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1. Introduction

In 1934, Leray and Schauder have published their fundamental paper Topolo-
gie et équations fonctionnelles [37], which is the founding father of algebraic
topology in infinite-dimensional spaces and a milestone in nonlinear functional
analysis and nonlinear differential equations. The style of this paper is still
amazingly modern and its influence in contemporary mathematics considerable.
This paper was among the thirty-seven most quoted mathematical papers for
the period 1950–1965 and its influence still increased in the early seventies, with
the development of bifurcation theory, global analysis and the use of topological
techniques in critical point theory. The reader can consult the references [53,
32, 40] to get a first idea of the tremendous bibliography related to the conse-
quences and extensions of [37], and the celebrated books of Ladyzhenskaya et al.
for striking applications to Navier–Stokes equations [33] and to nonlinear elliptic
[34] or parabolic partial differential equations [35].

The central topic of this paper is the study of continuation theorems for
proving the existence of a solution to some equations. LetX and Y be topological
spaces, A ⊂ X, and f : X → Y , g : X → Y two continuous mappings. The
fundamental idea of the continuation method to solve the equation

(1) f(x) = g(x)
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in A consists in embedding (1) in a one-parameter family of equations

(2) F (x, λ) = G(x, λ),

where the continuous functions F : X× [0, 1] → Y , G : X× [0, 1] → Y are chosen
in such a way that:

1. F (·, 1) = f, G(·, 1) = g.

2. The equation F (x, 0) = G(x, 0) has a nonempty set of solutions in A.

3. One of those solutions at least can be continued into a solution in A of
(2) for each λ ∈ [0, 1], giving in particular a solution of (1) in A when
λ = 1.

A situation in which Assertion 3 could be violated is when all solutions of
(2) leave A after some λ∗ ∈ ]0, 1[. This is the case for example for the family of
equations in a real variable

(1− λ)x+ λ(x2 + 1) = 0,

with A = [−1, 1] and λ∗ = 1/3. A way to avoid such a situation consists in
“closing the boundary”, i.e. in introducing the boundary condition:

F (x, λ) 6= G(x, λ) for each (x, λ) ∈ ∂A× [0, 1].

When the boundary condition is satisfied, Assertion 3 can still be violated, how-
ever, as shown by the family of equations in a real variable

x2 + 2λ− 1 = 0,

in which the two solutions when λ is small have disappeared after coalescing at
λ = 1/2. Such a situation can be eliminated by reinforcing Assumption 2 into

2′. Equation F (x, 0) = G(x, 0) has a “robust” nonempty set of solutions in A.

A precise way of expressing Assumption 2′ can be made, for some classes of
spacesX,Y and mappings F,G, through the introduction of an “algebraic” count
of the number of solutions of F (x, 0) = G(x, 0) in A. This is called the topological
degree or the fixed point index, and was already developed by Kronecker, Poincaré
and Brouwer for continuous mappings between oriented manifolds of the same
finite dimension. It was the merit of Leray and Schauder to extend this concept
to an important class of mappings defined in a (possibly infinite-dimensional)
Banach space.

2. The Leray–Schauder continuation theorem

Let X be a Banach space and I = [0, 1]. If A ⊂ X × I and λ ∈ I, we shall
write Aλ = {x ∈ X : (x, λ) ∈ A}. For a ∈ X and r > 0, B(a, r) will denote the
open ball of center a and radius r. Let Ω ⊂ X × I be a bounded open set with
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closure Ω and boundary ∂Ω, and let F : Ω → X be a mapping. We denote by Σ
the (possibly empty) set defined by

Σ = {(x, λ) ∈ Ω : x = F (x, λ)}.

The following assumptions were introduced by Leray and Schauder in [37].

(H0) F : Ω → X is completely continuous.

Recall that a completely continuous mapping is a continuous mapping which
takes bounded subsets into relatively compact ones.

(H1) Σ ∩ ∂Ω = ∅ (A priori estimate).
(H2) Σ0 is a finite nonempty set {a1, . . . , aµ} and the corresponding topological

degree deg[I − F (·, 0),Ω0, 0] is different from zero (Degree condition).

As mentioned above, this topological degree is some “algebraic count” of the
number of elements of Σ0, such that, in particular, Σ0 6= ∅ when the degree is
not zero. In the special case where F is of class C1,

deg[I − F (·, 0),Ω0, 0] =
µ∑

j=1

(−1)σj ,

where σj is the sum of the algebraic multiplicities of the eigenvalues of F ′x(aj , 0)
contained in ]1,∞[.

The Leray–Schauder continuation theorem goes as follows.

Theorem 1. If conditions (H0), (H1) and (H2) hold, then Σ contains a
continuum C along which λ takes all values in I.

In other words, under the above assumptions, Σ contains a compact con-
nected subset C connecting Σ0 to Ω1. In particular, the equation x = F (x, 1) has
a solution in Ω1.

Leray and Schauder observed furthermore that, by refining Assumption (H2),
one could obtain a more precise conclusion, which is reminiscent of more recent
results in bifurcation theory [50]:

If the local index of a1, defined by deg[I − F (·, 0), B(a1, r), 0] with r > 0
small, is different from zero, then (a1, 0) belongs to a continuum in Σ which
contains one of the other points (a2, 0), . . . , (aµ, 0), or to a continuum in Σ along
which λ takes all the values in I.

Notice that the conclusion of Theorem 1 still holds if the finiteness of the
set Σ0 is dropped from Assumption (H2). Hence, from now on, we shall refer to
Assumption (H2) as being the condition

(H2) deg[I − F (·, 0),Ω0, 0] 6= 0 (Degree condition).

Conditions (H0) and (H2) are in general the easiest ones to check. In par-
ticular, as already noticed by Leray and Schauder, (H2) holds if 0 ∈ Ω0 and
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F (·, 0) = 0, or if Σ0 is a finite nonempty set {a1, . . . , aµ} such that µ is odd and
I − F (·, 0) is one-to-one on a neighbourhood of each aj .

Condition (H1) requires the a priori knowledge of some properties of the
solution set Σ and is in general very difficult to check. An important situa-
tion in which it holds had already been emphasized by Leray and Schauder
and corresponds to the case where Ω = X and the set of possible solutions of
the deformation is a priori bounded. In their own words [37]: Soit une famille
d’équations . . . qui dépendent continûment du paramètre k (k1 ≤ k ≤ k2)

x−F(x, k) = 0.

L’une des conséquences de notre théorie est la suivante: il suffit de savoir majorer
a priori toutes les solutions que possèdent ces équations et de vérifier, pour une
valeur particulière k0 de k, une certaine condition d’unicité pour avoir le droit
d’affirmer que l’équation x−F(x, k) = 0 possède au moins une solution quel que
soit k.

In the notations of the present paper, this important special case can be
stated as follows. Introduce the condition

(H ′
1) Σ is bounded (A priori bound).

Corollary 1. Assume that conditions (H0), (H ′
1) and (H2) hold. Then

the conclusion of Theorem 1 is valid.

Indeed, by assumption, there is some R > 0 such that Σ ⊂ B(0, R)× I and,
if we take Ω = B(0, R)× I, then Σ ∩ ∂Ω = ∅.

Most of the applications of the Leray–Schauder continuation theorem to dif-
ferential or integral equations are devoted to situations where the set of possible
solutions of the deformation is a priori bounded.

When this is not the case, one can try to determine an open set Ω for which
the assumptions (H1) and (H2) hold. To obtain it explicitly seems to be in
many cases an almost hopeless task, and we shall now describe some recent
results where this explicit determination is replaced by another condition. To
motivate it, we first rephrase the conclusion of Corollary 1 in the following form,
where the a priori bound condition on Σ is weakened into an a priori bound
condition on Σ0 only, and the conclusion takes the form of an alternative (see
e.g. [50] and [20]). We introduce the condition

(H ′′
1 ) Σ0 is bounded.

Corollary 2. Assume that conditions (H0), (H ′′
1 ) and (H2) (with Ω0 an

open bounded neighbourhood of Σ0) hold. Then there exists a continuum C ⊂ Σ
meeting Σ0 which either meets Σ1 or is unbounded.

The idea will then be to introduce a functional overX×[0, 1] whose restriction
to Σ is proper and avoids at least two values. Recall that a mapping g : X → Y
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between topological spaces is called proper if g−1(K) is compact for each compact
set K ⊂ Y. Using the connectedness of the continuum C given in Corollary 2, it
will then be possible to prove that C has to meet Σ1.

3. The use of a continuous functional
in global continuation theorems

The following continuation theorem was first stated and proved in [6]. We
keep the notations and terminology of Section 1.

Theorem 2. Assume that conditions (H0), (H ′′
1 ) and (H2) hold, with Ω0

an open bounded neighbourhood of Σ0. Assume moreover that there exists a con-
tinuous function ϕ : X×I → R and two real numbers c−, c+ having the following
properties:

1. ϕ is proper on Σ.
2. c− < minx∈Σ0 ϕ(x, 0) ≤ maxx∈Σ0 ϕ(x, 0) < c+.

3. ϕ(Σ) ∩ {c−, c+} = ∅.

Then Σ contains a continuum C along which λ takes all values in I.

Proof. If the conclusion is not true, then, by Corollary 2, Σ contains an
unbounded continuum meeting Σ0. Notice that, by the complete continuity of
F , Σ is locally compact. As ϕ is proper, ϕ(C) is unbounded and connected,
and hence is an unbounded interval which, by the first part of assumption 2,
contains minx∈Σ0 ϕ(x, 0) and maxx∈Σ0 ϕ(x, 0). Consequently, it contains c− or
c+, a contradiction with the second part of assumption 2. �

A rather direct consequence of Theorem 2 which is easier to apply is the
following.

Corollary 3. Assume that conditions (H0), (H ′′
1 ) and (H2) hold, with

Ω0 an open bounded neighbourhood of Σ0. Assume moreover that there exist a
continuous mapping ϕ : X × I → R+ and an unbounded increasing sequence
(ck)k∈N satisfying the following conditions.

(h1) There exists R > 0 such that ϕ(u, λ) 6= ck for all k ∈ N and (u, λ) ∈ Σ
with ‖u‖ ≥ R.

(h2) ϕ−1([0, cn[) ∩ Σ is bounded for each n ∈ N.

Then there exists a continuum C ⊂ Σ along which λ takes all values in I.

This corollary can be applied [5, 42] to the study of T-periodic solutions of
second order superlinear differential equations of the form

(3) u′′ + g(u) = p(t, u, u′),
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where g : R → R is continuous and satisfies the following superlinearity condition:

(4) lim
|x|→∞

g(x)/x = ∞,

and where p : [0, T ]×R×R is continuous and satisfies the following linear growth
condition:

(5) |p(t, x, y)| ≤ a+ b|x|+ c|y|,

for all (t, x, y) ∈ [0, T ] × R × R and some nonnegative a, b, c. We embed this
problem in the one-parameter family

(6) u′′ + g(u) = −(1− λ)
u′

1 + |u′|
+ λp(t, u, u′) := q(t, u, u′, λ) (λ ∈ I).

By standard techniques which we shall not describe here (see e.g. [40]), the T -
periodic solutions of this equation can be obtained as the solutions of an equation
of the form

u = F (u, λ)

in the space X = {u ∈ C1([0, T ]) : u(0) − u(T ) = u′(0) − u′(T ) = 0}, with
F completely continuous on X. It follows from the choice of the deformation
and the superlinearity condition on g that Σ0 is bounded and it follows from a
general result in [5] that |deg[I − F (·, 0),Ω0, 0]| = 1. Thus conditions (H ′′

1 ) and
(H2) hold. Now we take δ(x, y) = min{0, 1/(x2 + y2)} and

ϕ(u, λ) =
∣∣∣∣ 1
2π

∫ T

0

[u′2(t)− u(t)q(t, u(t), u′(t), λ)]δ(u(t), u′(t)) dt
∣∣∣∣,

so that ϕ(u, λ) is the absolute value of the winding number or Poincaré’s in-
dex with respect to 0 (and hence a nonnegative integer) of the closed curve
(u(t), u′(t)), when (u, λ) is a solution of (6) such that u2(t) + u′2(t) ≥ 1 for all
t ∈ [0, T ]. A differential inequality type argument using the superlinearity of g
and the linear growth condition on p shows the existence of some R > 0 such that
this last inequality holds when (u, λ) ∈ Σ and ‖u‖ > R. Now, the superlinearity
of g implies that, for the autonomous equation

u′′ + g(u) = 0,

the orbits with sufficiently large maximal amplitude A are closed and their period
τ(A) is such that limA→∞ τ(A) = 0. A delicate perturbation argument based
upon the linear growth condition on p then implies that, along Σ, ϕ(u, λ) →∞
when ‖u‖ → ∞. Thus we can take ck = k + 1/2 in Corollary 1. We refer to [6]
for the details. Thus, we have the following
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Theorem 3. If g satisfies (4) and p satisfies (5), then equation (3) has at
least one T -periodic solution.

As the equation

u′′ + u′ + u3 = 0

only has the trivial T -periodic solution, the conclusion above is optimal for the
class of equations considered.

The interest of this approach, as compared to other techniques like shooting
methods and critical point theory, is that it easily extends to the case of some
functional differential equations, as shown in [7]. Let r > 0 and, for x : R → R
and t ∈ R, denote as usual by xt the function

xt : [−r, 0] → R, θ 7→ x(t+ θ).

Consider the second order functional differential equation

(7) u′′(t) + g(u(t)) = p(t, u(t), u′(t), ut, u
′
t),

where g : R → R and p : R× R2 × C → R are continuous and p is T -periodic in
t. The following existence result is proved in [7], using Theorem 2.

Theorem 4. If (4) holds and if there exist K,L ≥ 0 such that

|p(t, x, y, η, ψ)| ≤ K(|x|+ |y|) + L

for all (t, x, y, η, ψ) ∈ R × R2 × C([−r, 0)), then equation (7) has at least one
T -periodic solution.

The case of functional differential equations with other boundary conditions
has been considered by M. Henrard [29].

Notice also that existence results have been obtained as well in [6] and [7]
for periodic solutions of planar ordinary differential systems of the form

z′(t) = −J [H ′(z(t)) + p(t, z(t))],

or planar functional differential systems of the form

z′(t) = J [H ′(z(t)) + p(t, z(t), zt)],

where J denotes the symplectic matrix, H : R × R2 → R is such that H ′ = H ′
z

satisfies a suitable superlinear condition and p satisfies some growth restrictions
with respect to H. We refer to [6] and [7] for a precise statement of the exis-
tence theorems. See also a recent result of Precup [48] on a version based upon
Granas’ transversality technique [17] and applications to periodic boundary value
problems with impulses.
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The above techniques also allow proving the existence of T -periodic solutions
for some fourth order superlinear differential equations. Consider the periodic
boundary value problem

(8)
u′′′′ = g(u) + p(t, u, u′, u′′, u′′′),

u(T )− u(0) = u′(T )− u′(0) = u′′(T )− u′′(0) = u′′′(T )− u′′′(0) = 0,

where g : R → R is a continuous function satisfying (4) and p : [0, T ]×R4 → R is
a Carathéodory function. The following existence result is proved in [44], using
Theorem 2.

Theorem 5. If g satisfies (4) and

|p(t, x, y, z, w)| ≤ q(t)

for almost every t ∈ [0, T ], all (x, y, z, w) ∈ R4, and some q ∈ L1([0, T ],R+),
then problem (8) has at least one solution.

The proof of this result requires a very detailed study of the oscillatory
properties of the solutions of the associated family of equations

u′′′′ = g(u) + q(t, u, u′, u′′, u′′′, λ), λ ∈ [0, 1],

u(T )− u(0) = u′(T )− u′(0) = u′′(T )− u′′(0) = u′′′(T )− u′′′(0) = 0,

where

q(t, x, y, z, w, λ) := −(1− λ)
y

1 + |y|
+ λp(t, x, y, z, w) for λ ∈ [0, 1].

4. The use of a continuous functional in
localized continuation theorems

More precise results have been obtained in [4] for the superlinear Sturm–
Liouville problem

u′′(t) + g(u(t)) = p(t, u(t), u′(t)),(9)

ax(0) + bx′(0) = 0, cx(T ) + dx′(T ) = 0,(10)

when g is continuous and satisfies (4), and p : [0, T ] × R2 → R is continuous
and satisfies (5). In this situation one can prove the existence of infinitely many
solutions with arbitrarily large norms.

This result requires an extension of Theorem 2 which goes as follows (see
[4]). We consider again F : X × I → X completely continuous and keep the
notations of Theorem 2. If ω is a (possibly unbounded) open subset of X such
that S = Σλ ∩ ω is compact and S ⊂ ω (i.e. there is no solution of x = F (x, λ)
on ∂ω), then there exists an open bounded set U such that S ⊂ U ⊂ U ⊂ ω. For
all such U , the Leray–Schauder degree deg[I − F (·, λ),U , 0] is the same, by the
excision property. We will denote it by deg[I − F (·, λ), ω, 0].
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Let O ⊂ X × I be open in X × I. Denote by Σ∗ the (possibly empty) set

Σ∗ = {(x, λ) ∈ O : x = F (x, λ)} = O ∩ Σ.

We introduce the conditions:

(H∗
1 ) Σ∗0 is bounded in X and Σ∗0 ⊂ O0.

(H∗
2 ) deg[I − F (·, 0),O0, 0] 6= 0,

so that Σ∗0 6= ∅.

Theorem 6. Assume that conditions (H0), (H∗
1 ) and (H∗

2 ) hold and that
there exist a continuous functional ϕ : X × I → R and constants c−, c+ with the
following properties:

1. ϕ is proper on Σ∗.
2. c− < minu∈Σ∗

0
ϕ(u, 0) ≤ maxu∈Σ∗

0
ϕ(u, 0) < c+.

3. ϕ(Σ∗ ∩ O) ∩ {c−, c+} = ∅ and ϕ(Σ∗ ∩ ∂O) ∩ [c−, c+] = ∅.

Then Σ∗ contains a continuum along which λ takes all values in I.

The proof of this result follows the same lines as that of Theorem 2.
Let us now consider a consequence of Theorem 6 which is useful for the

application we have in mind. Assume that ϕ : X × I → R+ is continuous
and (ck)k∈N is an unbounded increasing sequence that satisfies the following
conditions:

(h∗1) There exists R > 0 such that ϕ(u, λ) 6= ck for all k ∈ N and (u, λ) ∈ Σ∗

with ‖u‖ ≥ R.
(h∗2) ϕ−1([0, cn[) ∩ Σ∗ is bounded for each n ∈ N.

Let k0 be an integer such that ck0 > sup{ϕ(u, λ) : (u, λ) ∈ Σ∗, ‖u‖ ≤ R}.

Corollary 4. Assume that conditions (H0), (h∗1) and (h∗2) hold and that

deg[I − F (·, 0), (Ok)0, 0] 6= 0

for each integer k > k0, where Ok = ϕ−1(]ck, ck+1[). Then, for each of those
integers, equation

(11) u = F (u, 1)

has at least one solution uk such that ϕ(uk, 1) ∈ ]ck, ck+1[. Moreover,

lim
j→∞

‖uj‖ = ∞.

Proof. Let, for k ≥ k0, Σk = Ok ∩ Σ∗. By (h∗2), (Σk)0 is bounded. But,
by (h∗1), ϕ(x, λ) 6= ck and ϕ(x, λ) 6= ck+1 for all (x, λ) ∈ Σk, so (Σk)0 ⊂ (Ok)0.
We now prove that ϕ is proper on Σk. Let K be a compact subset of R. Then
ϕ−1(K)∩Σk is closed and included in Σk, which is compact, so it is also compact.
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Thus, all conditions of Theorem 6 with Σ = Σk, O = Ok are satisfied and
equation (11) will have at least one solution u ∈

⋂
(Ok)1. If the last conclusion

of Corollary 4 is not true, we can find a bounded subsequence (ukj
) of solutions

of (11) with ϕ(ukj
) ∈ ]ckj

, ckj+1[. So ϕ(ukj
) → ∞ as j → ∞. Thus we get a

contradiction, as the sequence (ukj ) is precompact. �

Now, we will use Corollary 4 to prove the existence of solutions for the
problem (9)–(10) when g is continuous and satisfies (4) and p : [0, T ]× R2 → R
is continuous and satisfies (5). To avoid some technical problems, we suppose
that |g(x)| ≥ |x|. Thanks to the superlinearity of g, this condition is satisfied
for |x| sufficiently large. If this is not the case for all x, take E = conv{x ∈ R :
|g(x)| < |x|}. Then the function

g̃(x) =

{
x if x ∈ E,
g(x) otherwise,

has this property and the growth condition (5) is still valid for the function
p̃(t, x, y) = p(t, x, y) + g̃(x) − g(x). Let f(x) = x + x3. This (odd) function
satisfies the conditions imposed in Section 3 for the computation of the degree.

We consider the homotopy

(12) u′′(t) + f(u(t)) = λq(t, u(t), u′(t))

where q(t, x, y) = p(t, x, y)− g(x) + f(x). For λ = 1, this is equation (9).
Suppose for the moment that ad − bc 6= 0; this means that the two lines

D = {(x, y) ∈ R2 : ax+by = 0} and A = {(x, y) ∈ R2 : cx+dy = 0} are distinct.
Let

r1(u) =
au+ bu′

|ad− bc|1/2
, r2(u) =

cu+ du′

|ad− bc|1/2

and δ : R2 → R be defined by δ(x, y) = min{1, 1/(x2 + y2)}. We now define on
C1([0, T ],R)× I the continuous functional ϕ by

ϕ(u, λ)

=
2
π

∣∣∣∣ ∫ T

0

[u′(t)2 + u(t)(f(u(t))− λq(t, u(t), u′(t)))]δ(r1(u)(t), r2(u)(t)) dt
∣∣∣∣.

If (u, λ) is a solution of (12) such that [r1(u)(t)]2+[r2(u)(t)]2 ≥ 1 for all t ∈ [0, T ],
we get

ϕ(u, λ) =
2
π

∣∣∣∣ ∫ T

0

u′(t)2 − u(t)u′′(t)
[r1(u)(t)]2 + [r2(u)(t)]2

dt

∣∣∣∣ =
2
π

∣∣∣∣ ∫ T

0

d

dt
arctan

(
r2(u)(t)
r1(u)(t)

)
dt

∣∣∣∣.
Thus, for a solution of (12) satisfying the boundary condition (10), it turns out
that ϕ(u, λ) counts the number of quarters of lap if this is understood as the
passage from one of the lines to the other.
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When we are in the “pathological” case where ad− bc = 0, we define ϕ by

ϕ(u, λ) =
2
π

∣∣∣∣ ∫ T

0

[u′(t)2 + u(t)(f(u(t))− λq(t, u(t), u′(t)))]δ(u(t), u′(t)) dt
∣∣∣∣ + 1.

If (u, λ) is a solution of (12)–(10) with u(t)2 + u′(t)2 ≥ 1 for all t ∈ I, then

ϕ(u, λ) = 2/π
∣∣∣∣ ∫ T

0

d

dt
arctan

(
u′(t)
u(t)

)
dt

∣∣∣∣ + 1

is just the number of quarters of lap plus one.
Consistently with the notations of Section 2, we set

Σ = {(u, λ) ∈ C1([0, T ])× I : (u, λ) is a solution of (12)–(10)}.

It is now possible, although not trivial, to show that the functional ϕ satisfies
all the conditions of Corollary 4, and to prove the following existence result for
second order nonlinear Sturm–Liouville problems (see [9] and [4] for details, and
[8] for the special case of Neumann conditions).

Theorem 7. Assume that g : R → R is continuous, satisfies (4) and that
p : [0, T ]×R2 → R is continuous and satisfies (5). Then there exists k0 ∈ N such
that, for each j > k0, the problem (9)–(10) has at least one solution uj such that
ϕ(uj , 1) ∈ ]2j, 2(j + 1)[. Moreover, ‖uj‖ → ∞ as j →∞.

Theorem 6 has also been applied by M. Henrard [28] to prove the existence
of infinitely many solutions for singular superlinear boundary value problems of
the type

u′′(t) +
n

t
u′(t) + g(u(t)) = p(t, u(t), u′(t)),

u′(0) = 0, αu(T ) + βu′(T ) = 0,

when g is superlinear and p has at most linear growth. His results extend those of
Castro and Kurepa [12, 13]. The same author has also considered the extension of
the results of Sections 2 and 3 to general linear boundary conditions which contain
the periodic, the Sturm–Liouville and the three-point boundary conditions as
special cases [27, 31, 30]. Garcia-Huidobro, Manásevich and Zanolin [24, 25]
have extended the results of Theorem 7 to the Dirichlet problem for superlinear
equations with φ-laplacians

(φ(u′))′ + g(u) = p(t, u, u′), u(0) = A, u(T ) = B,

when φ belongs to a suitable class of increasing homeomorphisms of R, g grows
faster than φ at infinity and p is bounded.

Theorem 7 can be refined by the use of a slightly more general form of
Corollary 4 [11], and a different choice of the functional ϕ.
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Assume that ϕ : X×I → R is continuous and (ck)k∈Z is an increasing double
sequence with ck < 0 for k < 0, ck > 0 for k > 0 and limk→±∞ ck = ±∞ that
satisfies the following conditions:

(H∗
1 ) There exists R > 0 such that ϕ(u, λ) 6= ck for all k ∈ Z and (u, λ) ∈ Σ

with ‖u‖ ≥ R.
(H∗

2 ) ϕ−1(]c−n, cn[) ∩ Σ is bounded for each n ∈ Z+.

Let k0 be a positive integer such that

(13) min{−c−k0 , ck0} > sup{|ϕ(u, λ)| : (u, λ) ∈ Σ, ‖u‖ ≤ R}.

Corollary 5. Assume that conditions (H0), (H∗
1 ) and (H∗

2 ) hold and that
there is k0 ∈ Z+ satisfying (13) such that

deg[(I − F (·, 0), (Ok)0, 0] 6= 0

for some integer k with |k| > k0 and

(14) Ok =

{
ϕ−1(]ck, ck+1[) if k > 0,

ϕ−1(]ck−1, ck[) if k < 0.

Then there is at least one solution ũ for (11) with ϕ(ũ, 1) ∈ ]ck, ck+1[ if k > 0
and ϕ(ũ, 1) ∈ ]ck−1, ck[ if k < 0. In particular, if (H∗

3 ) holds for every k ∈ Z with
|k| > k0, then, for each n ∈ N with n > k0, equation (11) has at least two so-
lutions un and wn such that ϕ(un, 1) ∈ ]cn, cn+1[ and ϕ(wn, 1) ∈ ]c−(n+1), c−n[.
Moreover, limn→∞ ‖un‖ = limn→∞ ‖wn‖ = ∞.

Proof. For k ∈ Z with |k| > k0, let Σk = Ok ∩ Σ. By (H∗
2 ), (Σk)0 is

bounded and hence compact. But, by (H∗
1 ), ϕ(x, λ) 6= ck and ϕ(x, λ) 6= ck+1 (if

k > 0) or ϕ(x, λ) 6= ck−1 (if k < 0), for all (x, λ) ∈ Σk, so that Σk ⊂ Ok and
also (Σk)0 ⊂ (Ok)0. Thus we have proved the condition (H1). We now prove
that ϕ is proper on Σk. Let K be a compact subset of R. Then ϕ−1(K) ∩ Σk

is closed and included in Σk which is compact, so it is also compact. Thus, all
conditions of Theorem 6 with Σ∗ = Σk, O = Ok and (c−, c+) = (ck, ck+1) for
k > 0 or (c−, c+) = (ck−1, ck) for k < 0 are satisfied and equation (11) will have
at least one solution u ∈ (Ok)1. The rest of the proof is essentially similar to
that of Corollary 4. �

Corollary 5 can now be used to prove the following sharp existence theorem
for superlinear second order equations with Dirichlet conditions (see [11]). We
want to apply the abstract theory to the problem

(15) u′′(t) + g(u(t)) = p(t, u(t), u′(t)), u(0) = u(T ) = 0,
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where g is continuous and satisfies (4), and p : [0, T ]×R2 → R is continuous and
satisfies (5). Without loss of generality we can assume that g(x)x > 0 for x 6= 0,
moving if necessary a bounded term from f to p.

Problem (15) will be solved via the continuation principle described in Corol-
lary 5. To this end, we consider the homotopy

(16) u′′(t) + h(u(t), λ) = λp(t, u(t), u′(t)), u(0) = u(T ) = 0, λ ∈ I,

where

(17) h(x, λ) = λg(x) + (1− λ)f(x), λ ∈ I,

and f : R → R is a smooth function, which is also odd and satisfies the following
conditions:

f(x) > 0 for x > 0, lim
x→∞

f(x)
x

= ∞,
d

dx

(
f(x)
x

)
> 0 for x > 0.

An adequate choice for this auxiliary function is given by f(x) = x3. Let

q(t, x, y, λ) = h(x, λ)− λp(t, x, y, λ).

Clearly, the parametrized problem (16) moves (15) to the autonomous ordinary
differential equation with the homogeneous Dirichlet boundary conditions

(18) u′′ + f(u) = 0, u(0) = 0 = u(T ).

In what follows, we have to consider the time-map τ(s), which is the time
needed for a solution (u, v) of the planar system u′ = v, v′ = −f(u) to move
from the point (0, s) to the point (0,−s) crossing once the half-plane u > 0. The
maximum value m(s) > 0 reached by such a solution u is such that 2F (m(s)) =
s2 (with F (x) =

∫ x

0
f(s) ds), and, by the oddness of f the time τ(s) is the same

which is taken by a solution to move from (0,−s) to (0, s) across the half-plane
u < 0, with u reaching its minimum value −m(s). From the energy integral
associated with (18), we get

τ(s) = 2
∫ m(s)

0

dx√
s2 − 2F (x)

for s > 0.

In [47, Th. 8] (see also [51, Th. 1.3.2]) it is proved that the assumption f(x)/x
increasing implies that s 7→ τ(s) is decreasing, and using also the superlin-
ear growth condition for f , we see that the continuous map s 7→ τ(s) satisfies
lims→∞ τ(s) = 0. Hence, an elementary analysis shows that there exists n0 ∈ Z+

such that problem (18) has two sequences of solutions (ũn)n and (−ũn)n with
n ≥ n0 with ũn and −ũn having both n − 1 zeros in ]0, T [ and such that
ũ′n(0) = s̃n > 0, with s̃n → ∞ as n → ∞. Actually, to find ũn, we only
have to find s̃n such that τ(s̃n) = T/n and then define ũn as the solution of
u′′ + f(u) = 0 with u(0) = 0 and u′(0) = s̃n.
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Our goal now is to prove that a similar result can be derived for problem
(15). Problem (16) can easily be written as a fixed point problem in the space
X = C1([0, T ]). Consistently with the notations of Section 2, we denote here by
Σ ⊂ C1([0, T ])×I the set of solutions (u, λ) of the boundary value problem (16).
We introduce the following functional ϕ which is a slight modification of that
considered in [9]. Let δ : R2 → R and η : R → R be defined by

δ(x, y) = min
{

1,
1

x2 + y2

}
, η(x) = min{1,max{−1, x}}.

Then we define the continuous functional ϕ on C1([0, T ])× I by

(19) ϕ(u, λ) = η(u′(0))
∣∣∣∣ 1
π

∫ T

0

[u′(t)2 + u(t)q(t, u(t), u′(t), λ)]δ(u(t), u′(t)) dt
∣∣∣∣.

To describe the meaning of ϕ(u, λ), suppose that (u, λ) is a solution of (16) such
that

(20) u(t)2 + u′(t)2 ≥ R2 ≥ 1 for all t ∈ [0, T ].

In this case, we get, letting v(t) = u′(t),

ϕ(u, λ) = sign(u′(0))
∣∣∣∣ 1
π

∫ T

0

(
d

dt
arctan

u(t)
v(t)

)
dt

∣∣∣∣.
By the assumptions on f, g and p, it follows that y2 + q(t, x, y, λ)x → ∞ as
x2 +y2 →∞, uniformly with respect to t ∈ [0, T ] and λ ∈ [0, 1]. Therefore, there
is d > 0 such that y2 + q(t, x, y, λ)x > 0 for all (x, y) such that x2 + y2 ≥ d2

and each t ∈ [0, T ] and λ ∈ [0, 1]. Thus, if R ≥ (1 + d2)1/2 in (20), we obtain
v(t)u′(t) − u(t)v′(t) > 0 for all t ∈ [0, T ]. Hence assuming (20) to be satisfied
for such an R, we see that the above integrands are positive. By evaluating now
|ϕ(u, λ)| for (u, λ) ∈ Σ and (u, u′) satisfying (20) with R sufficiently large (see
[11] for details), we find that the functional ϕ defined in (19) satisfies (H∗

1 ) and
(H∗

2 ) of Corollary 5 with respect to the double sequence (ck)k∈Z with c0 = 3/8
and ck = (|k| − (1/2)) sign(k) for all k 6= 0. This leads to the following result.

Theorem 8. Let f and p satisfy (4) and (5), respectively. Then there is
k0 ∈ Z+ such that for each n > k0, the boundary value problem (15) has at least
two solutions un and wn with u′n(0) > 0 and w′n(0) < 0 such that

lim
n→∞

min
t∈[0,T ]

(|un(t)|+ |u′n(t)|) = lim
n→∞

min
t∈[0,T ]

(|wn(t)|+ |w′n(t)|) = ∞.

These solutions have the following nodal properties. For n odd, u′n(T ) < 0, and
for n even, u′n(T ) > 0. Moreover, un has exactly n+1 zeros in [0, T ]. For n odd,
w′n(T ) > 0, and for n even, w′n(T ) < 0. Moreover, wn has exactly n+ 1 zeros in
[0, T ]. All the zeros of un and wn are simple and all the local maxima or minima
of un and wn are strict. Between any two consecutive zeros of a solution, as well
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as between 0 and the first zero or between the last zero and T, there is only one
critical point of the solution.

One can consult [3] for another proof of this result.

5. The use of two functionals in continuation theorems

We describe in this section some results of [10] showing how continuation
theorems using two functionals can provide sharp existence conditions for the
periodic solutions of some second order differential equations with linear growth.
We keep the notations of Section 2.

Theorem 9. Assume that conditions (H0), (H ′′
1 ), (H2) and (H ′′

3 ) hold, with
Ω0 an open bounded neighbourhood of Σ0. Assume moreover that there exist two
continuous functionals ψ, η : X × [0, 1] → R and real numbers R > 0, d ≥ 0 such
that ψ is proper on Σ, ψ(u, λ) ≥ −d, and η(u, λ) ∈ Z for each (u, λ) ∈ Σ with
‖u‖ ≥ R. Suppose moreover that for each k ∈ Z there is a sequence {c(k)

n }n with

lim
n→∞

c(k)
n = ∞

and there is an index n∗k such that ψ(u, λ) 6= c
(k)
n for all (u, λ) ∈ Σ∩ η−1(k) and

n ≥ n∗k. Then equation (11) has at least one solution.

Proof. Assume, by contradiction, that (11) has no solution. Then, accord-
ing to [20], there exists a closed unbounded connected set C ⊂ Σ such that
C∩(Σ0×{0}) 6= ∅ (see also [6, proof of Lemma 1]). Let R0 ≥ R be a fixed radius
such that B(0, R0) ⊃ Σ0. Consider

D0 := Σ ∩ (B[0, R0]× [0, 1]) ⊃ C ∩ (B[0, R0]× [0, 1]),

a compact set (by the local compactness of Σ), so that the following constants
are defined:

a0 := max{ψ(u, λ) : (u, λ) ∈ D0}, K := max{|η(u, λ)| : (u, λ) ∈ D0}.

Consider now only the sequences {c(k)
n }n with k ∈ IK := Z ∩ [−K,K]. For any

k ∈ IK , we can find an index ñk ≥ n∗k such that a0 < c
(k)
enk
. In order to simplify

the notation, we set c#k := c
(k)
enk
. Choose now a constant b0 > max{max{c#k :

k ∈ IK}, d}. In this manner, we have a0 < c#k < b0 for all k ∈ IK . Finally,
as a last step, we use the properness of ψ|Σ and find a radius R1 > R0 such
that ‖u‖ < R1 for all (u, λ) ∈ Σ ∩ ψ−1([−b0, b0]). By the definition of R1, it
follows that |ψ(u, λ)| > b0 for all (u, λ) ∈ Σ \ (B(0, R1) × [0, 1]), which in turn
implies that ψ(u, λ) > b0 for all (u, λ) ∈ Σ with ‖u‖ ≥ R1 (by (h′0) and since
R1 > R0 ≥ R). After these preliminary choices of the constants a0, c

#
k (with

k ∈ IK), b0 and R1, we proceed as follows.
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By Whyburn’s lemma (see [50]), there exists a subcontinuum C1 of C joining
∂B(0, R0)× [0, 1] to ∂B(0, R1)× [0, 1]; more precisely, we have

A := C1 ∩ (∂B(0, R0)× [0, 1]) 6= ∅, B := C1 ∩ (∂B(0, R1)× [0, 1]) 6= ∅,
R0 ≤ ‖u‖ ≤ R1, (u, λ) ∈ C1.

Now, by the property (h′1) for η and the choice R0 ≥ R, it follows that there
exists k ∈ Z such that η(u, λ) = k for all (u, λ) ∈ C1. Indeed, η is continuous and
takes only discrete values outside B(0, R0)× [0, 1], so that η is constant outside
that set. In particular, η(u, λ) = k for all (u, λ) ∈ A. On the other hand, A ⊂ D0,

so that |η(u, λ)| ≤ K for all (u, λ) ∈ A. In conclusion, −K ≤ k ≤ K, i.e. k ∈ IK .
Consider now the set ψ(C1). It is a compact (since C1 is compact) connected
subset of R, i.e. a closed bounded interval. Thus, we set ψ(C1) = [α, β]. We have

α = inf ψ(C1) ≤ inf ψ(A) ≤ supψ(A) ≤ supψ(D0) = a0,

β = supψ(C1) ≥ supψ(B) ≥ inf ψ(B) > b0.

Hence, [a0, b0] ⊂ ψ(C1) and we can conclude that there is (u, λ) ∈ C1 such that
ψ(u, λ) = c#

k
. On the other hand, we also have η(u, λ) = k, and this contradicts

(h′1). �

We consider some applications of Theorem 9 to the solvability of the periodic
problem for second order equations with linear growth

(21) x′′ + g(x) = p(t, x, x′), x(0)− x(T ) = x′(0)− x′(T ) = 0,

with g : R → R and p : R× R2 → R continuous and bounded,

(g1) lim
|x|→∞

g(x)sign(x) = ∞

and

(G1) ∀c1 > 0, ∃c2 > 0 : AB > 0 & |
√
G(B)−

√
G(A)| < c1 ⇒ |B −A| < c2.

Following [15] we say that the problem (21) is asymptotically resonant if there is
k ∈ Z+ such that for τg(c) = 2

∫ c

h(c)
[2(G(c)−G(s))]−1/2 ds,

lim
c→∞

τg(c) = T/k.

Let us now define

τ∗ := lim sup
c→∞

τg(c), τ∗ := lim inf
c→∞

τg(c)

and consider the interval [τ∗, τ∗] ⊂ [0,∞]. With the above notations, we have
the following existence theorem.
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Theorem 10. Assume (g1) and (G1) and suppose that problem (21) is not
asymptotically resonant, i.e.

(22) [τ∗, τ∗] 6= {T/k} (k ∈ Z+).

Then problem (21) has at least one solution.

Theorem 10 extends Theorem 1 of [15], Theorem 2.2 of [16] and the main
result of [49], as far as the existence of at least one solution is concerned. Indeed,
condition (22), generalizing the corresponding assumption in [15], has been al-
ready assumed in [14] and [49] together with more restrictive conditions on the
function g.

The evaluation of τ∗, τ∗ is particularly simple if we assume that

(g2) g is odd.

In this case, τg(c) = 2Tg(c) := 4
∫ c

0
[2(G(c)−G(s))]−1/2 ds, and so τ∗ = 2T∗ and

τ∗ = 2T ∗, where

T∗ = lim inf
c→∞

√
2

∫ c

0

du√
G(c)−G(u)

, T ∗ = lim sup
c→∞

√
2

∫ c

0

du√
G(c)−G(u)

.

Following [47], [18], [16], it is easy to see that

[T∗, T ∗] ⊃ [π/
√
G∗, π/

√
G∗],

where
G∗ := lim inf

x→∞
2G(x)/x2, G∗ := lim sup

x→∞
2G(x)/x2

and we use the convention 1/∞ = 0, 1/0+ = ∞. Set also

g∗ := lim inf
x→∞

g(x)/x, g∗ := lim sup
x→∞

g(x)/x

and recall that, according to the generalized L’Hospital rule, g∗ ≤ G∗ ≤ G∗ ≤ g∗.

Finally, denote by λk = (2πk/T )2, k ∈ Z+, the kth positive eigenvalue of the
differential operator x 7→ −x′′ in the space of T -periodic functions.

Corollary 6. Assume (g1), (g2) and (G1). Then problem (21) has at least
one solution provided that

(23) [G∗, G∗] 6= {λk} (k ∈ Z+).

To compare this result with previous theorems, we remark that the condition
assumed in [39] was [g∗, g∗] ∩ {λk : k ∈ Z+} = ∅ and observe that [g∗, g∗] ⊃
[G∗, G∗], so that the result in [39] implies [G∗, G∗]∩ {λk : k ∈ Z+} = ∅ and thus
(23) follows. On the other hand, in [16], one can find conditions like (23), but for
g globally lipschitzian in R, an assumption which is not required here. Finally,
to apply the theorem of [49], one should replace (G1) with the more restrictive
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assumption (G2). Note also that (23) is always satisfied if G∗ = ∞, with no
condition on G∗.

As a further application of Theorem 10, we have the following

Corollary 7. Assume (g1) and (G1) and suppose that

(24) τ∗ > T.

Then problem (21) has at least one solution.

Corollary 7 can be compared with previous results of Opial [46] and [18].
Actually, under condition (g1) it was proved in [46] that if

(25) lim inf
c→−∞

Tg(c) + lim inf
c→∞

Tg(c) > T,

then problem (21) is solvable. Subsequently, in [18] Opial’s assumption was
improved to

(26) lim inf
c→−∞

Tg(c) + lim sup
c→∞

Tg(c) > T.

Clearly, (24) contains all the above conditions as particular cases. In our situa-
tion, however, the extra hypothesis (G1) has to be required.

A comparison of all these results in the odd case shows that (under (g2))
condition (25) reads as T∗ > T/2, while (26) becomes T ∗ + T∗ > T, and finally
(24) gives T ∗ > T/2. Note that this last condition is satisfied whenever

lim inf
x→∞

2G(x)/x2 < (2π/T )2.

With the techniques of this section, one can also investigate some cases of asym-
metric behaviour of g at −∞ and ∞. We refer to [42, 10, 43] for the details.

6. Continuation theorems in metric ANRs

In a survey paper on applications of the topology of function spaces [52],
Schauder observed the possibility of extending the Leray–Schauder theory to
more general linear and even nonlinear spaces: Anderseits kann ich eine ähnliche
Theorie des Abbildungsgrades auch dann entwickeln, wenn es sich um allge-
meinere Räume handelt, etwa um lineare metrische Räume, in welchen es beliebig
kleine, konvexe Umgebungen der Null gibt1. Auch nichtlineare Räumen könnten
betrachtet werden2.

The announced joint paper was never written because of the known tragic
circumstances, but Leray [36], in a paper dedicated “à la mémoire du profond

1Eine gemeinsame Arbeit von Herrn Leray und mir über verschiedene topologische Inva-

rianten in möglichst allgemeinen Räumen wird erscheinen.
2Etwa metrische Räume, deren Umgebungen, z.B., den Umbegungen in Banachschen Räu-

men homöomorph sind.



Leray–Schauder Continuation Theorems 197

mathématicien polonais Jules Schauder, victime des massacres de 1940”, de-
scribed those extensions. In particular, if F is a continuous mapping of a com-
pact space C into itself, and C is a retract of an open subset G of a locally convex
space X, Leray proposed to define the corresponding fixed point index through
the topological degree of the mapping % ◦ F, where % is the retraction of G onto
C. This approach was independently developed by Granas [26] and by Browder
[1] to provide a theory of the index of fixed points for completely continuous
mappings defined on the closure of an open subset of an absolute neighbourhood
retract (ANR), i.e. a metric space which is homeomorphic to a neighbourhood
retract of a Banach space. See [45] for a recent survey.

The continuation theorem of Section 2 has been extended to this setting by A.
Capietto [2]. Let X be a metric ANR, O ⊂ X×I an open set and F : X×I → X

be a completely continuous map, so that

Σ∗ = {(x, λ) ∈ O : x = F (x, λ)}

is locally compact. When Σ∗0 is bounded (and hence compact) and Σ∗0 ⊂ O0, the
fixed point index iX [F (·, 0),O0] is well defined by

iX [F (·, 0),O0] := iX [F (·, 0),U ],

for any open bounded set U such that Σ∗0 ⊂ U ⊂ U ⊂ O0. The considerations of
Section 3 can be extended as follows.

Theorem 11. Assume that Σ∗0 is bounded, Σ∗0 ⊂ O0, and

iX [F (·, 0),O0] 6= 0.

Assume moreover that there exists a continuous function ϕ : X×I → R and real
numbers c−, c+ such that the following conditions hold:

1. ϕ is proper on Σ∗.
2. c− < inf{ϕ(x, 0) : x ∈ Σ∗0} ≤ sup{ϕ(x, 0) : x ∈ Σ∗0} < c+.

3. ϕ(x, λ) 6∈ {c−, c+} for each x ∈ Oλ ∩ Σ∗λ, λ ∈ ]0, 1[, and
ϕ(x, λ) 6∈ [c−, c+] for each x ∈ (∂O)λ ∩ Σ∗λ, λ ∈ ]0, 1[.

Then Σ∗ contains a continuum C along which λ takes all values in I.

The proof of this result follows the same lines as that of Theorem 6, with the
Leray–Schauder degree replaced by the fixed point index.

One can now state a consequence of Theorem 11 which is a slight variant of
Corollary 3. Let Σ = {(x, λ) ∈ X × I : x = F (x, λ)}.

Corollary 8. Let A ⊂ X. Assume that Σ0 is bounded and

iX [F (·, 0),Σ0] 6= 0.
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Assume moreover that there exists a continuous function ψ : X×I → R satisfying
the following conditions:

(h′1) There exists a bounded subset C ⊂ X such that, for each λ ∈ [0, 1], one
has Σλ \A ⊂ C.

(h′2) For every n ∈ Z+ there exists a bounded subset Cn ⊂ X such that for
every λ ∈ [0, 1] one has A ∩ Σλ ∩ ψ−1({n}) ⊂ Cn.

Then Σ contains a continuum C along which λ takes all values in I.

We refer to [2] for the proof of this result and applications to periodic solu-
tions of ordinary differential equations on manifolds. In particular, Corollary 8
can be applied to prove an interesting result of Furi et Pera [21] on the existence
of periodic solutions for the spherical pendulum equation. See also [22, 23, 19,
38].
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Université de Louvain

B-1348 Louvain-la-Neuve, BELGIUM

E-mail address: mawhin@amm.ucl.ac.be

TMNA : Volume 9 – 1997 – No 1


