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0. Introduction

In the Schrödinger picture, the change in time of the wave function of a
quantum system is governed by the Schrödinger equation

1
i

∂

∂t
ψ +Hψ = 0,

where H is the Hamiltonian of the system (we choose the units so that ~ = 1).
If the operator H does not change in time, then, given ψ(0) = ψ0, we have
ψ(t) = e−itHψ0. The fundamental solution of the time-dependent Schrödinger
equation is the distributional kernel of the solution operator e−itH .

For a non-relativistic quantum particle of mass 1 moving in the space of n
dimensions in a potential field V (x), the operator H has the form

(1) H = − 1
2∆ + V (x),

where ∆ is the Laplacian in Rn. We will denote the fundamental solution corre-
sponding to H by EH(t, x, y). In terms of EH(t, x, y), the solution of the initial
value problem

1
i

∂

∂t
− ψ(t, x)− 1

2
∆ψ(t, x) + V (x)ψ(t, x) = 0,(2a)

ψ(0, x) = ψ0(x),(2b)
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is given, formally, by the integral ψ(t, x) =
∫
EH(t, x, y)ψ0(y) dy. In its turn,

EH(t, x, y) solves (2) with ψ0(x) = δ(x− y).
In this paper we address again the problem of regularity of EH(t, x, y) in the

case of a real, infinitely differentiable potential V (x) that grows at infinity as a
power function,

(3) |V (x)| = O(|x|%) as |x| → ∞,

for some % ≥ 0.
If V (x) and all of its derivatives are bounded, then the only singularity of

EH(t, x, y) is at t = 0, and EH(t, x, y) is C∞ in t ∈ R\0, x ∈ Rn and y ∈ Rn. This
was proved by [Zelditch, 1983] (see also [Y. Fujiwara & Osborn, 1983], [Kitada,
1988], [Jensen, 1986]). The same regularity property of EH(t, x, y) in the case
of the potentials with sublinear growth, % < 1, follows from the recent results
of [Craig, Kappeler & Strauss, 1995]. Finally, for the subquadratic (% < 2)
potentials, the regularity of the fundamental solution in t ∈ R \ 0, x ∈ Rn and
y ∈ Rn has been proved independently by [Kapitanski & Rodnianski, 1996] and
[Yajima, 1996]. Yajima has also shown that if the potential grows faster than
quadratically (% > 2), then EH(t, x, y) is quite singular everywhere in t, x and
y; see [Yajima, 1996] for details.

The potentials that grow quadratically compose a special, borderline class.
In this paper we will be dealing with the quadratic potentials of the form

(4) V (x) = 1
2 |x|

2 + w(x),

where w(x) is a subquadratic perturbation. If w(x) ≡ 0, the Hamiltonian be-
comes H0 = − 1

2 ∆+ 1
2 |x|

2, and the corresponding equation (2a) is known as the
Schrödinger equation for the quantum harmonic oscillator. The fundamental
solution in this case is given by the Mehler formula:

(5a) EH0(t, x, y) =
e−inµ(t)/2

|2π sin t|n/2
e(i/ sin t){cos t·(|x|2+|y|2)/2−x·y},

where µ(t) = (2k + 1)π/2 for πk < t < π(k + 1), k integer, and

(5b) EH0(πk, x, y) = e−ikπ/2δ((−1)kx− y).

One observes that EH0(t, x, y) is smooth for non-resonant t, and is singular (a
δ-function) for resonant t, t ∈ {kπ : k ∈ Z}.

It turns out that such a stratification of regularity is stable under reasonable
perturbations of H0.

S. Zelditch showed that if the perturbation w(x) is bounded, and all its
derivatives are bounded, then EH(t, x, y) is smooth when t /∈ {kπ : k ∈ Z},
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[Zelditch, 1983, Thm. III]. If w(x) satisfies the more restrictive conditions of
being of class S0(Rn), i.e.,

|∂α
xw(x)| = O(|x|−|α|) as |x| → ∞, ∀α ∈ Zn

+,

then the singular support of EH(kπ, ·, y) is just one point, (−1)ky, and
EH(kπ, x, y) is rapidly decreasing in x away from the singularity [Zelditch, 1983,
Thm. II]. The latter result was complemented by A. Weinstein, who showed that
the wave front set of EH(kπ, ·, y) is (−1)k times the wave front set of δ(· − y)
[A. Weinstein, 1985].

On the other hand, D. Fujiwara studied the structure of EH(t, x, y) for qua-
dratic potentials V (x) more general than (4). He showed that there is always
a small time interval (0, τ) such that EH(t, x, y) is smooth when t ∈ (0, τ) [D.
Fujiwara, 1979, 1980].

Our goal in the present paper is to generalize the results of Zelditch and
Fujiwara. For the class of potentials that Fujiwara works with, one cannot ex-
pect that the singularities of the fundamental solution will appear only at the
moments t = kπ. However, if we assume that V (x) is of the form (4) with w(x)
that grows slower than const · |x|2, then we prove that EH(t, x, y) develops sin-
gularities only at the resonant times {kπ : k ∈ Z} and is smooth everywhere else.
In fact, we work with two slightly different classes of subquadratic perturbations
w(x) and use two different techniques, originated in [Kapitanski & Rodnianski,
1996] and [Yajima, 1996], to treat them.

The first technique is based on the estimates for the solutions of the Schrödin-
ger equations in certain Hilbert scales of weighted Sobolev spaces. It relates the
decay of the initial data to the smoothening of the solutions at the non-resonant
times. The results on the fundamental solution then come as a corollary.

With this technique we are able to treat the real-valued, infinitely differen-
tiable perturbations w(x) that satisfy

(6) |∂α
xw(x)| ≤ cα〈x〉ν|α|, ∀α ∈ Zn

+, |α| ≥ 1,

for some ν < 1, where, as usual, 〈x〉 stands for
√
|x|2 + 1.

We use the scale of Hilbert spaces {Hs : s ∈ R} generated by the powers
of the selfadjoint operator operator Λ = (−∆ + |x|2 + 1)1/2 in H0 = L2(Rn).
By definition, Hs, for positive s, is the domain of Λs equipped with the inner
product (f, g)s = (Λsf,Λsg), and Hs is the dual space to H−s when s is negative.

Theorem I. Assume that w satisfies (6) with 0 ≤ ν < 1. Let ψ0 ∈ Hs, for
some s, and, in addition, 〈x〉lψ0 ∈ Hs−lν for l = 1, . . . ,m, some integer m ≥ 1.
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Then for any t > 0 the solution ψ of the initial value problem

(7a)
1
i

∂

∂t
ψ(t, x)− 1

2
∆ψ(t, x) +

1
2
|x|2ψ(t, x)

+ w(x)ψ(t, x) = 0, t > 0, x ∈ Rn,

(7b) ψ(0, x) = ψ0(x),

has the following regularity properties:

(8a)
(

sin t
〈x〉1−ν

)l

ψ(t, ·) ∈ Hs+l(1−ν), l = 0, 1, . . . ,m,

and the Hs+l(1−ν)-valued function (sin t/〈x〉1−ν)lψ(t, ·) is continuous for t > 0.
Moreover, given T > 0, there exists a constant c = c(T,m, V ) > 0 such that the
following estimate holds:

(8b)
∥∥∥∥(

sin t
〈x〉1−ν

)m

e−itH ψ0

∥∥∥∥
Hs+m(1−ν)

≤ c
m∑

l=0

‖〈x〉lψ0‖Hs−lν
, ∀t, 0 < t ≤ T.

This theorem implies immediately the following result.

Corollary II. If w(x) satisfies (6) then the fundamental solution
EH(t, x, y) is C∞ for t /∈ πZ. In addition, for any integer m ≥ 0, and any
ε > 0, the functions(

sin t
〈·x〉1−ν

)m

EH(t, ·x, y) and
(

sin t
〈·y〉1−ν

)m

EH(t, x, ·y)

are continuous functions of t with values in H−n/2−ε+m(1−ν).

The second technique is based on Fujiwara’s construction of the fundamental
solution for small time intervals. Here we need the following assumptions on
w(x): w(·) is real-valued, infinitely differentiable, and

(9) |∂α
xw(x)| = o(1) as |x| → ∞, ∀α ∈ Zn

+, |α| ≥ 2.

Theorem III. Suppose w(x) satisfies (9). Then the fundamental solution
EH(t, x, y) is a C∞-function in every slab Πk,ε = {(t, x, y) : kπ + ε < t <

(k+ 1)π− ε, x, y ∈ Rn}, k ∈ Z, ε ∈ (0, π/2). Moreover, in every layer Πk,0, the
fundamental solution can be written in the form

(10) EH(t, x, y) = a(t, x, y) eiφ(t,x,y),
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where the functions a(t, x, y) and φ(t, x, y) are infinitely differentiable in Πk,0,
while in the narrower slabs Πk,ε, ε > 0, they have the following additional prop-
erties:

(11a) sup
(t,x,y)∈Πk,ε

|∂l
t∂

α
x ∂

β
y a(t, x, y)| ≤ cl,α,β(ε), ∀l = 0, 1, 2, . . . ,∀α, β ∈ Zn

+,

(11b) sup
(t,x,y)∈Πk,ε

|∂l
t∂

α
x ∂

β
y φ(t, x, y)| ≤ cl,α,β(ε),

∀l = 0, 1, 2, . . . ,∀α, β ∈ Zn
+, |α+ β| ≥ 2,

for some positive constants cl,α,β(ε) <∞.
In addition, there exists % = %(ε) > 0 such that whenever |x|2 + |y|2 ≥ %2,

the phase function φ(t, x, y) is the classical action

(12) S(t, x, y) =
∫ t

0

(
1
2

∣∣∣∣dx(s)ds

∣∣∣∣2 − 1
2
|x(s)|2 − w(x(s))

)
ds,

where x(s) is the unique classical trajectory connecting y = x(0) with x = x(t).
More precisely, if |x|2 + |y|2 ≥ %2, then, first, there exists a unique solution x(s)
of the Newton equation

d2

ds2
x(s) = −x(s)− ∂w

∂x
(x(s)),

such that y = x(0) and x = x(t); second, S(t, x, y) is well defined and satisfies
(11b); and finally, the phase function in (10) can be chosen so that φ(t, x, y) =
S(t, x, y).

Remark. The class of potentials satisfying (6) nearly includes all potentials
of class (9). But neither of them includes the other. Instructive examples are
the following. The potential

(13a) w(x) = |x|2/ ln〈x〉

obeys the conditions (9) but not (6).
The potential

(13b) w(x) = 〈x〉r1 sin〈x〉r2 ,

with r1, r2 > 0 and r1+r2 < 2, obeys (6) with any ν such that r1+r2−1 ≤ ν < 1,
but does not obey (9).

Remark. Since EH is smooth inside any slab Πk,ε, we can always write
EH(t, x, y) in the form (10) with smooth (inside Πk,ε) amplitude a and phase φ.
Note, however, that Corollary II does not give the boundedness of the sort that
Theorem III does (see (11)).

Once we know that the fundamental solution EH(t, x, y) is singular only at
the resonant times, the question arises about the structure of the singularities of
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EH(kπ, x, y). At the moment we do not have in any way complete answers, but
a partial result that we have is of interest.

Theorem IV. Assume that w is of class Sν for some ν < 1, i.e.,

(14) |∂αw(x)| ≤ cα〈x〉ν−|α|, ∀α ∈ Zn
+.

Then the singular support of EH(kπ, ·, y) is {(−1)ky}.

Remark. Thus, the sublinear perturbations do not affect the location of the
singularities of the fundamental solution. It is likely that the wave front set is
not affected either. Note, however, that for linear w(x) = c · x we have

(5a′) EH(t, x, y)

=
e−inµ(t)/2

|2π sin t|n/2
ei|c|2t/2e(i/ sin t){cos t·(|x+c|2+|y+c|2)/2−(x+c)·(y+c)},

and the singularity of EH((2m+1)π, ·, y) is now located at x = −y− 2c and not
at x = −y as it was in the case w = 0.

Acknowledgments. The work of L. Kapitanski and I. Rodnianski was par-
tially supported by NSF grant DMS-9623520. The work of K. Yajima was carried
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like to express his sincere thanks to both Institutions and the Ministry for making
this work possible. He also acknowledges the warm hospitality of the members
of the Courant Insitute.

1. Estimates in weighted Sobolev spaces

Consider the initial value problem

(1.1a)
1
i

∂

∂t
ψ(t, x)− 1

2
∆ψ(t, x)

+
1
2
|x|2ψ(t, x) + w(x)ψ(t, x) = 0, t > 0, x ∈ Rn,

(1.1b) ψ(0, x) = ψ0(x).

In this section we assume that w(x) is real, infinitely differentiable, and, for some
ν < 1, satisfies the conditions

(1.2) |∂α
xw(x)| ≤ cα〈x〉ν|α|, ∀α ∈ Zn

+, |α| ≥ 1.

We study (1.1) in the scale of Hilbert spaces Hs, s ∈ R, defined in the introduc-
tion. Note that Λr is an isometry between Hs and Hs−r for any r ∈ R and any
s ∈ R. In particular, the following norms are equivalent:

(1.3) ‖∇f‖2(s) + ‖〈x〉f‖2(s) ≈ ‖f‖2(s+1),

where ‖ · ‖(s) is the norm in Hs.
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A linear operator A :
⋃

sHs →
⋃

sHs is said to be of order ≤ r if A maps
continuously Hs into Hs−r for every s ∈ R. Of course, Λr is of order ≤ r. It is
not hard to show that the operator of multiplication by 〈x〉k, k > 0, is of order
≤ k, while 〈x〉k with negative k is of order ≤ 0. A little bit harder is the fact
that (multiplication by) w(x) is of order ≤ 1+ν, and the derivatives ∂α

xw(x) are
of order ≤ ν|α| [Kapitanski & Rodnianski, 1996].

Along with (1.1) we consider a more general inhomogeneous problem

(1.4)
1
i

∂

∂t
u(t, x)− 1

2
∆u(t, x) +

1
2
|x|2 u(t, x) + w(x)u(t, x) = h(t, x),

u(0, x) = u0(x).

The general approach developed in [Kapitanski, 1990], when applied to (1.4),
gives the following existence and uniqueness results.

Lemma 1.1. For any real r, for any u0 ∈ Hr and for any h(·t, ·x) ∈
L1

loc(R → Hr), there exists a unique solution u(t, x) of (1.4) such that the cor-
responding mapping u : R 3 t 7→ u(t, ·) ∈ Hr is (strongly) continuous. Moreover,
for every T > 0, there exists a constant c̃T > 0 such that the following energy
estimate holds:

(1.5) ‖u(t, ·)‖(r) ≤ c̃T

{
‖u0‖(r) +

∫ t

0

‖h(τ, ·)‖(r) dτ
}
, 0 ≤ t ≤ T.

This follows from Lemma 2.1 of [Kapitanski, 1990]. The only thing one has
to check is that the commutator [Λ2k, w] is a continuous mapping from Hk into
H−k, for every real k (see [Kapitanski, 1990], Lemma 2.1). But this is true
because of (1.2).

We now turn to the proof of Theorem I. The scheme of the proof will
be essentially the same as in [Kapitanski & Rodnianski, 1996]. To make the
exposition more transparent, we take here n = 1. The necessary changes in the
case n > 1 are outlined in Remark below.

Proof of Theorem I. Our assumptions on the initial wave-function are
the following: for some s ∈ R and some integer m ≥ 1,

(1.6) 〈x〉lψ0 ∈ Hs−lν , l = 0, 1, . . . ,m.

By Lemma 1.1, problem (1.1) has a unique solution ψ ∈ Cloc(R → Hs), and, for
any T > 0,

(1.7) sup
0≤t≤T

‖ψ(t, ·)‖(s) ≤ c̃T ‖ψ0‖(s).

Define an operator

(1.8) Yt = cos t · x+ i sin t · ∂x.
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Set

L =
1
i

∂

∂t
− 1

2
∆ +

1
2
|x|2 + w(x).

It is easy to check that the commutators of L with the powers of Yt can be
written in the form

(1.9) [L,YN
t ] = −

N∑
k=1

(
N

k

)
((i sin t · ∂x)kw(x)) · YN−k

t .

The function ψ1 = Yt ψ is the solution of the following inhomogeneous problem:

(1.10) Lψ1 = −i sin t · ∂xw(x) · ψ, ψ1(0, x) = xψ0(x).

In view of our assumption (1.6), we have ψ1(0, ·) ∈ Hs−ν . The operator (of
multiplication by) ∂xw(x) is of order ≤ ν. When it acts on ψ(t, ·) ∈ Hs, the result
lies in Hs−ν . Applying Lemma 1.1 to (1.10), we see that ψ1 ∈ Cloc(R → Hs−ν),
and, for any T > 0,

(1.11) sup
0≤t≤T

‖ψ1(t, ·)‖(s−ν) ≤ cT {‖xψ0‖(s−ν) + ‖ψ0‖(s)}.

Here and further on, cT and c stand for constants that do not depend on ψ0,
but may change from estimate to estimate.

The estimate (1.11) implies that 〈x〉−(1−ν)(sin t)ψ ∈ Hs+(1−ν). To see this,
we need the following identity:

∂x

(
(i sin t)k+1φ

〈x〉(k+1)(1−ν)

)
=

1
〈x〉1−ν

· (i sin t)kYtφ

〈x〉k(1−ν)
− cos t · x

〈x〉1−ν
· (i sin t)kφ

〈x〉k(1−ν)
(1.12)

− (k + 1)(1− ν)i sin t · x
〈x〉3−ν

· (i sin t)kφ

〈x〉k(1−ν)

where k is an arbitrary non-negative constant, and φ is an arbitrary temperate
distribution, say. If φ = ψ, and k = 0, then the Hs−ν-norm of the right side of
(1.12) is bounded by

c(‖Ytψ(t, ·)‖(s−ν) + ‖〈x〉νψ(t, ·)‖(s−ν) + ‖〈x〉−2+νψ(t, ·)‖(s−ν))

≤ c(‖ψ1(t, ·)‖(s−ν) + ‖ψ(t, ·)‖(s)) ≤ cT (‖〈x〉ψ0‖(s−ν) + ‖ψ0‖(s)).

Hence,

(1.13a) sup
0≤t≤T

∥∥∥∥∂x

(
sin t · ψ(t, ·)
〈x〉1−ν

)∥∥∥∥
(s−ν)

≤ cT
(
‖〈x〉ψ0‖(s−ν) + ‖ψ0‖(s)

)
.

On the other hand,

(1.13b)
∥∥∥∥〈x〉( sin t · ψ(t, ·)

〈x〉1−ν

)∥∥∥∥
(s−ν)

≤ c‖ψ(t, ·)‖(s) ≤ cT ‖ψ0‖(s).
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From (1.13), taking into account (1.3), we obtain the estimate

(1.14) sup
0≤t≤T

∥∥∥∥ sin t · ψ(t, ·)
〈x〉1−ν

∥∥∥∥
(s+1−ν)

≤ cT (‖〈x〉ψ0‖(s−ν) + ‖ψ0‖(s)),

which proves our theorem in the case m = 1. If m = 2, we proceed as follows.
Define ψ2 = Yt ψ1 = Y2

t ψ. Since ψ is the solution of (1.1), ψ2 is the solution
of the problem (we use (1.9) here)

(1.15) Lψ2 = −i sin t · ∂xw(x) · ψ1 + sin2 t · ∂2
xw(x) · ψ, ψ2(0, x) = x2ψ0(x).

By assumption (1.6), ψ2(0, ·) ∈ Hs−2ν . The right hand side of the differential
equation is a continuous function of t with values in Hs−2ν , and its Hs−2ν-norm
is bounded by cT (‖〈x〉ψ0‖(s−ν)+‖ψ0‖(s)) on the interval [0, T ]. This follows from
(1.2), (1.7) and (1.11). Lemma 1.1 then implies that ψ2 ∈ Cloc(R → Hs−2ν) and

(1.16) sup
0≤t≤T

‖ψ2(t, ·)‖(s−2ν) ≤ cT {‖〈x〉2ψ0‖(s−2ν) + ‖〈x〉ψ0‖(s−ν) + ‖ψ0‖(s)}.

In the same fashion as we obtained (1.14), we use the identity (1.12) with φ = ψ1

and k = 0 to show that

(1.17) sup
0≤t≤T

∥∥∥∥ sin t · ψ1(t, ·)
〈x〉1−ν

∥∥∥∥
(s+1−2ν)

≤ cT
(
‖〈x〉2ψ0‖(s−2ν) + ‖〈x〉ψ0‖(s−ν) + ‖ψ0‖(s)

)
.

The identity (1.12), with φ = ψ and k = 1, reads

∂x

(
(i sin t)2ψ
〈x〉2(1−ν)

)
=

1
〈x〉1−ν

· (i sin t)ψ1

〈x〉1−ν
− cos t · x

〈x〉1−ν
· (i sin t)ψ
〈x〉1−ν

(1.18)

− 2(1− ν)i sin t · x
〈x〉3−ν

· (i sin t)ψ
〈x〉1−ν

.

The right side of this equality is in Hs+1−2ν , with the norm bounded by

c

(∥∥∥∥ sin t · ψ1(t, ·)
〈x〉1−ν

∥∥∥∥
(s+1−2ν)

+
∥∥∥∥ sin t · ψ(t, ·)

〈x〉1−ν

∥∥∥∥
(s+1−ν)

)
.

Therefore, the estimates (1.14) and (1.17) yield

(1.19a) sup
0≤t≤T

∥∥∥∥∂x

(
(i sin t)2ψ
〈x〉2(1−ν)

)∥∥∥∥
(s+1−2ν)

≤ cT
(
‖〈x〉2ψ0‖(s−2ν) + ‖〈x〉ψ0‖(s−ν) + ‖ψ0‖(s)

)
.
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At the same time,∥∥∥∥〈x〉( (i sin t)2ψ
〈x〉2(1−ν)

)∥∥∥∥
(s+1−2ν)

=
∥∥∥∥〈x〉ν(

(i sin t)2ψ
〈x〉1−ν

)∥∥∥∥
(s+1−2ν)

(1.19b)

≤ c

∥∥∥∥ sin t · ψ
〈x〉1−ν

∥∥∥∥
(s+1−ν)

≤ cT (‖〈x〉ψ0‖(s−ν) + ‖ψ0‖(s)).

In view of (1.3), the estimates (1.19) lead to the estimate

(1.20) sup
0≤t≤T

∥∥∥∥ (i sin t)2ψ(t, ·)
〈x〉2(1−ν)

∥∥∥∥
(s+2(1−ν))

≤ cT (‖〈x〉2ψ0‖(s−2ν) + ‖〈x〉ψ0‖(s−ν) + ‖ψ0‖(s)),

which proves Theorem I in the case m = 2. If m > 2, then one has to proceed
in the same fashion, improving the regularity of ψ step by step.

2. On the singular supports of the solutions

In this section we prove a theorem that relates the location and strength of
the point singularities of the wave function at the resonant times t = kπ, k 6= 0,
to the location and strength of the singularity at t = 0. As in Section 1, we use
the scale of weighted Sobolev spaces Hs, the energy estimates, and commutators.

Consider the problem

(2.1) Lψ = 0, ψ(0) = ψ0,

where L = 1
i

∂
∂t −

1
2∆ + 1

2 |x|
2 + w(x). In this section we impose stronger re-

strictions on w(x). Namely, we assume that w(x) satisfies the assumption of
Theorem V:

(2.2) |∂αw(x)| ≤ cα〈x〉ν−|α|, ∀α ∈ Zn
+, for some ν < 1.

To state our main result, we first introduce two sets of operators, which act in
the scale Hs, and which depend on two parameters: the time, t, and the point
y = (y1, . . . , yn) ∈ Rn; the latter may be viewed as the location of the singularity
of ψ0. The operators in question are

Kj
t = cos t · xj + i sin t · ∂

∂xj
− yj , j = 1, . . . , n,(2.3a)

Rk
t = − sin t · xk + i cos t · ∂

∂xk
− yk, k = 1, . . . , n.(2.3b)

We use these operators to state the hypotheses about the initial data and in the
proof later on, as well.

We assume that ψ0 ∈ Hs for some s ∈ R, and make the following hypotheses
on the structure of its singularity.
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Hypotheses. There is an integer N ≥ 1 such that for all m = 1, . . . , N ,

(2.4a) Rα
0K

β
0ψ

0 ∈ Hs−(m−1)ν , 0 ≤ |α| ≤ m− 1, |α|+ |β| = 2m− 1,

and

(2.4b) Rα
0K

β
0ψ

0 ∈ Hs−mν , 0 ≤ |α| ≤ m, |α|+ |β| = 2m.

Note that K0 = x− y, and R0 = i∂x − y.
We now turn to the main result of this section.

Theorem V. Assume that w(x) obeys (2.2), and ψ0 satisfies the above Hy-
potheses with some N ≥ 1. Then, for all t,

(2.5) Kα
t ψ(t) ∈ Hs+N(1−ν), ∀α ∈ Zn

+, |α| = N.

In particular, when t = Mπ, M ∈ Z, we have

(2.6) ((−1)Mx− y)αψ(Mπ, ·) ∈ Hs+N(1−ν).

Since δ(·−y) ∈ Hs for any s < −n/2, and Kj
0δ(x−y) = (xj−yj)δ(x−y) = 0,

j = 1, . . . , n, the hypotheses (2.4) are satisfied for ψ0(x) = δ(x−y) with arbitrary
N ≥ 1. Theorem V then implies that E(Mπ, ·, y) is C∞ everywhere except at
x = (−1)My. Note also that E(Mπ, ·, y) must have a singularity at x = (−1)My.
Indeed, E(Mπ, ·, y) cannot lie in a space better than

⋃
s<−n/2Hs, because if it

does, if E(Mπ, ·, y) ∈ Hr with some r ≥ n/2, then, by Lemma 1.1, so does
E(0, ·, y) = δ(· − y), which is impossible. This proves Theorem IV.

Let us now prove Theorem V. Again, only to make the formulae shorter,
we assume that n = 1. And again, instead of struggling through a meticulous
inductive argument, we show the first two steps which comprise all the essential
features of our approach.

As in the proof of Theorem I, we start with the commutator relations

(2.7) [L,Kt] = −i sin t · ∂xw(x), [L,Rt] = −i cos t · ∂xw(x), [Rt,Kt] = i.

Let ψ be the solution of (2.1) with ψ0 ∈ Hs. We know that ψ ∈ Cloc(R → Hs).
The functions Ktψ and (Kt)2ψ are the solutions to the problems (see (1.9))

(2.8a) LKtψ = −i sin t · ∂xw(x) · ψ, Ktψ|t=0 = K0ψ
0,

and

(2.8b)
L(Kt)2ψ = −2i sin t · ∂xw(x) · Ktψ − (i sin t)2∂2

xw(x) · ψ,
(Kt)2ψ|t=0 = (K0)2ψ0.

Given that K0ψ
0 ∈ Hs and (K0)2ψ0 ∈ Hs−ν , we have (apply Lemma 1.1 and

use (2.2))

(2.9) Ktψ ∈ Cloc(R → Hs), (Kt)2ψ ∈ Cloc(R → Hs−ν).
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Consider now the function Rt◦Ktψ. The commutator [L,Rt◦Kt] can be written
as follows:

[L,Rt ◦ Kt] = − i cos t · ∂xw(x) · Kt +Rt ◦ (−i sin t · ∂xw(x))(2.10)

= i cos t · ∂xw(x) · Kt − i sin t · ∂xw(x) · Rt + 1
2 sin 2t · ∂2

xw(x)

= − 2i cos t · ∂xw(x) · Kt

+
[
ix · ∂xw(x)− i

√
2 cos(t+ π/4) · y · ∂xw(x)

+ 1
2 sin 2t∂2

xw(x)
]
,

where we have used the important identity

(2.11) sin t · Rt = cos t · Kt − x+
√

2 cos(t+ π/4) · y.

Thus, Rt ◦ Ktψ solves the following problem:

(2.12)
LRt ◦ Ktψ = −2i cos t · ∂xw(x) · Ktψ + iBt(w)ψ,

Rt ◦ Ktψ|t=0 = R0 ◦ K0ψ
0,

where, of course,

Bt(w) =
[
(x− i

√
2 cos(t+ π/4) · y) · ∂x + 1

2 sin 2t · ∂2
x

]
w(x).

In fact, all we need to know about the factor Bt(w) is that it is of order ≤ ν (the
term x∂xw(x) has the highest order). Since, by assumption, R0 ◦K0ψ

0 ∈ Hs−ν ,
we see that

(2.13) Rt ◦ Ktψ ∈ Cloc(R → Hs−ν).

The coefficient of the derivative in either (2.3a), or (2.3b), or both, does not
vanish. Hence, having Rt ◦Ktψ(t) ∈ Hs−ν and Kt ◦Ktψ(t) ∈ Hs−ν , we conclude
that Ktψ(t) ∈ Hs+1−ν (see (1.3)). This proves Theorem V in the case N = 1.

In the case N = 2 we have an additional information about ψ0:

(2.14a) (K0)3ψ0 ∈ Hs−ν , R0 ◦ (K0)2ψ0 ∈ Hs−ν ,

and

(2.14b) (K0)4ψ0 ∈ Hs−2ν , R0◦(K0)3ψ0 ∈ Hs−2ν , (R0)2◦(K0)2ψ0 ∈ Hs−2ν .

As before, we use the commutator identities. We have

(2.15)

[L, (Kt)3] = −3i sin t · ∂xw(x) · (Kt)2

+ 3(sin t)2∂2
xw(x) · Kt + i(sin t)3∂3

xw(x),

[L,Rt ◦ (Kt)2] = −2i sin t · ∂xw(x) · Rt ◦ Kt − i cos t · ∂xw(x) · (Kt)2

+ 3
2 sin(2t)∂2

xw(x) · Kt − sin t ·Bt(∂xw(x)).

The first equality follows from (1.9). In deriving the second equality we have
also used (2.11).
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With the help of (2.15), and taking into account (2.9) and (2.13), we see that
both L(Kt)3ψ and L(Rt ◦ (Kt)2ψ) are continuous functions of t with values in
Hs−ν . Since the initial data are in Hs−ν also, Lemma 1.1 says that

(2.16) (Kt)3ψ ∈ Hs−ν , Rt ◦ (Kt)2ψ ∈ Hs−ν .

Next, we calculate

[L, (Kt)4] = − 4i sin t · ∂xw(x) · (Kt)3 + 6(sin t)2∂2
xw(x) · (Kt)2

+ 4i(sin t)3∂3
xw(x) · Kt − (sin t)4∂4

xw(x),

[L,Rt ◦ (Kt)3] = − 3i sin t · ∂xw(x) · Rt ◦ (Kt)2 − i cos t · ∂xw(x) · (Kt)3

+ 3(sin t)2∂2
xw(x) · Rt ◦ Kt +

3
2

sin(2t)∂2
xw(x) · (Kt)2

+ 4i cos t(sin t)2∂3
xw(x) · Kt − i(sin t)2Bt(∂2

xw(x)),

[L, (Rt)2 ◦ (Kt)2] = − 4i cos t · ∂xw(x) · Rt ◦ (Kt)2 + 2iBt(∂xw(x)) · Rt ◦ Kt

+ 4(cos t)2∂2
xw(x) · (Kt)2

− 2 cos t · [∂xw(x) + 2Bt(∂xw(x))] · Kt

− i · 1
2 sin(2t)[∂2

xw(x) +Bt(∂2
xw(x))].

These identities, together with (2.9), (2.13), (2.16) and (2.14b), lead to the
conclusion that

(2.17) (Kt)4ψ,Rt ◦ (Kt)3ψ, (Rt)2 ◦ (Kt)2ψ ∈ Cloc(R → Hs−2ν).

Since (Kt)4ψ(t) ∈ Hs−2ν and Rt ◦ (Kt)3ψ(t) ∈ Hs−2ν , we have, invoking again
(1.3),

(2.18a) (Kt)3ψ(t) ∈ Hs+1−2ν .

On the other hand, since Kt ◦Rt ◦ (Kt)2ψ(t) ∈ Hs−2ν (see (2.7) and (2.17)), and
(Rt)2 ◦ (Kt)2ψ(t) ∈ Hs−2ν , we have

(2.18b) Rt ◦ (Kt)2ψ(t) ∈ Hs+1−2ν .

For the same reason as above, (2.18a) and (2.18b) allow to improve the regularity
of (Kt)2ψ(t), and we obtain

(2.19) (Kt)2ψ(t) ∈ Hs+2−2ν .

This proves the theorem in the case N = 2. To handle the general case, one has
to use induction. However, the justification of the inductive step uses exactly
the same ideas as the ones we have just used to pass from N = 1 to N = 2. We
skip the formal argument.
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3. Representation of the kernel

In this section we prove Theorem III. We assume that the perturbation,
w(x), is real-valued, infinitely differentiable, and satisfies the conditions

(3.1) |∂α
xw(x)| = o(1) as |x| → ∞, ∀α ∈ Zn

+, |α| ≥ 2.

With the quantum Hamiltonian

(3.2) H = − 1
2∆ + 1

2 |x|
2 + w(x),

we associate the classical Hamilton function

H(q, p) = 1
2 |p|

2 + 1
2 |q|

2 + w(q).

Denote by q(t, y, ξ), p(t, y, ξ) the solution of the classical Hamiltonian system

(3.3a)


∂

∂t
q = p,

∂

∂t
p = q − ∂

∂q
w(q),

.

subject to the initial conditions

(3.3b) q(0, y, ξ) = y, p(0, y, ξ) = ξ.

As shown in [Fujiwara, 1979], under even weaker assumptions on w, there exists
τ∗ > 0 so that, for every t ∈ (0, τ∗] and every y ∈ Rn, the mapping Rn 3 ξ 7→
q(t, y, ξ) ∈ Rn is a diffeomorphism. Hence, given x, y ∈ Rn and t ∈ (0, τ∗], there
exists a unique ξ such that x = q(t, y, ξ). One then defines the classical action
as follows:

(3.4) S(t, x, y) =
∫ t

0

[
1
2 |p(s, y, ξ)|

2 − 1
2 |q(s, y, ξ)|

2 − w(q(s, y, ξ))
]
ds.

Fujiwara also showed that, when 0 < t ≤ τ∗, the function S(t, x, y) is smooth
and, moreover,

(3.5) S(t, x, y) =
|x− y|2

2t
+ tΦ(t, x, y),

where Φ(t, x, y) satisfies the estimates

(3.6) |∂α
x ∂

β
y Φ(t, x, y)| ≤ κα,β , ∀α, β, |α+ β| ≥ 2,

with constants κα,β independent of t ∈ (0, τ∗] and x, y. The regularity in t can
be derived from the eikonal equation satisfied by S(t, x, y),

∂

∂t
S(t, x, y) +

1
2

∣∣∣∣∂S∂x (t, x, y)
∣∣∣∣2 +

1
2
|x|2 + w(x) = 0,

and the above estimates on the spatial derivatives.
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In what follows, we will choose τ∗ sufficiently small. Then we will have, in
particular, the estimate

(3.7) inf
|y|≤R

∣∣∣∣ ∂∂yS(t, x, y)
∣∣∣∣ ≥ c(R)|x|,

for all sufficiently large x.
We need the basic result of [Fujiwara, 1980] on the structure of the fun-

damental solution E(t, x, y) of the Schrödinger equation with the Hamiltonian
(3.2).

Theorem 3.1. For t ∈ (0, τ∗],

(3.8) E(t, x, y) = a(t, x, y) eiS(t,x,y),

where a(t, x, y) is a smooth function for which the following estimates hold pro-
vided t stays away from 0:

sup
0<ε≤t<τ∗

x,y∈Rn

|∂l
t∂

α
x ∂

β
y a(t, x, y)| ≤ cl,α,β(ε), ∀l = 0, 1, 2, . . . ,∀α, β ∈ Zn

+.

We are now in a position to prove Theorem III. Choose an arbitrary (large)
T > 0 and a sufficiently small ε ∈ (0, π/2). Define T = {t : 0 < t ≤ T ,
dist(t, πZ) ≥ ε}.

We will construct the fundamental solution E(t, x, y) for t ∈ T by glueing
together Fujiwara’s local representations.

We can always choose the nodal points 0 = t0 < t1 < . . . < tM so that tj ∈ T,
j = 1, . . . ,M , and, for every t ∈ T, one has tj ≤ t < tj+1 and s = t− tj < τ∗/2.
(After the proof of Proposition 3.2 below, we discuss in more detail the choice
of tj ’s.)

Writing e−itH as a product,

(3.9) e−itH = e−i(t−tj)H · . . . · e−i(t1−t0)H ,

we see that each of the factors e−i(tk+1−tk)H and e−i(t−tj)H is an integral operator
with a kernel that has Fujiwara’s representation (3.8). To construct E(t, x, y),
we take the composition of these integral operators and find its kernel. Thus, we
need the following result.

Proposition 3.2. Let E be an integral operator with kernel

(3.10) E(x, y) = b(x, y)eiσ(x,y),

where b(·, ·) is a smooth function, bounded with all its derivatives; σ(·, ·) is also
smooth, and its derivatives obey the estimates

(3.11a) |∂α
x ∂

β
y σ(x, y)| ≤ cα,β , |α+ β| ≥ 2.
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Let ε be given so that

(3.12) 0 < ε < min
{
τ∗
4
,

1
4πτ∗κ0,2

}
,

where κ0,2 is the maximal of all constants κα,β in (3.6) with α = 0 and |β| = 2.
Assume that there exist θ > 0 and % > 0 such that

1) dist(θ, πZ) ≥ ε,
2) for all x and y with |x|2 + |y|2 > %2,

(3.11b) σ(x, y) = S(θ, x, y),

where S(θ, x, y) is defined as in (3.4). We assume that % is sufficiently large, the
lower bound on its size is determined by τ∗, κ0,2, and ε, as in Lemma A.5 of
Appendix. Given s such that

(3.13) 0 < s < τ∗,

∣∣∣∣ cot θ +
1
s

∣∣∣∣ ≥ 1
4ε
, dist(s+ θ, πZ) ≥ ε,

the product J = e−isHE is an integral operator with kernel J (x, y) of the form

(3.14) J (x, y) = bs(x, y) eiσs(x,y),

where bs(·, ·) is smooth and bounded with all its derivatives, σs(·, ·) satisfies
(3.11a) (with probably different bounds cα,β), and

(3.15) σs(x, y) = S(s+ θ, x, y), ∀x, y : |x|2 + |y|2 > %2.

For all t sufficiently close to s, the function bt(x, y) and its derivatives remain
uniformly bounded, and the estimates (3.11a) hold for σt(x, y) with, perhaps,
larger constants cα,β. Also, bt(x, y) and σt(x, y) are infinitely differentiable in t

when t stays within a sufficiently small neighborhood of s.

A critical reader has probably noticed that we use S(θ, x, y) without smallness
assumption on θ. It turns out, however, that for large, non-resonant θ, the action
S(θ, x, y) is also well defined if |x|2+ |y|2 is sufficiently large. We establish this in
Appendix, where we study the properties of S(t, x, y). The results of Appendix
are heavily used in the proof below.

Proof of Proposition 3.2. Formally, J (x, y) can be written as an inte-
gral,

(3.16) J (x, y) =
∫
a(s, x, z)eiS(s,x,z)b(z, y) eiσ(z,y) dz,

where a(s, x, z)eiS(s,x,z) is the kernel of e−isH given by Fujiwara’s construction.
Our goal is to show that the integral in (3.16) defines a C∞ function that can
be written in the form (3.14).
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By assumption, θ, s + θ ∈ T. Lemma A.7 assures that S(t, x, y) is a (well
defined) smooth function on the set T × B≥%, where B≥% = {(x, y) ∈ R2n :
|x|2 + |y|2 ≥ %2}, and % = %(ε) is large enough (as in Lemma A.5). Note that
our assumptions (3.12) and (3.13) are needed for Lemma A.7.

Choose a cut-off function χ<
1 ∈ C∞

0 (Rn × Rn) so that χ<
1 ≥ 0, χ<

1 (z, y) = 1
if |z|2 + |y|2 ≤ 1, and χ<

1 (z, y) = 0 if |z|2 + |y|2 ≥ 2. For r > 0, define χ<
r (z, y) =

χ<
1 (z/r, y/r) and χ>

r (z, y) = 1− χ<
r (z, y).

We write the integral (3.14) as a sum of two integrals, J(x, y) = J<(x, y) +
J>(x, y), where

J<(x, y) =
∫
a(s, x, z)eiS(s,x,z)χ<

% (z, y)b(z, y)eiσ(z,y) dz,(3.17a)

J>(x, y) =
∫
a(s, x, z)ei S(s,x,z)χ>

% (z, y)b(z, y)eiσ(z,y) dz.(3.17b)

Because of (3.5)–(3.7), integration by parts shows that J<(x, y) is a rapidly
decreasing function on Rn × Rn. We, therefore, may ignore it.

In view of (3.11b), the second integral takes the form

(3.17c) J>(x, y) =
∫
a(s, x, z)b(z, y)χ>

% (z, y)ei[S(s,x,z)+S(θ,z,y)] dz.

As we show in Lemma A.7(b) of Appendix,∣∣∣∣ ∂∂z [S(s, x, z) + S(θ, z, y)]
∣∣∣∣ ≥ 1

8ε
|z|,

for all sufficiently large |z|. Then we can integrate by parts in (3.17c) and show
that J>(x, y) is C∞ in x and y.

Now, we take %1 as defined in Lemma A.7(d), and write J>(x, y) as a sum of
χ<

%1
(x, y)J>(x, y) and χ>

%1
(x, y)J>(x, y). The first being a C∞

0 (Rn×Rn) function,
we ignore it and focus on the second. We treat the integral

(3.17d) J>>(x, y) =
∫
χ>

%1
(x, y)a(s, x, z)b(z, y)χ>

% (z, y)ei[S(s,x,z)+S(θ,z,y)] dz

with the stationary phase method developed in [Asada & Fujiwara, 1978]. Since,
on the support of the integrand, |x|2 + |y|2 ≥ %2

1 and |z|2 + |y|2 ≥ %2, Lemma
A.7(d) tells us that there exists a unique stationary point z∗ of the phase function

Φs,θ,x,y(z) = S(s, x, z) + S(θ, z, y),

and S(s, x, z∗) + S(θ, z∗, y) = S(s + θ, x, y). Part (f) of Lemma A.7 shows
that the Hessian of Φ(z) is non-degenerate (see (A.29)). In addition, all partial
derivatives of order two and higher of Φs,θ,x,y(z) with respect to x, y, and z are
bounded. Also, as we prove in Lemma A.7(e), the first derivatives of Φs,θ,x,y(z)
are bounded from below. Thus, all the conditions of Lemma 3.2 of [Asada &
Fujiwara, 1978] are fulfilled. We apply their result to J>>(x, y) and obtain the
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desired representation for J>>(x, y) and, hence, for J(x, y). The regularity of
bt(x, y) and σt(x, y) in t, for t close to s, also follows from the above arguments
and Proposition 3.1. �

On the choice of the nodal points tj . Let T > 0 and ε be fixed. We assume
that ε obeys (3.12) and, in addition, ε < π/2 and

(3.18)
tan ε
ε

<
4
3
.

To be able to use Proposition 3.2, we must choose the nodal points t1, . . . , tM ∈ T

appropriately. This means that the following conditions must be satisfied:

tj+1 − tj < τ∗, j = 0, . . . ,M − 1,

and also (see (3.13)),∣∣∣∣cot tj +
1

t− tj

∣∣∣∣ ≥ 1
4ε

if tj < t ≤ tj+1, t ∈ T.

We claim that they are satisfied if we take as nodal points all θ ∈ T of the form
mπ ± ε, and, in addition, inside each inteval (mπ + ε, (m + 1)π − ε), all the
points mπ + ε + lε/2 with integer l > 0. Thus, we have to consider two cases:
a) t− tj ≤ ε/2, and b) t = tj+1 = tj + 2ε. In the case a) we have∣∣∣∣cot tj +

1
t− tj

∣∣∣∣ ≥ 1
t− tj

− |cot tj | ≥
2
ε
− cot ε ≥

(3.18)

1
4ε
.

In the case b) we have, for some integer m,∣∣∣∣cot tj +
1

t− tj

∣∣∣∣ =
∣∣∣∣cot(mπ − ε) +

1
2ε

∣∣∣∣ =
(3.18)

cot ε− 1
2ε

≥
(3.18)

1
4ε
.

One final remark to complete the proof of Theorem III: The small variation
of t in e−i tH affects only the leftmost factor on the right side of (3.9). Applying
Proposition 3.2 and taking into account the compactness of the interval [kπ +
ε, (k + 1)π − ε], we obtain the estimates (0.11).

A. Appendix

Consider a Hamiltonian of the form

(A.1) H(q, p) = 1
2 |p|

2 + 1
2 |q|

2 + w(q), q, p ∈ Rn,

where w(q) is a smooth function satisfying the conditions

(A.2) |∂α
xw(q)| = o(1) as |q| → ∞, |α| ≥ 2.
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Let q(t, y, η), p(t, y, η) denote the solution of the classical Hamiltonian system

(A.3a)


∂

∂t
q = p,

∂

∂t
p = q − ∂

∂q
w(q),

subject to the initial conditions

(A.3b) q(0, y, η) = y, p(0, y, η) = η.

The assumption (A.2) guarantees the existence and uniqueness of the global
trajectory (q(t, y, η), p(t, y, η)), −∞ < t < ∞, for any choice of the initial data
(y, η) ∈ R2n.

Note that q(t, y, η), p(t, y, η) satisfy the following integral equations:

(A.4)


q(t, y, η) = cos t · y + sin t · η −

∫ t

0

sin(t− s)
∂

∂q
w(q(s, y, η)) ds,

p(t, y, η) = − sin t · y + cos t · η −
∫ t

0

cos(t− s)
∂

∂q
w((q(s, y, η)) ds.

We pick and fix, for the rest of this section, an arbitrary T > 0 and a
sufficiently small ε > 0. Until Lemma A.7 below, it suffices to have ε < π/2.
However, for Lemma A.7, we require that (tan ε)/ε < 4/3, and, in addition,
ε < min{τ∗/4, 1/(4πτ∗κ0,2)}, where the numbers τ∗ and κ0,2 are borrowed from
Fujiwara’s construction of the local-in-time fundamental solution (see [Fujiwara
1979] and Remark A.6 below).

Denote by T the set

T = {t : 0 < t ≤ T, |t−mπ| ≥ ε, ∀m ∈ Z}.

Lemma A.1. For every r′ > 0 there exists C = C(r′) > 0 such that

(A.5) (|y|2 + |η|2)1/2 · |{t ∈ T : |q(t, y, η)| ≤ r′}| ≤ C,

where |{. . .}| stands for the measure of the set {. . .}.

Before we turn to the proof of this lemma, we mention a few simple properties
of w(q) and H(q, p) that follow from (A.2), which we need here and later on.

Lemma A.2. For every δ, 0 < δ < 1/2, there exist rδ > 0 and Cδ > 0 such
that

(i) |w(q)|+ |q| · |∂w(q)/∂q| ≤ δ|q|2 + Cδ if |q| > rδ;
(ii) |∂2w(q)/∂q2| ≤ δ if |q| > rδ;
(iii) (1− δ)

(
1
2 |q|

2 + 1
2 |p|

2
)
≤ H(q, p) ≤ (1 + δ)

(
1
2 |q|

2 + 1
2 |p|

2
)

if
√
|q|2 + |p|2 > rδ.
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Proof of Lemma A.1. Due to the conservation of energy and statement
(iii) of Lemma A.2, we may assume in the proof of (A.5) that |y| ≤ r′ and, at
the same time, r2 = |y|2 + |η|2 is sufficiently large.

Consider the quantity u(t) = |q(t, y, η)|2. It is easy to check that u(t) satisfies
the equation

d2

dt2
u(t) + 4u(t) = 4H(y, η)− 4w(q)− 2q

∂w

∂q
.

We choose a sufficiently small δ > 0 and, assuming that |y|2 + |η|2 ≥ r2δ , estimate
the right hand side from below by 2(1− δ) r2δ − 4δu(t)− 4Cδ (see Lemma A.2).
Thus, we get an inequality

(A.6)
d2

dt2
u(t) + 4(1 + δ)u(t) ≥ 2(1− δ)r2δ − 4Cδ.

Let v(t) be the solution of the equation

(A.7a)
d2

dt2
v(t) + 4(1 + δ)v(t) = 2(1− δ)r2δ − 4Cδ,

subject to the same initial conditions as u(t), i.e.,

(A.7b) v(0) = |y|2, d

dt
v(0) = 2y · η.

The standard comparison theorem for the solutions of second-order equations
[Kamke, Theorem 24.3] tells that u(t) ≥ v(t) for all t > 0. Now, v(t) is known
explicitly, namely,

v(t) = cos(λt) · |y|2 +
1
λ

sin(λt) · 2yη +
1− cos(λt)

λ2
[2(1− δ)r2δ − 4Cδ],

where λ = 2
√

1 + δ. Hence,

(A.8a) cos(λt) · |y|2 +
1
λ

sin(λt) · 2yη +
1− cos(λt)

λ2
[2(1− δ)r2δ − 4Cδ] ≤ u(t).

If u(t) ≤ (r′)2, then we should have

(A.8b) cos(λt) · |y|2 +
1
λ

sin(λt) · 2yη +
1− cos(λt)

λ2
[2(1− δ)r2δ − 4Cδ] ≤ (r′)2.

We note that |cos(λt)| · |y|2 ≤ (r′)2. Also,∣∣∣∣ 1λ sin(λt) · 2yη
∣∣∣∣ =

∣∣∣∣ cos
(
λt

2

)
y

∣∣∣∣ · ∣∣∣∣ 2λ sin
(
λt

2

)
η

∣∣∣∣
≤ 1

4δ
· cos2

(
λt

2

)
|y|2 + δ · 4

λ2
sin2

(
λt

2

)
|η|2

≤ 1
4δ

(r′)2 + δ · 4
λ2

sin2

(
λt

2

)
r2δ .
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Thus, (A.8b) implies the estimate

4
λ2

sin2

(
λt

2

)
(1− 2δ)r2δ ≤

(
2 +

1
4δ

)
(r′)2 +

8Cδ

λ2
,

from which (A.5) follows. �

Lemma A.3. For every ε1 > 0 there exists R1 = R1(ε1) > 0 such that the
following estimates hold:∥∥∥∥ ∂

∂η
q(t, y, η)− sin t · 1

∥∥∥∥ ≤ ε1, ∀t ∈ T,(A.9a) ∥∥∥∥ ∂

∂y
q(t, y, η)− cos t · 1

∥∥∥∥ ≤ ε1, ∀t ∈ T,(A.9b) ∥∥∥∥ ∂

∂η
p(t, y, η)− cos t · 1

∥∥∥∥ ≤ ε1, ∀t ∈ T,(A.9c)

when |y|2 + |η|2 ≥ R2
1.

Proof. We will prove the first estimate, the other two are proved similarly.
Differentiating the first of the equations (A.4) with respect to η we obtain

(A.10a)
∂

∂η
q(t, y, η) = sin t · 1−

∫ t

0

sin(t− s)
∂2

∂q∂q
w(q(s, y, η))

∂

∂η
q(s, y, η) ds.

Denoting by K the supremum of |∂2w(q)/∂q2|, and applying Gronwall’s inequal-
ity to (A.10a), we get the estimate∥∥∥∥ ∂

∂η
q(t, y, η)

∥∥∥∥ ≤ 1 +K

∫ t

0

∥∥∥∥ ∂

∂η
q(s, y, η)

∥∥∥∥ ds ≤ eKt ≤ eKT .

Hence,

(A.10b)
∥∥∥∥ ∂

∂η
q(t, y, η)− sin t · 1

∥∥∥∥ ≤ eKT

∫ t

0

∥∥∥∥ ∂2

∂q∂q
w(q(s, y, η))

∥∥∥∥ ds.
In view of (A.2), there exists r′ such that∥∥∥∥ ∂2

∂q∂q
w(q)

∥∥∥∥ ≤ 1
2
ε1e

−KTT−1 for |q| ≥ r′.

By Lemma A.1, there exists C0 such that the time q(t, y, η) spends inside the
ball of radius r′ is less than C0(|y|2 + |η|2)−1/2. We can now choose R1 to
be the maximal of r′ and 2C0Ke

KT ε−1
1 . Indeed, if |y|2 + |η|2 ≥ R2

1, then the
interval of integration in (A.10b) breaks into two parts: one consists of those
t for which |q(t, y, η)| ≥ r′, and the other has measure less than 1

2K
−1e−KT ε1.

Both integrals turn out to be less than 1
2ε1e

−KT , which results in the desired
estimate (A.9a). �

For t ∈ T, consider the mapping

(A.11) Ft : (y, η) 7→ (y, q(t, y, η)).
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Denote by Jt the Jacobian of Ft, and by At the matrix

At =
(

1 0
cos t · 1 sin t · 1

)
.

If we take ε1 ≤ sin ε/(8π) and choose R1 according to Lemma A.3, then we have

(A.12a) ‖Jt −At‖ ≤
sin ε
4π

,

for all t ∈ T and all y and η such that |y|2 + |η|2 ≥ R2
1. On the other hand,

evidently,

(A.12b) ‖A−1
t ‖ ≤ 2

sin ε
, ‖At‖ ≤

√
2,

for all t ∈ T.
The estimates (A.12) will allow us to show that Ft is a diffeomorphism of

the set B≥R = {|y|2 + |η|2 ≥ R2} onto its image, for some R ≥ R1. To this end
we need the following abstract result.

We change the notation so that x, temporarily, is a vector in RN , for some
N > 0. We will make use of the following notation:

B≤R = {x : |x| ≤ R}, B≥R = {x : |x| ≥ R}.

Lemma A.4. Let F be a smooth mapping of RN into itself. Assume that
there exists a non-singular matrix A such that

(A.13)
∥∥∥∥∂F∂x (x)−A

∥∥∥∥ ≤ (π‖A−1‖)−1, ∀x ∈ B≥R.

Then:

(i) F is a diffeomorphism from B≥R to its image.
(ii) The following inclusion holds: F (B≥R) ⊃ B≥%, where

(A.14) % = 36M(1 + π‖A−1‖ · ‖A‖), M = sup
|x|=R

|F (x)−Ax|.

(iii) In addition, |F (x)| ≥ |x|/(2‖A−1‖) provided |x| ≥ 6M‖A−1‖.
(iv) If F (x0) = 0 for some x0 ∈ B≥R, then

|F (x)| ≥ (2‖A−1‖)−1|x− x0|

for all x ∈ B≥R.

Proof. By assumption, the matrix ∂F (x)/∂x is the sum of the non-singular
matrix A and a matrix whose norm is not greater than π−1‖A‖ (see (A.13)). The
implicit function theorem then proves part (i).

For z ∈ B≥R, set ẑ = z/|z|. Obviously,

F (z)− F (ẑ) =
∫ 1

0

∂

∂x
F (λz + (1− λ)ẑ) dλ · (z − ẑ).



Perturbed Harmonic Oscillator 99

Therefore,

(A.15) |F (z)− F (ẑ)−A(z − ẑ)| ≤ (π‖A−1‖)−1|z − ẑ|.

Using this estimate and taking into account the definition of M (see (A.14)), we
obtain

|F (z)−Az| ≤ |F (ẑ)−Aẑ|+ |z − ẑ|
π‖A−1‖

≤M +
|z|

π‖A−1‖
.

Since |Az| ≥ ‖A−1‖−1|z|, it follows that

|F (z)| ≥ ‖A−1‖−1|z| −M − |z|
π‖A−1‖

≥ 2|z|
3‖A−1‖

−M ≥ |z|
2‖A−1‖

,

provided |z| ≥ 6‖A−1‖M . This proves (iii).
To prove (ii), we modify F (x) inside the ball B≤3R/δ, where δ < 1 will

be chosen later. Take a cut-off function φ ∈ C∞
0 (RN ) such that φ(x) = 1 for

|x| ≥ 3R, φ(x) = 0 for |x| ≤ 3/(2R) and |∇φ(z)| ≤ 21
30R

−1. For 0 < δ < 1, we
define Fδ(x) for all x ∈ RN as follows:

Fδ(x) =


F (x), |x| ≥ 3R/δ,

φ(δx)F (x) + (1− φ(δx))Ax, 3R/δ ≥ |x| ≥ 3R/(2δ),

Ax, |x| ≤ 3R/(2δ).

So defined, Fδ(·) is infinitely differentiable. For all x ∈ RN satisfying 3R/(2δ) ≤
|x| ≤ 3R/δ, we have∥∥∥∥∂Fδ

∂x
(x)−A

∥∥∥∥ ≤ ∥∥∥∥φ(δx)
(
∂F

∂x
(x)−A

)∥∥∥∥ + ‖δ(∇φ(δx))·(F (x)−Ax)‖

≤
(A.15)

1
π‖A−1‖

+
21

30R
δ

(
|F (x̂)−Ax̂|+ |x|

π‖A−1‖

)
,

where x̂ = x/|x|. Using the definition of M and replacing |x| by 3R/δ, we obtain
the estimate ∥∥∥∥∂Fδ

∂x
(x)−A

∥∥∥∥ ≤ 31
10π‖A−1‖

+
21δM
30R

.

Note that if

(A.16) δ <
15R
21M

(
1− 31

10π

)
1

‖A−1‖
,

then
21δM
30R

<
1
2

(
1− 31

10π

)
1

‖A−1‖
,

and we have ∥∥∥∥∂Fδ

∂x
−A

∥∥∥∥ < ε‖A−1‖−1,

where ε = 1
2

(
1 + 31

10π

)
< 1. Hence, Fδ is a global diffeomorphism of RN .
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Now, we choose a δ which satisfies (A.16) as follows:

δ = min
{

R

35π‖A−1‖M
, 1

}
.

Then, clearly,

F (B≥R) ⊃ Fδ(B≥3R/δ) = RN \ Fδ(B<3R/δ).

At the same time, for |x| ≤ 3R/δ we have

|Fδ(x)| ≤ |Ax|+ φ(δx)|F (x)−Ax| ≤ |Ax|+M +
|x|

π‖A−1‖

≤
(
‖A‖+

1
π‖A−1‖

)
3
R
δ +M = M

{(
‖A‖+

1
π‖A−1‖

)
35π‖A−1‖+ 1

}
≤ 36M(1 + π‖A‖ · ‖A−1‖).

This proves (ii).
Finally, if F (x0) = 0 for some x0 ∈ B≥R, and x ∈ B≥R, then we have

F (x)−A(x− x0) =
∫ 1

0

(
∂F

∂x
(γ(λ))−A

)
· γ̇(λ) dλ,

where γ(λ) is a semi-circle in B≥R of radius |x − x0|/2, connecting x0 = γ(0)
with x = γ(1). Estimating the integral, we obtain

|F (x)−A(x− x0)| ≤
∫ 1

0

∣∣∣∣∂F∂x (γ(λ))−A

∣∣∣∣ · |γ̇(λ)|dλ

≤
(A.13)

(π‖A−1‖)−1π
|x− x0|

2
= (2‖A−1‖)−1|x− x0|.

Therefore,

|F (x)| ≥ |A(x− x0)| − (2‖A−1‖)−1|x− x0| ≥ (2‖A−1‖)−1|x− x0|.

The proof of part (iv) and the lemma is complete. �

Returning to the mapping Ft : R2n → R2n defined in (A.11), we prove the
following result.

Lemma A.5. There exists R > 0 such that the following holds true.

(a) For every t ∈ T, the mapping Ft : (y, η) 7→ (y, q(t, y, η)) is a diffeomor-
phism of the set B≥R = {|y|2 + |η|2 ≥ R2} onto Ft(B≥R).

(b) For every t ∈ T, Ft(B≥R) ⊃ B≥%, where

(A.17) % = 108(1 + 2
√

2π)R/sin ε.

(c) For every (y, x) ∈ B≥% there exists a unique η ∈ Rn such that Ft(y, η) =
(y, x), and so the inverse mapping F−1

t : B≥% → B≥R ⊂ R2n is well
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defined. The corresponding mapping (t, y, x) 7→ (y, η) is smooth on
T×B≥%.

(d) For every t ∈ T,

(A.18) |Ft(y, η)| ≥
sin ε

4

√
|y|2 + |η|2 if

√
|y|2 + |η|2 ≥ 36

sin ε
R.

Proof. Take an (arbitrary) ε1 obeying the conditions

(A.19a) 0 < ε1 ≤
sin ε
8π

, ε1 <

(
1

4πε
− τ∗κ0,2

)
sin2 ε

4
.

Remark. The second inequality on ε1 is not necessary for the proof of the
lemma. We included it here in order to define the radius R that will be admissible
simultaneously here and in the main Lemma A.7 below. The constants τ∗ and
κ0,2 are defined in Remark A.6.

For ε1 so chosen, let R1(ε1) be the corresponding radius that Lemma A.3
gives. Denote by RT the following constant:

(A.19b) RT := sup
0≤t≤T

|y|2+|η|2≤r2
1/3

(|q(t, y, η)|2 + |p(t, y, η)|2)1/2,

where r1/3 is the rδ from Lemma A.2, corresponding to δ = 1/3.
Define

(A.19c) R = R(ε1) = max{R1(ε1), r1/3, RT}.

The conservation of energy (H(q, p) = H(y, η)) and inequalities (iii) of Lemma
A.2 with δ = 1/3 yield the estimates

sup
|y|2+|η|2≤R2(ε1)

|q(t, y, η)| ≤
√

2R(ε1),(A.19d)

M = sup
|y|2+|η|2=R2(ε1)

|q(t, y, η)− cos t · y − sin t · η| ≤ 3R(ε1).(A.19e)

The estimates (A.12) and Lemma A.3 then imply (a), (b), and (d).
Finally, to show that for every (y, x) ∈ B≥% there is a unique (y, η) ∈ R2n

such that Ft(y, η) = (y, x), we notice that, if the equation Ft(y, η) = (y, x)
had a solution (y, η) in the ball B<R, then we would have |x|2 ≥ |x|2 − |η|2 =
|x|2 + |y|2 − (|y|2 + |η|2) > %2 − R2 > 16R2, which contradicts (A.19d). Hence,
all the solutions to Ft(y, η) = (y, x) must lie in B≥R, but there the solution is
unique, as we have already proved in (a). The smoothness of F−1

t follows from
the inverse function theorem. �

From now on, we assume that R is the number defined by (A.19c) with the
help of an ε1 satisfying (A.19a).
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We are now in a position to define the action function S(t, x, y) for y and x
fulfilling the condition |y|2 + |x|2 ≥ %2 with any of the %’s provided by Lemma
A.5. As usual,

(A.20) S(t, x, y) =
∫ t

0

(
1
2

∣∣∣∣∂q(s, y, η)∂s

∣∣∣∣2 − 1
2

∣∣∣∣q(s, y, η)∣∣∣∣2 − w(q(s, y, η))
)
ds,

where η is uniquely determined by the equation Ft(y, η) = (y, x).

Remark A.6. Recall that there exists τ∗ > 0 such that for 0 < t ≤ τ∗ the
action S(t, x, y) is well defined for all x, y ∈ Rn. The function S(t, x, y) is smooth
and, in addition,

(A.21) S(t, x, y) =
|x− y|2

2t
+ tΦ(t, x, y),

where Φ(t, x, y) satisfies the estimates

(A.22) |∂α
x ∂

β
y Φ(t, x, y)| ≤ κα,β , ∀α, β, |α+ β| ≥ 2,

with constants κα,β independent of t ∈ (0, τ∗] and x, y. These facts are proved
in [Fujiwara, 1979].

As mentioned at the beginning of this section, ε is chosen so that

(A.23a)
tan ε
ε

<
4
3

and

(A.23b) 0 < ε < min
{
τ∗
4
,

1
4πτ∗κ0,2

}
.

We list below the additional properties of S(t, x, y) that we used in the main
body of the paper.

Lemma A.7.

(a) S(t, x, y) is a smooth function on T×B≥%.
(b) Assume that s and θ are such that 0 < s < τ∗, θ ∈ T, s+ θ ∈ T, and

(A.24)
∣∣∣∣cot θ +

1
s

∣∣∣∣ ≥ 1
4ε
.

Then, for all x, y ∈ Rn, there exists a constant R̃ = R̃(x, y, s, θ) > 0
such that

(A.25)
∣∣∣∣ ∂∂z [S(s, x, z) + S(θ, z, y)]

∣∣∣∣ ≥ 1
8ε
|z| when |z| ≥ R̃.

(c) Let s and θ be as in part (b). Then

(A.26a)
∂2

∂z2
[S(s, x, z) + S(θ, z, y)] =

(
cot θ +

1
s

)
· 1 + Ψ(s, θ, x, y, z),
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where Ψ is an n× n matrix with the following estimate on its norm:

(A.26b) ‖Ψ(s, θ, x, y, z)‖ ≤ 1
π

∣∣∣∣cot θ +
1
s

∣∣∣∣
for all z such that |z| ≥ %, where % is related to R by (A.17), and R is
defined by (A.19c).

(d) Let s and θ be as in part (b). Define

%1 = 432(1 + 2
√

2π)(sin ε)−2%.

Given x and y with |x|2 + |y|2 ≥ %2
1, there exists a unique z∗ (stationary

point) such that

(A.27a)
∂

∂z
[S(s, x, z) + S(θ, z, y)]

∣∣∣∣
z=z∗

= 0,

and |y|2 + |z∗|2 ≥ %2. This stationary point z∗ is nothing but the point
q(θ, y, η) on the trajectory connecting y and x in time s+ θ, and

(A.27b) S(s, x, z∗) + S(θ, z∗, y) = S(s+ θ, x, y).

(e) Under the assumptions of part (d),

(A.28)
∣∣∣∣ ∂∂z [S(s, x, z) + S(θ, z, y)]

∣∣∣∣ ≥ 1
8ε
|z − z∗|.

(f) Under the assumptions of part (d), if |z| ≥ %, then

(A.29)
∣∣∣∣ det

∂2

∂z2
[S(s, x, z) + S(θ, z, y)]

∣∣∣∣ ≥ (
4πε
π − 1

)−n

.

(g) Under the assumptions of part (d), all the derivatives of S(s, x, z) +
S(θ, z, y) of order two and higher with respect to x, y, and z, are
bounded:

(A.30)
∣∣∣∣( ∂

∂x

)α(
∂

∂y

)β(
∂

∂z

)σ

[S(s, x, z) + S(θ, z, y)]
∣∣∣∣

≤ Cα,β,σ, |α|+ |β|+ |σ| ≥ 2.

Proof. Part (a) is obvious: use (A.20), Lemma A.5, and the inverse function
theorem. We postpone the proof of (b) and turn to the proof of (c). Note that

(A.31a)
∂

∂z
S(θ, z, y)

∣∣∣∣
z=q(θ,y,η)

= p(θ, y, η),

and

(A.31b)
∂2

∂z2
S(θ, z, y)

∣∣∣∣
z=q(θ,y,η)

=
∂

∂η
p(θ, y, η) ·

(
∂

∂η
q(θ, y, η)

)−1

.
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By assumption, |y|2 + |z|2 ≥ %2, and Lemma A.5 guarantees the uniqueness of η
such that q(θ, y, η) = z. From Lemma A.3, it follows that

∂

∂η
q(θ, y, η) = sin t · 1 + ϑq(θ, y, η),(A.32a)

∂

∂η
p(θ, y, η) = cos t · 1 + ϑp(θ, y, η),(A.32b)

where

(A.32c) ‖ϑq(θ, y, η)‖ ≤ ε1, ‖ϑq(θ, y, η)‖ ≤ ε1.

Since, by assumption, ε1 < sin ε and t ∈ T, the matrix ∂q/∂η is invertible. We
have

(cos t · 1 + ϑp(θ, y, η)) · (sin t · 1 + ϑq(θ, y, η))−1 − cot t · 1

= cot t ·
(
1 +

1
sin t

ϑq

)−1

+
1

sin t
ϑp ·

(
1 +

1
sin t

ϑq

)−1

− cot t · 1

= cot t ·
(
1− 1

sin t
ϑq

(
1 +

1
sin t

ϑq

)−1)
+

1
sin t

ϑp ·
(
1 +

1
sin t

ϑq

)−1

− cot t · 1

=
(

1
sin t

ϑp −
cos t
sin2 t

ϑq

)
·
(
1 +

1
sin t

ϑq

)−1

.

The norm of this matrix, for t ∈ T, is bounded by

ε1 ·
|sin t|+ |cos t|

sin2 t
· 1
1− ε1/sin ε

≤ 4ε1
sin2 ε

,

because of (A.19a). Now, using the representation (A.21), (A.31b), (A.22) and
the above estimate, we obtain

∂2

∂z2
[S(s, x, z) + S(θ, z, y)]−

(
cot θ +

1
s

)
· 1 = Ψ(s, θ, x, y, z),

where the right hand side has the norm bounded by

4ε1
sin2 ε

+ sκ0,2 ≤
(A.19a)

1
4πε

≤
(A.24)

1
π

∣∣∣∣cot θ +
1
s

∣∣∣∣,
and part (c) is proved. Part (b) follows from (c) and Lemma A.4 applied to
F (z) = ∂[S(s, x, z) + S(θ, z, y)]/∂z.

To prove (d), we notice that if |x|2 + |y|2 ≥ %2
1, then, by Lemma A.5, there

exists a unique η such that x = q(s+θ, y, η). We also know that |η|2 + |y|2 ≥ R2
1,

where R1 is related to %1 by (A.17). Taking into account the relation between
%1 and %, we see that

(|η|2 + |y|2) sin2 ε

16
≥ R2

1

sin2 ε

16
= %2.
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On the other hand,

|y|2 + |q(θ, y, η)|2 = |Fθ(y, η)|2 ≥
(A.18)

(|η|2 + |y|2) sin2 ε

16
,

and we conclude that |y|2 + |q(θ, y, η)|2 ≥ %2. Set z∗ = q(θ, y, η). Then
(A.27b) holds, and (A.27a) holds as well, since ∂S(s, x, z∗)/∂z = −p(θ, y, η)
and ∂S(s, z∗, y)/∂z = +p(θ, y, η). To show that z∗ is the unique solution to
(A.27a) with the property |y|2 + |z∗|2 ≥ %2, we assume that there exists another
solution, say, z′, and

(A.33) |y|2 + |z′|2 ≥ %2.

By (A.33), there is a unique Hamiltonian trajectory q(t, y, η′) connecting y =
q(0, y, η′) with z′ = q(θ, y, η′) (Lemma A.5(c)). We also know that

∂

∂z
S(θ, z′, y) = p(θ, y, η′).

On the other hand, since s is small, there is a unique Hamiltonian trajectory
q(t, z′, ξ) connecting z′ = q(0, z′, ξ) with x = q(s, z′, ξ) (Remark A.6), and

∂

∂z
S(s, x, z′) = −p(0, z′, ξ) = −ξ.

If z′ is a solution of (A.27a), then we must have p(θ, y, η′) = ξ, and, hence, two
trajectories, from y to z′, and from z′ to x, are two pieces of one Hamiltonian
trajectory q(t, y, η′) connecting y with x in time s+θ. However, since |x|2+|y|2 ≥
%2
1 > %2, such a trajectory is unique by Lemma A.5(c). Thus, η′ = η and,

consequently, z′ = z∗.
The estimate (A.28) follows from (d) and Lemma A.4(iv) applied to F (z) =

∂[S(s, x, z) + S(θ, z, y)]/∂z.
The estimate (A.29) is a simple corollary of (A.26) and (A.24). Indeed, for

each vector ξ ∈ Rn, we have∣∣∣∣ ∂2

∂z2
[S(s, x, z) + S(θ, z, y)]ξ

∣∣∣∣ ≥
(A.26)

(
1− 1

π

)∣∣∣∣cot θ +
1
s

∣∣∣∣|ξ| ≥
(A.24)

π − 1
4πε

|ξ|,

and (A.29) follows.
To prove (A.30), one can estimate separately the derivatives of S(s, x, z)

and S(θ, z, y). The boundedness of the high-order derivatives of S(s, x, z) with
small s is a consequence of Fujiwara’s result. The estimates on the derivatives
of S(θ, z, y) can be obtained in the spirit of the proof of part (b). But we rather
skip the proof not willing to bore the reader with more of lengthy and repetitious
argument. �
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