \\ -C \log |x| & \text { if } n=2\end{cases}
$$

The function $u(x)=e^{G(x)}$ satisfies

$$
-\Delta u+\frac{1}{u}|\nabla u|^{2}=0 \quad \text { in } B \backslash\{0\} .
$$

Here, condition (12) holds with $\alpha=C_{0}=1$ and thus assumption (13) is not satisfied.

Example 4. Given any $\varepsilon>0$ and $\alpha>0$ there is a smooth positive function u on $B \backslash\{0\}$ satisfying

$$
\begin{equation*}
-\Delta u+\frac{\alpha}{u^{1+\varepsilon}}|\nabla u|^{2}=0 \quad \text { in } B \backslash\{0\} \tag{33}
\end{equation*}
$$

and

$$
\lim _{x \rightarrow 0} u(x)=\infty
$$

To construct u consider a function of the form $u(x)=\Phi(G(x))$ where G is as in Example 3 and $\Phi: \mathbb{R} \rightarrow(0, \infty)$ is a smooth function such that

$$
\begin{equation*}
\Phi^{\prime \prime}(t)=\frac{\alpha\left[\Phi^{\prime}(t)\right]^{2}}{\Phi(t)^{1+\varepsilon}} \quad \forall t \in \mathbb{R} \tag{34}
\end{equation*}
$$

and

$$
\lim _{t \rightarrow \infty} \Phi(t)=\infty .
$$

Clearly, u satisfies (33) whenever (34) holds. The differential equation (34) has a simple solution. Namely, set

$$
H(x)=\int_{1}^{s} e^{(\alpha / \varepsilon) \sigma^{-\varepsilon}} d \sigma, \quad s \in(0, \infty)
$$

Note that H is increasing on $(0, \infty)$ and

$$
\lim _{s \rightarrow 0} H(s)=-\infty, \quad \lim _{s \rightarrow \infty} H(s)=\infty
$$

Thus the inverse function $\Phi=H^{-1}: \mathbb{R} \rightarrow(0, \infty)$ is well defined and we have

$$
H^{\prime}(\Phi(t)) \Phi^{\prime}(t)=1 \quad \forall t \in \mathbb{R}
$$

so that

$$
\Phi^{\prime}(t)=e^{-(\alpha / \varepsilon) \Phi(t)^{-\varepsilon}}
$$

and then (34) holds by differentiating this relation.
Connection with the strong maximum principle. Consider a smooth positive function u in $\Omega \backslash K(\operatorname{cap} K=0)$ satisfying

$$
\begin{equation*}
-\Delta u+|\nabla u|^{2}=f(x) \quad \text { in } \Omega \backslash K \tag{35}
\end{equation*}
$$

where $f(x)$ is smooth in Ω. By Theorem 1 we know that u is smooth in Ω. We present a different proof of this fact. It relies on removable singularities for bounded solutions of linear elliptic equations and uses also the strong maximum principle.

Set

$$
\begin{equation*}
v=e^{-u} \tag{36}
\end{equation*}
$$

Then v is smooth in $\Omega \backslash K, 0<v<1$ in $\Omega \backslash K$ and it satisfies, in $\Omega \backslash K$,

$$
\begin{equation*}
-\Delta v+f(x) v=0 \tag{37}
\end{equation*}
$$

Multiplying (37) by $v \tau_{j}^{2}$ (τ_{j} has been defined in the proof of Lemma 2) we find easily that $v \in H_{\mathrm{loc}}^{1}(\Omega)$. As in the proof of Property 3 we see that equation (37) holds in the weak sense in all of Ω. Standard regularity theory implies that v is smooth in Ω. The strong maximum principle yields that $v>0$ in Ω (we cannot have $v \equiv 0$ in Ω since $v>0$ in $\Omega \backslash K$). Thus $u=-\log v$ is also smooth in Ω.

Instead of (35) consider now the more general equation

$$
\begin{equation*}
-\Delta u+|\nabla u|^{2}+c(x) u=f(x) \quad \text { in } \Omega \backslash K \tag{38}
\end{equation*}
$$

where u is positive and smooth in $\Omega \backslash K, c(x)$ and $f(x)$ are smooth in Ω. Theorem 1 applies and so u is smooth in Ω. If we try the same method as above we see that $v=e^{-u}$ satisfies the nonlinear equation in $\Omega \backslash K$

$$
\begin{equation*}
-\Delta v+f(x) v=-c(x) v \log v \tag{39}
\end{equation*}
$$

As above we find easily that $v \in H_{\mathrm{loc}}^{1}(\Omega)$ and that (39) holds in the weak sense in all of Ω (note that $t \log t$ remains bounded as $t \rightarrow 0$). Standard regularity theory implies that $v \in C^{2, \alpha}(\Omega)$ for all $\alpha<1$. However, we cannot invoke the classical strong maximum principle since the function $t \mapsto t \log t$ is not Lipschitz near $t=0$. But the form due to J. L. Vázquez [Va] applies, since

$$
\int_{0}^{1 / 2} \frac{d s}{s|\log s|^{1 / 2}}=\infty
$$

Therefore $v>0$ in Ω and $u=\log v$ belongs to $C^{2, \alpha}(\Omega)$ for all $\alpha<1$. Going back to (38) we conclude that u is smooth in Ω.

Similarly, if we start with a positive smooth solution u of

$$
-\Delta u+|\nabla u|^{2}=h(u)^{2} \quad \text { in } \Omega \backslash K
$$

the change of unknown $v=e^{-u}$ yields

$$
-\Delta v+v[h(-\log v)]^{2}=0 \quad \text { in } \Omega \backslash K
$$

which we write as

$$
-\Delta v+\beta(v)=0 \quad \text { with } \quad \beta(t)=t[h(-\log t)]^{2}
$$

We assume that β is continuous nondecreasing near $0, \beta(0)=0$ and 2

$$
\int_{0}^{1 / 2} \frac{d s}{(s \beta(s))^{1 / 2}}=\infty
$$

We may then invoke [Va] to conclude as above that $v \in C^{1, \alpha}(\Omega)$ for all $\alpha<1$ and $v>0$ in Ω. In terms of h the conditions on β mean that

$$
\frac{h^{\prime}(s)}{h(s)} \leq \frac{1}{2} \quad \text { for } s \geq s_{1} \quad \text { and } \quad \int^{\infty} \frac{d s}{h(s)}=\infty
$$

these are essentially the assumptions of Theorem 1.
Finally, we point out that assumption (8) plays an essential role in Theorem 1. More precisely, let h be any C^{1} function on $[M, \infty]$ satisfying

$$
\begin{gather*}
h(s) \geq \varepsilon_{0}>0 \quad \forall s \geq M \tag{40}\\
\frac{h^{\prime}(s)}{h(s)} \leq \delta_{0}<\frac{1}{2} \quad \forall s \geq M \tag{41}\\
\int_{M}^{\infty} \frac{d s}{h(s)}<\infty \tag{42}
\end{gather*}
$$

for some positive constants M, ε_{0} and δ_{0}.

[^2]Theorem 2. Under the assumptions (40)-(42) there exists $R>0$ and a C^{2} radial function u on $B_{R} \backslash\{0\}$ such that

$$
\begin{gather*}
u \geq M \quad \text { in } B_{R} \backslash\{0\} \tag{43}\\
-\Delta u+|\nabla u|^{2}=h(u)^{2} \quad \text { in } B_{R} \backslash\{0\} \tag{44}\\
\lim _{x \rightarrow 0} u(x)=\infty \tag{45}
\end{gather*}
$$

As above we will seek u of the form $u=-\log v ; v$ would satisfy $\Delta v=\beta(v)$ with

$$
\beta(t)=t[h(-\log t)]^{2} \quad \text { for } 0<t \leq t_{0}=e^{-M} .
$$

From (41) we see that β is increasing on $\left(0, t_{0}\right]$ and $\beta(t) \leq C t^{1-2 \delta_{0}}$, so that $\lim _{t \rightarrow 0} \beta(t)=0$. It is convenient to extend β by $\beta\left(t_{0}\right)$ for $t>t_{0}$ and by 0 for $t \leq 0$.

We shall construct a radial function $v \in C^{1, \alpha}\left(\bar{B}_{1}\right)$, for all $\alpha \in(0,1)$, satisfying

$$
\begin{align*}
-\Delta v+\beta(v)=0 & \text { in } B_{1} \tag{46}\\
v>0 & \text { in } B_{1} \backslash\{0\}, \tag{47}\\
v(0)=0 & \tag{48}
\end{align*}
$$

By restricting v to B_{R} with R sufficiently small we have $v<t_{0}$ on B_{R} and then $u=-\log v$ satisfies (43)-(45).

Remark 4. The existence of such a function v is an example of the "failure" of the strong maximum principle when β is not Lipschitz. It is closely related to the results of J. L. Vázquez [Va], except that he constructs a solution $v \geq 0$ of (46) in an annulus $\left\{r_{1}<|x|<r_{2}\right\}$ with $v(x)>0$ when $|x|$ is near r_{1} and $v(x)=0$ when $|x|$ is near r_{2}.

It is easy to see that given any positive constant c there is a unique (radial) solution $v=v_{c}$ of (46) with

$$
\begin{equation*}
v=c \quad \text { on } \partial B_{1} . \tag{49}
\end{equation*}
$$

The maximum principle implies that $v \geq 0$ in $B_{1}, v(r)$ is nondecreasing on $[0,1]$ and furthermore

$$
\begin{equation*}
0 \leq v_{c_{1}}-v_{c_{2}} \leq c_{1}-c_{2} \quad \text { if } c_{2} \leq c_{1} \tag{50}
\end{equation*}
$$

In fact, if w and w^{\prime} are sub- and supersolutions, i.e.,

$$
\Delta w^{\prime}-\beta\left(w^{\prime}\right) \leq 0 \leq \Delta w-\beta(w)
$$

and if $w \leq w^{\prime}$ on ∂B_{1}, then

$$
w \leq w^{\prime} \quad \text { in } B_{1}
$$

To see this, suppose $\omega:=w-w^{\prime}$ is positive somewhere. Let D be a component of the region where it is positive. Since β is nondecreasing, $\Delta \omega \geq 0$ in D, while $\omega \leq 0$ on ∂D. By the maximum principle, $\omega \leq 0$ in D; contradiction.

Our goal is to prove that for some $c>0, v_{c}$ vanishes only at the origin. We need some lemmas.

Lemma 4. There is a constant $c_{1}>0$ such that

$$
v_{c}(0)>0 \quad \forall c \geq c_{1} .
$$

Proof. The function $w(x)=a|x|^{2}+b, a>0, b>0$, is a subsolution for (46) provided

$$
\beta(a+b) \leq 2 n a
$$

and this holds, for example, when $a \geq \frac{1}{2 n} \beta\left(t_{0}\right)$. If $c \geq a+b$ we have

$$
v_{c}(0) \geq w(0)=b>0
$$

Our next lemma is a special case of a result of I. Diaz (see Theorems 1.5 and 1.9 in [Di]). For the convenience of the reader we present the proof.

Lemma 5. There is a constant $c_{2}>0$ such that

$$
v_{c}(0)=0 \quad \forall c \leq c_{2} .
$$

Proof. It suffices to construct a radial supersolution z for (46) such that $z(0)=0$ and $z(1)>0$. Following an idea of [B-B-C], we set

$$
\varphi(s)=\int_{0}^{s} \beta(\sigma) d \sigma, \quad s \geq 0
$$

and

$$
\gamma(t)=\int_{0}^{t} \frac{d s}{(2 \varphi(s))^{1 / 2}}, \quad t \geq 0
$$

Note that, by (42),

$$
\int_{0}^{t_{0}} \frac{d s}{(s \beta(s))^{1 / 2}}<\infty
$$

and, since

$$
\begin{equation*}
\frac{s}{2} \beta\left(\frac{s}{2}\right) \leq \varphi(s) \leq s \beta(s) \tag{51}
\end{equation*}
$$

we see that $\gamma(t)<\infty$. The function $t \mapsto \gamma(t)$ is increasing and $\lim _{t \rightarrow \infty} \gamma(t)=\infty$, since $\beta(t)=\beta\left(t_{0}\right)$ for $t \geq t_{0}$. Therefore the inverse function $h=\gamma^{-1}$ is well defined. We have $\gamma(h(r))=r$ for all $r>0$ and differentiation yields

$$
\begin{align*}
h^{\prime}(r) & =(2 \varphi(h(r)))^{1 / 2}, \tag{52}\\
h^{\prime \prime}(r) & =\beta(h(r)) . \tag{53}
\end{align*}
$$

In view of the fact that β is nondecreasing, we find that h^{\prime} is convex and thus

$$
\begin{equation*}
h^{\prime}(r) / r \leq h^{\prime \prime}(r)=\beta(h(t)) \tag{54}
\end{equation*}
$$

It is easy to see, with the help of (53) and (54), that

$$
\begin{equation*}
z(r)=h\left(r / n^{1 / 2}\right) \tag{55}
\end{equation*}
$$

is a desired supersolution, i.e., $-\Delta z+\beta(z) \geq 0$.
Proof of Theorem 2. Let $P=\left\{c>0: v_{c}(0)>0\right\}$. Applying (50), Lemmas 4 and 5 we find that P is an open interval of the form $P=\left(c^{\star}, \infty\right)$ with $c^{\star}>0$.

Claim. $v^{\star}=v_{c^{\star}}$ has the required properties.
Since $v^{\star}(0)=0$, it suffices to check that

$$
v^{\star}(r)>0 \quad \forall r \in(0,1] .
$$

We argue by contradiction and assume that, for some $0<r_{0}<1$,

$$
v^{\star}(r)=0 \quad \forall r \in\left[0, r_{0}\right] .
$$

With the help of v^{\star} we shall now construct a radial supersolution y of (46) such that

$$
\begin{align*}
& y(0)=0 \tag{56}\\
& y(1)>v^{\star}(1)=c^{\star} \tag{57}
\end{align*}
$$

This will imply that $v_{c} \leq y$ for all $c \leq y(1)$. In particular, $v_{c}(0) \leq y(0)=0$ for all $c \leq y(1)$ and thus $c^{\star} \geq y(1)$-a contradiction with (57).

We first construct a radial solution w of

$$
-\Delta w+\beta(w)=0 \quad \text { in } B_{r_{0}}
$$

with $w(0)=0$ and $w\left(r_{0}\right)>0$. This is possible by Lemma 5 (applied in $B_{r_{0}}$ instead of B_{1}). Extend the function w to B_{1} by choosing

$$
\widetilde{w}(r)= \begin{cases}w(r) & \text { for } 0<r \leq r_{0} \\ w\left(r_{0}\right) & \text { for } r>r_{0}\end{cases}
$$

Note that, in the weak sense on $B_{1}, \Delta \widetilde{w} \leq H$ where

$$
H= \begin{cases}\beta(w)=\beta(\widetilde{w}) & \text { for } 0<r \leq r_{0} \\ 0 & \text { for } r>r_{0}\end{cases}
$$

The function $y=v^{\star}+\widetilde{w}$ has the desired properties since

$$
-\Delta y+\beta(y) \geq-\beta\left(v^{\star}\right)-H+\beta\left(v^{\star}+\widetilde{w}\right) \geq 0
$$

Acknowledgments. We thank V. Maz'ya for useful discussions concerning the connection with removable singularities in linear elliptic equation (see Section 5). The second author was partly supported by grant ARO-DAAL-03-92-G-0143 and NSF grant DMS-9400912. He wishes also to express his thanks to the Forschungsinstitut ETH for its hospitality.

References

[B-P] P. Baras et M. Pierre, Singularités éliminables pour des équations semi-linéaires, Ann. Inst. Fourier (Grenoble) 34 (1984), no. 1, 185-206.
[B-B-C] P. Bénilan, H. Brezis and M. G. Crandall, A semilinear equation in $L^{1}\left(\mathbb{R}^{N}\right)$, Ann. Scuola Norm. Sup. Pisa (4) 2 (1975), 523-555.
[B-B-M] A. Bensoussan, L. Boccardo and F. Murat, On a nonlinear partial differential equation having natural growth terms and unbounded solution, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 347-364.
[B] L. Bers, Isolated singularities of minimal surfaces, Ann. of Math. (2) 53 (1951), 364-386.
[B-G] L. Boccardo and T. Gallouët, Strongly nonlinear elliptic equations having natural growth terms and L^{1} data, Nonlinear Anal. 19 (1992), 573-579.
[B-G-M] L. Boccardo, T. Gallouët and F. Murat, A unified presentation of two existence results for problems with natural growth, Progress in Partial Differential Equations: the Metz Surveys 2 (M. Chipot, ed.), Longman, 1993, pp. 127-137.
[B-M-P] L. Boccardo, F. Murat et J. P. Puel, Existence de solutions non bornées pour certaines équations quasi-linéaires, Portugal. Math. 41 (1982), 507-534.
[B-V] H. Brezis and L. VÉron, Removable singularities for some nonlinear elliptic equations, Arch. Rational Mech. Anal. 75 (1980), 1-6.
[C-D-G] L. Capogna, D. Danielli and N. Garofalo, Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations, Amer. J. Math. 118 (1996), 1153-1196.
[D-S] E. De Giorgi and G. Stampacchia, Sulle singolarità eliminabile delle ipersuperficie minimali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 38 (1965), 352-357.
[De] T. Del Vecchio, Strongly nonlinear problems with Hamiltonian having natural growth, Houston J. Math. 16 (1990), 7-24.
[Di] J. I. Diaz, Nonlinear Partial Differential Equations and Free Boundaries, vol. I, Pitman, 1985.
[G] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Ann. of Math. Stud., vol. 105, Princeton Univ. Press, 1983.
[G-T] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1977.
[H-S] P. Hartman and G. Stampacchia, On some nonlinear elliptic differential-functional equations, Acta Math. 115 (1966), 271-310.
[K] T. Kato, Schrödinger operators with singular potentials, Israel J. Math. 13 (1972), 135-148.
[L-U] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Nauka, Moscow, 1964; Academic Press, New York, 1968; 2nd Russian ed., Nauka, 1973.
[L] R. Landes, Solvability of perturbed elliptic equations with critical growth exponent for the gradient, J. Math. Anal. Appl. 139 (1989), 63-77.
[L-N] C. Loewner and L. Nirenberg, Partial differential equations invariant under conformal or projective transformations, Contributions to Analysis, Academic Press, 1974, pp. 245-272.
[Se1] J. Serrin, Local behavior of solutions of quasilinear equations, Acta Math. 111 (1964), 247-302.
[Se2] , Isolated singularities of solutions of quasilinear equations, Acta Math. 113 (1965), 219-240.
[Se3] , Removable singularities of solutions for elliptic equations II, Arch. Rational Mech. Anal. 20 (1965), 163-169.
[St] G. Stampacchia, Equations elliptiques du second ordre à coefficients discontinus, Les Presses de l'Univ. de Montréal, 1966.
[Va] J. L. VÁzquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202.
[Ve1] L. VÉron, Singularités éliminables d'équations elliptiques non linéaires, J. Differential Equations 41 (1981), 87-95.
[Ve2] \qquad , Singularities of Solutions of Second Order Quasilinear Equations, Longman, 1996.

Manuscript received January 14, 1997

Haïm Brezis
Analyse Numérique
Université P. et M. Curie
4 pl. Jussieu
75252 Paris Cedex 05, FRANCE
and
Mathematics Department
Rutgers University
Hill Center, Busch Campus
New Brunswick, NJ 08903, USA
E-mail address: brezis@ann.jussieu.fr; brezis@math.rutgers.edu
Louis Nirenberg
Courant Institute
New York University
251 Mercer Street
New York, NY 10012, USA
E-mail address: nirenl@cims.nyu.edu

[^0]: 1991 Mathematics Subject Classification. Primary 35J.

[^1]: ${ }^{1}$ The condition there that the a_{α} are Hölder continuous in (x, u) uniformly in p is meant for the $\partial a_{\alpha} / \partial p_{\beta}$.

[^2]: ${ }^{2}$ This is an analogue for second order equations of the classical Osgood condition for uniqueness in first order ordinary differential equations.

