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1. Introduction

In their celebrated work on nonlinear elliptic equations of the form

(1) ∂xiai(x, u,∇u) = g(x, u,∇u),

O. A. Ladyzhenskaya and N. N. Ural’tseva [L-U] proved many basic results in-
cluding, in particular, regularity for solutions in L∞ ∩H1. In this paper, under
some conditions, we prove a removable singularity result for a subclass of (1),

(2)
∂

∂xi

(
ail(x, u)

∂u

∂xl

)
= g(x, u,∇u).

The interest in removable singularities arose because of recent work on the fol-
lowing type of problems in a domain Ω in Rn:

(3)
∆u− u|∇u|2 = f(x) in Ω,

u = 0 on ∂Ω.

The first results treated f in H−1(Ω), and established the existence of a solution
u in H1

0 (Ω) with u|∇u| in L2(Ω); see L. Boccardo, F. Murat and J. P. Puel
[B-M-P], A. Bensoussan, L. Boccardo and F. Murat [B-B-M], R. Landes [L],
T. Del Vecchio [De]—other references may be found in these papers.
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Subsequently, the case where f is in L1 was considered by L. Boccardo and
T. Gallouët [B-G]; they proved the existence of a solution u in H1

0 , with u|∇u|2

in L1. With F. Murat (see [B-G-M]) they then treated the case of f = f1 + f2,
with f1 in H−1 and f2 in L1—obtaining a solution in the same class (see also
the references therein).

A natural question is whether one might permit f to be a measure—for
example, a delta function. If n = 1, any measure is in H−1, so a solution
exists. In this paper we make the observation that if n ≥ 2, and f is a Dirac
delta function, then no solution exists. This is a consequence of our removable
singularity theorem for (2) in a domain Ω.

We now state our conditions.
We assume uniform ellipticity: for some constants c0, C0 > 0,

(4) c0|ξ|2 ≤ ail(x, u)ξiξl ≤ C0|ξ|2 ∀x ∈ Ω, ∀u ∈ R, ∀ξ ∈ Rn,

and that the ail(x, u) and g(x, u, p) are smooth. Concerning g we also assume
(5)–(9) below.

(5)

{
For every m ≥ 0, there exists Am such that for |u| ≤ m,

|g(x, u, p)| ≤ Am(1 + |p|2) ∀x ∈ Ω, ∀p ∈ Rn.

There exist positive numbers α,M such that for all x ∈ Ω and p ∈ Rn,

(6) (sgnu)g(x, u, p) ≥ α|p|2 − h(|u|)2 for |u| ≥M .

Here h is a C1 function on [M,∞) satisfying:

h(s) ≥ ε0 > 0 ∀s ≥M,(7) ∫ ∞

M

ds

h(s)
= ∞(8)

and

(9) lim sup
s→∞

h′(s)
h(s)

<
α

2C0
.

Our first result is

Theorem 1. Let K be a compact set in a domain Ω ⊂ Rn, n ≥ 2, with
capK = 0 (here cap means Newtonian capacity). Let u be a smooth function in
Ω \K satisfying (2) in Ω \K. Assume the conditions (4)–(9). Then u is smooth
in Ω.

Note that no a priori assumptions are made about the behavior of u near K.
For example, the equations

(10) −∆u+ u|∇u|2 = f(x)
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and

(11) −∆u+
u

(1 + u2)1/2
|∇u|2 + c(x)u = f(x) + γu2, γ ∈ R,

with f(x) and c(x) smooth, fit our framework.
There is a more general form of Theorem 1, which however we derive from

it, where, instead of (6), we assume, for all x ∈ Ω and p ∈ Rn,

(6′) (sgnu)g(x, u, p) ≥ |u|a(α|p|2 − k(|u|)2) for |u| ≥M,

with α > 0, M > 0 and a > −1. Here k is a C1 function on [M,∞) satisfying

sak(s) ≥ ε0 > 0 ∀s ≥M,(7′) ∫ ∞

M

ds

k(s)
= ∞(8′)

and

(9′) lim sup
s→∞

k′(s)
sak(s)

<
α

2C0
.

Corollary 1. Let K and u be as in Theorem 1. Assume (4), (5), (6′),
(7′), (8′) and (9′). Then u is smooth in Ω.

Remark 1. Condition (8) on h (or (8′) on k) is rather sharp; see the exam-
ples in Section 5 and Theorem 2. For any ε > 0, if we take h(s) = s1+ε or even
s log1+ε s the conclusion need not hold.

Remark 2. A closed set K of measure zero with positive capacity need not
be a removable set. If K is a smooth hypersurface it need not be removable; for
example, if K = ∂B1/2(0), the function u = 0 for |x| < 1/2, u = 1 for |x| > 1/2
satisfies (10) with f = 0 in B1 \K.

Corollary 2, which corresponds to a = −1 in Corollary 1, is different—this is
a borderline case. The conditions we impose on g, in addition to (5), are

(12) (sgnu)g(x, u, p) ≥ 1
|u|

(α|p|2 − k(|u|)2) for |u| ≥M

with M > 0,

α > C0,(13)
k(s)
s

≥ ε0 > 0 ∀s ≥M,(14) ∫ ∞

M

ds

k(s)
= ∞(15)

and

(16) lim sup
s→∞

sk′(s)
k(s)

− 1 <
α− C0

2C0
.
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Corollary 2. Let K be a compact set in a domain Ω ⊂ Rn, n ≥ 2, with
capK = 0. Let u be a smooth function in Ω\K satisfying (2) in Ω\K. Assume
the conditions (4), (5) and (12)–(16). Then u is smooth in Ω.

For example, the equation

(17) −∆u+ α
u

1 + u2
|∇u|2 + c(x)u = f(x) + γu log2(1 + u2)

with f(x) and c(x) smooth, α > 1 and γ ∈ R satisfies the conditions of Corol-
lary 2.

Remark 3. When a = −1 the additional condition (13), α > C0, is needed;
see the counterexample in Section 5 with α = C0. When (6′) holds with a < −1,
even with large α, removable singularity fails; see Section 5.

For linear elliptic operators L, there are classical results stating that if u is
a solution of Lu = 0 in the punctured ball B(0) \ {0} then u is a solution in
the entire ball provided |u| satisfies a suitable growth condition near the origin.
J. Serrin [Se1], [Se2] has proved similar results for a class of nonlinear equations;
see the book of L. Véron [Ve2] and also the recent work for degenerate elliptic
equations by L. Capogna, D. Danielli and N. Garofalo [C-D-G]. For some very
special nonlinear elliptic operators, however, the same conclusion holds without
any restriction near the origin. The first such example was given by L. Bers [B];
he proved that if u satisfies the minimal surface equation in a punctured disc in
R2 then it may be extended as a smooth solution to the whole disc. E. De Giorgi
and G. Stampacchia [D-S] have generalized this result to higher dimensions and
J. Serrin [Se3] has similar results for more general equations. Since then, a
similar result was established for the equation

∆u− |u|p−1u = 0 for p ≥ n/(n− 2)

in B \ {0}, when n ≥ 3 (see H. Brezis and L. Véron [B-V]); the case p =
(n+2)/(n−2) is treated by C. Loewner and L. Nirenberg [L-N]. Study of remov-
able sets has also been made in L. Véron [Ve1] and P. Baras and M. Pierre [B-P].

In proving Theorem 1 we rely on some of the deep regularity results for
H1∩L∞ distribution solutions of equations like (1), due to O. A. Ladyzhenskaya
and N. N. Ural’tseva [L-A] (see also M. Giaquinta [G]). In particular, according
to Theorem 1.21 in Chapter 7 of [G], any L∞ ∩ H1 weak solution of (1) in Ω
belongs to C1,α

loc for some α in (0, 1). Standard elliptic regularity theory then
yields that u is smooth in Ω—even analytic if ail and g are analytic.

To prove Theorem 1, we need thus only establish the following facts under
the conditions of Theorem 1:

1The condition there that the aα are Hölder continuous in (x, u) uniformly in p is meant

for the ∂aα/∂pβ .
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Property 1. u ∈ L∞loc(Ω).

Property 2. u ∈ H1
loc(Ω).

Property 3. u is a weak (distribution) solution of (2) in all of Ω.

As we shall see in Section 4, Properties 2 and 3 follow easily from Property 1.
The main ingredient for the proof of Property 1 is the following basic lemma in
which

L =
∂

∂xi

(
αil(x)

∂

∂xl

)
is an operator with bounded measurable coefficients αil(x) which is elliptic (pos-
sibly degenerate):

(18) 0 ≤ αil(x)ξiξl ≤ C0|ξ|2, C0 > 0, ∀ξ ∈ Rn.

Lemma 1. Let K be a compact set in a domain Ω ⊂ Rn, n ≥ 2, with
capK = 0. Let v be a C0,1

loc function in Ω \ K, v ≥ M > 0, satisfying (in the
weak sense)

(19) −Lv + α|∇v|2 ≤ h(v)2 in Ω \K,

where α > 0 and h is a C1 function on [M,∞) such that (7)–(9) hold. Then
v ∈ L∞loc(Ω) ∩H1

loc(Ω).

Lemma 1 is proved in Section 3.

2. Proofs of Corollaries 1 and 2 using Theorem 1

Proof of Corollary 1. Let %(t) be a smooth function on R with %(0) = 0,
%′ > 0, satisfying

%(t) = (sgn t)
|t|1+a

1 + a
for |t| ≥M ′ > M,

with M ′ to be chosen. Set

(20) z = %(u), so ∇z = %′(u)∇u.

Now

Lz = %′(u)Lu+ %′′(u)ail(x, u)uxiuxl
(21)

= %′(u)g +
%′′(u)

(%′(u))2
ail(x, u)zxi

zxl
=: g̃(x, z,∇z),

with g̃ smooth. Clearly g̃ satisfies (5), with different constants Am, while for
|z| ≥ (M ′)1+a/(1 + a) we have

(sgn z)g̃(x, z, p) ≥ α|p|2 − |u|2ak(|u|)2 − |a|C0|p|2

(M ′)1+a
.
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Let α′ be less than α and such that (9′) holds with α′ in place of α. Now fix
M ′ > M so that

|a|C0

(M ′)1+a
≤ α− α′.

Then
(sgn z)g̃(x, z, p) ≥ α′|p|2 − h(|z|)2

where

h(s) = tak(t) with s =
ta+1

a+ 1
.

We have to check that h satisfies (7)–(9) with α′ in place of α. By (7′), k(s) ≥ ε0
for s ≥ (M ′)1+a/(1 + a). From (8′),∫ ∞ ds

h(s)
=

∫ ∞ tadt

tak(t)
= ∞.

Moreover, for s ≥ (M ′)1+a/(1 + a),

h′(s) =
dh

ds
=
dh

dt
· dt
ds

= (ata−1k(t) + tak′(t))t−a = a
k(t)
t

+ k′(t).

Since 1 + a > 0 we find

lim sup
s→∞

h′(s)
h(s)

= lim sup
t→∞

k′(t)
tak(t)

<
α′

2C0
.

It follows that g̃ satisfies conditions (5) and (6) and h satisfies (7)–(9) with α′

in place of α.
Applying Theorem 1 we see that z is smooth in Ω; consequently, so is u. �

Proof of Corollary 2. We may assume M > 1. The proof is similar to
the preceding. Let % be a smooth function on R with %(0) = 0, %′ > 0, satisfying

%(t) = (sgn t) log |t| for |t| ≥M.

Set z = %(u), so ∇z = %′(u)∇u.
As above, (21) holds, with this %, and g̃ satisfies (5), with different constants

Am. For |z| ≥ logM we have

(sgn z)g̃(x, z, p) ≥ 1
|u|2

(α|p|2|u|2 − k(|u|)2)− C0|p|2 = (α− C0)|p|2 −
k(|u|)2

u2
.

Setting α− C0 = α̃ > 0, and

h(s) = k(t)/t with s = log t,

we see that
(sgn z)g̃(x, z, p) ≥ α̃|p|2 − h(|z|)2.

Now ∫ ∞ ds

h(s)
=

∫ ∞ dt

k(t)
= ∞,
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while
h′(s)
h(s)

=
t

k(t)

(
k′(t)
t

− k(t)
t2

)
t

since dt/ds = t. Thus
h′(s)
h(s)

=
tk′(t)
k(t)

− 1.

By (16) we find

lim sup
s→∞

h′(s)
h(s)

= lim sup
t→∞

tk′(t)
k(t)

− 1 <
α− C0

2C0
=

α̃

2C0
.

So g̃ satisfies the conditions of Theorem 1 with α̃ in place of α. By the theorem,
z is smooth in Ω, and hence so is u. �

3. Proof of Lemma 1

Since capK = 0, there is a sequence ζj ∈ C∞0 (Ω), 0 ≤ ζj ≤ 1, such that each
ζj ≡ 1 near K, with

(22)
∫
|∇ζj |2 → 0 as j →∞

(see [D-S] and [Se1]). Thus ‖ζj‖L2 → 0 as j →∞. Set ηj = 1−ζj . By restricting
Ω we may always assume that v ∈ C0,1 near and up to ∂Ω. Set

(23) σ(s) =
∫ s

M

dt

h(t)
for s ≥M.

For any ε > 0 let χε be a smooth nondecreasing function on R, 0 ≤ χε ≤ 1 with
χε(s) = 0 for s ≤ 0, χε(s) = 1 for s ≥ ε.

For t ≥ t0 = max∂Ω v, multiply (19) by η2
jχε(v − t)/h(v)2 and integrate.

Using Green’s theorem we find that

αJ = α

∫
η2
jχε(v − t)|∇σ(v)|2 ≤

∫
η2
jχε(v − t)−

∫
αilvxl

[
η2
j

χε(v − t)
h(v)2

]
xi

.

Setting
µ(t) = meas{x ∈ Ω \K : v(x) > t},

we see that, since χ′ε ≥ 0,

αJ ≤ µ(t) + 2C0

∫
ηj |∇ηj |

χε(v − t)
h(v)2

|∇v|

+ 2C0

∫
η2
j |∇v|2

χε(v − t)
h(v)2

· h
′(v)+

h(v)
.

In view of (9) we may choose t1 so large that

2C0
h′(s)
h(s)

≤ α′ < α for s ≥ t1.
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We take t ≥ t1. Then the last integral above may be absorbed in αJ and we
find, using (7),

(α− α′)J ≤ µ(t) +
α− α′

2

∫
η2
jχε(v − t)

|∇v|2

h(v)2
+ C

∫
|∇ηj |2

with C independent of j and ε. Thus

1
2
(α− α′)J ≤ µ(t) + C

∫
|∇ζj |2.

Using (22) let j →∞; we obtain∫
Ω\K

χε(v − t)|∇σ(v)|2 ≤ Cµ(t)

= C meas{x ∈ Ω \K : σ(v(x)) > σ(t)} = Cν(σ(t))

where
ν(s) = meas {x ∈ Ω \K : σ(v(x)) > s}.

Setting σ(t) = s we find, on letting ε→ 0, that

(24)
∫

Ω\K,σ(v)>s

|∇σ(v)|2 ≤ Cν(s).

This is true for s ≥ s1 = σ(t1), and we rewrite it as

(25)
∫

Ω\K
|∇(σ(v)− s)+|2 ≤ Cν(s) for s ≥ s1.

We pause for a moment to present a simple lemma which will be used several
times.

Lemma 2. Let u be a function in H1
loc(Ω \K), capK = 0, with

(26)
∫

Ω\K
|∇u|2 <∞.

Then u ∈ H1
loc(Ω).

The lemma seems funny but it requires a proof; if n = 1 and K is a point
the conclusion is wrong!

Proof of Lemma 2. Let G be open with K ⊂ G and G ⊂ Ω. Let ψ ∈
C∞0 (Ω), 0 ≤ ψ ≤ 1, with ψ ≡ 1 near G. Let

τj = ψ(1− ζj), ζj as above.

For k > 0 we consider the truncation

uk =


k where u > k,

u where −k ≤ u ≤ k,

−k where u < −k.
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The function τjuk belongs to H1
0 (Ω) and

‖∇(τjuk)‖L2(Ω) ≤ ‖τj∇uk‖L2(Ω) + ‖uk∇ψ‖L2(Ω) + ‖uk∇ζj‖L2(Ω).

But

‖τj∇uk‖2L2(Ω) ≤
∫

Ω\K
|∇u|2 <∞ by (26)

and ‖uk∇ψ‖L2(Ω) ≤ ‖u∇ψ‖L2(Ω) < ∞ since u ∈ H1
loc(Ω \K) and supp |∇ψ| ⊂

Ω \K. Therefore
‖∇(τjuk)‖L2(Ω) ≤ C + k‖∇ζj‖L2(Ω)

where C is independent of j and k. For fixed k, let j → ∞. We infer that
ψuk ∈ H1

0 (Ω) and ‖∇(ψuk)‖L2(Ω) ≤ C independent of k. Letting k → ∞ we
conclude that ψu ∈ H1

0 (Ω) and in particular u ∈ H1(G). �

We now return to the proof of Lemma 1. In view of Lemma 2, (σ(v)− s)+ ∈
H1

0 (Ω) for s ≥ s1. Next we rely on a result which is implicitly contained in
P. Hartman and G. Stampacchia [H-S]:

Lemma 3. Let % ∈ H1(Ω), |%| ≤ C1 on ∂Ω, satisfying

(27)
∫
|%|>s

|∇%|2 ≤ Cνa(s) for all s ≥ s1 ≥ C1.

where
ν(s) = meas{x ∈ Ω : |%(x)| > s} and a >

n− 2
n

.

Then % ∈ L∞(Ω).

Proof. Replacing % by |%| we may always assume that % ≥ 0. Using Hölder’s
and Sobolev inequalities we find, for all s > C1,

‖(%− s)+‖L1 ≤ S‖∇(%− s)+‖L2ν(s)(n+2)/(2n),

where S depends only on n. Combining this with (27) yields, for s ≥ s1,∫ ∞

s

ν(σ) dσ = ‖(%− s)+‖L1 ≤ Cν(s)p

with p = (n+ 2)/(2n) + a/2 > 1.
The function f(s) =

∫∞
s
ν(σ) dσ satisfies

f ′(s) ≤ −Cf(s)1/p for s ≥ s1.

Integrating this differential inequality we see that f(s) = 0 for s sufficiently
large. �

Completion of Proof of Lemma 1. Since∫
Ω, σ(v)>s

|∇σ(v)|2 ≤ Cν(s)
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we find by Lemma 3 (with a = 1) that σ(v) is bounded. Now we use the
assumption (21), which implies that σ(s) ↗ ∞ as s → ∞. Consequently, v is
bounded.

Finally, we prove that v ∈ H1
loc(Ω). With τj as in the proof of Lemma 2,

multiply (19) by τ2
j and integrate. We find, since v is bounded,

δ

∫
τ2
j |∇v|2 ≤ C + 2C0

∫
τj |∇τj | · |∇v|,

from which it follows as before that
∫
τ2
j |∇v|2 ≤ C independent of j. Letting

j → ∞ and applying Lemma 2 once more, in a smaller set, we find that v ∈
H1

loc(Ω). �

4. Proof of Theorem 1

Recall that to prove the theorem we need only establish

Property 1. u ∈ L∞loc(Ω).

Property 2. u ∈ H1
loc(Ω).

Property 3. u is a weak (distribution) solution of (2) in all of Ω.

We set

(28) αil(x) = ail(x, u(x)).

Then αil(x) are smooth in Ω \ K, bounded measurable on Ω and satisfy the
uniform ellipticity condition: for some c0, C0 > 0,

c0|ξ|2 ≤ αil(x)ξiξl ≤ C0|ξ|2 ∀x ∈ Ω, ∀ξ ∈ Rn.

Let

L =
∂

∂xi

(
αil(x)

∂

∂xl

)
.

Then for v(x) = f(u(x)), where f is a C2 function,

(29) Lv = f ′(u)Lu+ f ′′(u)αiluxi
uxl

= f ′(u)g + f ′′(u)αiluxi
uxl

.

Thus, if f is C2 and convex then Lf(u) ≥ f ′(u)Lu. By approximation we find
Kato’s inequality [K]

(30) Lw+ ≥ (sign+w)Lw, in the sense of distributions,

for any smooth function w.

Proof of Theorem 1. We divide the proof in 3 steps.

Proof of Property 1. Set

v = M + (u−M)+.
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We will prove that v satisfies the conditions of Lemma 1. This will imply that
v ∈ L∞loc(Ω) and therefore u+ ∈ L∞loc(Ω); similarly u− ∈ L∞loc(Ω).

Using (30) we see that, in the weak sense in Ω \K,

Lv ≥ sign+(u−M)Lu = sign+(u−M)g =: H.

On the set where u > M we have v = u and, by (6),

H = g ≥ α|∇u|2 − h(u)2.

Therefore

(31) H ≥ α|∇v|2 − h(v)2.

While on the set where u ≤M we have H = 0, v = M and ∇v = 0 a.e. (see e.g.
[St] or [G-T]), so that (31) also holds there.

Hence we find that, in the weak sense, Lv ≥ α|∇v|2 − h(v)2 in Ω \K. By
Lemma 1, v ∈ L∞loc(Ω) and thus u+ ∈ L∞loc(Ω). �

Proof of Property 2. Let τj be as in the proof of Lemma 2. With λ

to be chosen, multiply equation (2) by sinh(λu)τ2
j and integrate. Using Green’s

theorem we find

λc0

∫
cosh(λu)|∇u|2τ2

j ≤ A′
∫

(1 + |∇u|2)|sinhλu|τ2
j

+ 2C0

∫
|sinhλu| · |∇u|τj |∇τj |

where A′ = Am is taken from assumption (5) with m = ‖u‖L∞(suppψ). If we
choose λ > (A′ + C0)/c0 we obtain∫

|∇u|2τ2
j ≤ C

with C independent of j. Passing to the limit as j → ∞ we conclude that∫
Ω\K |∇u|

2ψ2 <∞. Applying Lemma 2 once more we conclude that u ∈ H1
loc(Ω).

Proof of Property 3. We have to show that, for any function ϕ ∈
C∞0 (Ω),

(32)
∫
ail

∂u

∂xl
· ∂ϕ
∂xi

+
∫
gϕ = 0.

As before, we multiply the equation (2) by ϕ(1− ζj) and integrate. We find∫ [
ail

∂u

∂xl
· ∂ϕ
∂xi

+ gϕ

]
(1− ζj) =

∫
ϕail

∂u

∂xl
· ∂ζj
∂xi

→ 0.

Letting j →∞, the left hand side tends to the left hand side of (32). �
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5. Examples, counterexamples and connection with
the strong maximum principle

As we have already mentioned in Remarks 1 and 3 the assumptions in the
theorem and corollaries are rather sharp. We present simple examples where
some of the assumptions fail and point singularities are not removable if n ≥ 2.

Example 1. For any ε > 0, the function u(x) = r−1/ε, r = |x|, satisfies

−∆u+ |∇u|2 =
1
ε2
u2+2ε − Cu1+2ε in B \ {0}

where

B = {x ∈ Rn : |x| < 1} and C =
1
ε

(
1
ε

+ 2− n

)
.

Here, (6) holds with h(s) ' 1
εs

1+ε as s→∞ and thus
∫∞

ds/h(s) <∞.

Example 2. For any ε > 0 the function u(x) = er
−1/ε

satisfies

−∆u+ |∇u|2 = h(u)2 in B \ {0}

with h(s) ' 1
εs log1+ε s as s→∞ and thus

∫∞
ds/h(s) <∞.

Example 3. For any positive constant C let

G(x) =

{
C/|x|n−2 if n ≥ 3,

−C log |x| if n = 2.

The function u(x) = eG(x) satisfies

−∆u+
1
u
|∇u|2 = 0 in B \ {0}.

Here, condition (12) holds with α = C0 = 1 and thus assumption (13) is not
satisfied.

Example 4. Given any ε > 0 and α > 0 there is a smooth positive function
u on B \ {0} satisfying

(33) −∆u+
α

u1+ε
|∇u|2 = 0 in B \ {0}

and
lim
x→0

u(x) = ∞.

To construct u consider a function of the form u(x) = Φ(G(x)) where G is
as in Example 3 and Φ : R → (0,∞) is a smooth function such that

(34) Φ′′(t) =
α[Φ′(t)]2

Φ(t)1+ε
∀t ∈ R

and
lim
t→∞

Φ(t) = ∞.
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Clearly, u satisfies (33) whenever (34) holds. The differential equation (34)
has a simple solution. Namely, set

H(x) =
∫ s

1

e(α/ε)σ
−ε

dσ, s ∈ (0,∞).

Note that H is increasing on (0,∞) and

lim
s→0

H(s) = −∞, lim
s→∞

H(s) = ∞.

Thus the inverse function Φ = H−1 : R → (0,∞) is well defined and we have

H ′(Φ(t))Φ′(t) = 1 ∀t ∈ R,

so that
Φ′(t) = e−(α/ε)Φ(t)−ε

and then (34) holds by differentiating this relation.

Connection with the strong maximum principle. Consider a smooth
positive function u in Ω \K (capK = 0) satisfying

(35) −∆u+ |∇u|2 = f(x) in Ω \K,

where f(x) is smooth in Ω. By Theorem 1 we know that u is smooth in Ω.
We present a different proof of this fact. It relies on removable singularities for
bounded solutions of linear elliptic equations and uses also the strong maximum
principle.

Set

(36) v = e−u.

Then v is smooth in Ω \K, 0 < v < 1 in Ω \K and it satisfies, in Ω \K,

(37) −∆v + f(x)v = 0.

Multiplying (37) by vτ2
j (τj has been defined in the proof of Lemma 2) we find

easily that v ∈ H1
loc(Ω). As in the proof of Property 3 we see that equation (37)

holds in the weak sense in all of Ω. Standard regularity theory implies that v is
smooth in Ω. The strong maximum principle yields that v > 0 in Ω (we cannot
have v ≡ 0 in Ω since v > 0 in Ω \K). Thus u = − log v is also smooth in Ω.

Instead of (35) consider now the more general equation

(38) −∆u+ |∇u|2 + c(x)u = f(x) in Ω \K,

where u is positive and smooth in Ω \K, c(x) and f(x) are smooth in Ω. Theo-
rem 1 applies and so u is smooth in Ω. If we try the same method as above we
see that v = e−u satisfies the nonlinear equation in Ω \K

(39) −∆v + f(x)v = −c(x)v log v.
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As above we find easily that v ∈ H1
loc(Ω) and that (39) holds in the weak sense

in all of Ω (note that t log t remains bounded as t → 0). Standard regularity
theory implies that v ∈ C2,α(Ω) for all α < 1. However, we cannot invoke the
classical strong maximum principle since the function t 7→ t log t is not Lipschitz
near t = 0. But the form due to J. L. Vázquez [Va] applies, since∫ 1/2

0

ds

s|log s|1/2
= ∞.

Therefore v > 0 in Ω and u = log v belongs to C2,α(Ω) for all α < 1. Going back
to (38) we conclude that u is smooth in Ω.

Similarly, if we start with a positive smooth solution u of

−∆u+ |∇u|2 = h(u)2 in Ω \K

the change of unknown v = e−u yields

−∆v + v[h(− log v)]2 = 0 in Ω \K,

which we write as

−∆v + β(v) = 0 with β(t) = t[h(− log t)]2.

We assume that β is continuous nondecreasing near 0, β(0) = 0 and2∫ 1/2

0

ds

(sβ(s))1/2
= ∞.

We may then invoke [Va] to conclude as above that v ∈ C1,α(Ω) for all α < 1
and v > 0 in Ω. In terms of h the conditions on β mean that

h′(s)
h(s)

≤ 1
2

for s ≥ s1 and
∫ ∞ ds

h(s)
= ∞;

these are essentially the assumptions of Theorem 1.
Finally, we point out that assumption (8) plays an essential role in Theorem 1.

More precisely, let h be any C1 function on [M,∞] satisfying

h(s) ≥ ε0 > 0 ∀s ≥M,(40)
h′(s)
h(s)

≤ δ0 <
1
2

∀s ≥M,(41) ∫ ∞

M

ds

h(s)
<∞(42)

for some positive constants M , ε0 and δ0.

2This is an analogue for second order equations of the classical Osgood condition for

uniqueness in first order ordinary differential equations.
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Theorem 2. Under the assumptions (40)–(42) there exists R > 0 and a C2

radial function u on BR \ {0} such that

u ≥M in BR \ {0},(43)

−∆u+ |∇u|2 = h(u)2 in BR \ {0},(44)

lim
x→0

u(x) = ∞.(45)

As above we will seek u of the form u = − log v; v would satisfy ∆v = β(v)
with

β(t) = t[h(− log t)]2 for 0 < t ≤ t0 = e−M .

From (41) we see that β is increasing on (0, t0] and β(t) ≤ Ct1−2δ0 , so that
limt→0 β(t) = 0. It is convenient to extend β by β(t0) for t > t0 and by 0 for
t ≤ 0.

We shall construct a radial function v ∈ C1,α(B1), for all α ∈ (0, 1), satisfying

−∆v + β(v) = 0 in B1,(46)

v > 0 in B1 \ {0},(47)

v(0) = 0.(48)

By restricting v to BR with R sufficiently small we have v < t0 on BR and then
u = − log v satisfies (43)–(45).

Remark 4. The existence of such a function v is an example of the “failure”
of the strong maximum principle when β is not Lipschitz. It is closely related
to the results of J. L. Vázquez [Va], except that he constructs a solution v ≥ 0
of (46) in an annulus {r1 < |x| < r2} with v(x) > 0 when |x| is near r1 and
v(x) = 0 when |x| is near r2.

It is easy to see that given any positive constant c there is a unique (radial)
solution v = vc of (46) with

(49) v = c on ∂B1.

The maximum principle implies that v ≥ 0 in B1, v(r) is nondecreasing on [0, 1]
and furthermore

(50) 0 ≤ vc1 − vc2 ≤ c1 − c2 if c2 ≤ c1.

In fact, if w and w′ are sub- and supersolutions, i.e.,

∆w′ − β(w′) ≤ 0 ≤ ∆w − β(w),

and if w ≤ w′ on ∂B1, then

w ≤ w′ in B1.
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To see this, suppose ω := w − w′ is positive somewhere. Let D be a component
of the region where it is positive. Since β is nondecreasing, ∆ω ≥ 0 in D, while
ω ≤ 0 on ∂D. By the maximum principle, ω ≤ 0 in D; contradiction.

Our goal is to prove that for some c > 0, vc vanishes only at the origin. We
need some lemmas.

Lemma 4. There is a constant c1 > 0 such that

vc(0) > 0 ∀c ≥ c1.

Proof. The function w(x) = a|x|2 + b, a > 0, b > 0, is a subsolution for
(46) provided

β(a+ b) ≤ 2na

and this holds, for example, when a ≥ 1
2nβ(t0). If c ≥ a+ b we have

vc(0) ≥ w(0) = b > 0.

Our next lemma is a special case of a result of I. Diaz (see Theorems 1.5 and
1.9 in [Di]). For the convenience of the reader we present the proof.

Lemma 5. There is a constant c2 > 0 such that

vc(0) = 0 ∀c ≤ c2.

Proof. It suffices to construct a radial supersolution z for (46) such that
z(0) = 0 and z(1) > 0. Following an idea of [B-B-C], we set

ϕ(s) =
∫ s

0

β(σ) dσ, s ≥ 0,

and

γ(t) =
∫ t

0

ds

(2ϕ(s))1/2
, t ≥ 0.

Note that, by (42), ∫ t0

0

ds

(sβ(s))1/2
<∞

and, since

(51)
s

2
β

(
s

2

)
≤ ϕ(s) ≤ sβ(s),

we see that γ(t) < ∞. The function t 7→ γ(t) is increasing and lim
t→∞

γ(t) = ∞,

since β(t) = β(t0) for t ≥ t0. Therefore the inverse function h = γ−1 is well
defined. We have γ(h(r)) = r for all r > 0 and differentiation yields

h′(r) = (2ϕ(h(r)))1/2,(52)

h′′(r) = β(h(r)).(53)
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In view of the fact that β is nondecreasing, we find that h′ is convex and
thus

(54) h′(r)/r ≤ h′′(r) = β(h(t)).

It is easy to see, with the help of (53) and (54), that

(55) z(r) = h(r/n1/2)

is a desired supersolution, i.e., −∆z + β(z) ≥ 0.

Proof of Theorem 2. Let P = {c > 0 : vc(0) > 0}. Applying (50),
Lemmas 4 and 5 we find that P is an open interval of the form P = (c?,∞) with
c? > 0.

Claim. v? = vc? has the required properties.

Since v?(0) = 0, it suffices to check that

v?(r) > 0 ∀r ∈ (0, 1].

We argue by contradiction and assume that, for some 0 < r0 < 1,

v?(r) = 0 ∀r ∈ [0, r0].

With the help of v? we shall now construct a radial supersolution y of (46) such
that

y(0) = 0,(56)

y(1) > v?(1) = c?.(57)

This will imply that vc ≤ y for all c ≤ y(1). In particular, vc(0) ≤ y(0) = 0 for
all c ≤ y(1) and thus c? ≥ y(1)—a contradiction with (57).

We first construct a radial solution w of

−∆w + β(w) = 0 in Br0

with w(0) = 0 and w(r0) > 0. This is possible by Lemma 5 (applied in Br0
instead of B1). Extend the function w to B1 by choosing

w̃(r) =

{
w(r) for 0 < r ≤ r0,

w(r0) for r > r0.

Note that, in the weak sense on B1, ∆w̃ ≤ H where

H =

{
β(w) = β(w̃) for 0 < r ≤ r0,

0 for r > r0.

The function y = v? + w̃ has the desired properties since

−∆y + β(y) ≥ −β(v?)−H + β(v? + w̃) ≥ 0. �
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