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BASIC DEFINITIONS AND PROPERTIES
OF TOPOLOGICAL BRANCHED COVERINGS

Artur Piękosz

1. Introduction

The aim of this paper is to examine topological branched coverings which
were introduced in [5]. They appear naturally in algebraic and analytic geome-
try and they have been considered mostly in PL category (see for example [7],
[2] and [4]). We introduce new notions which may be useful not only for ex-
amining topological branched coverings: a strong mapping at a point, a locally
strong mapping and a spreading mapping. After proving that, under certain as-
sumptions, the only branched coverings with the Absolute Covering Homotopy
Property are unbranched coverings, we give two sufficient conditions for the Arc
Lifting Property. We also characterize finite and locally finite nondegenerate
graphs as branched coverings over the unit circle S1 with one-point singular set.

2. Basic definitions

A continuous surjection p : E → B is called a (topological) branched covering
if there exists a nowhere dense set ∆ ⊂ B such that p|p−1(B \∆) : p−1(B \∆)→
B\∆ is a covering mapping. The set B\∆ is called a regular set of the branched
covering p, whereas ∆ its singular set. For a given branched covering p : E → B
we define the minimal singular set ∆(p) consisting of all points b ∈ B which have
no evenly covered neighbourhood. This set is always closed.
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Assume that p : E → B is a branched covering with singular set ∆. We say
that p is without holes when, for every S ⊂ E, the inclusion ∆ ∩ p(S) ⊂ p(S)
holds. On the other hand, if p−1(∆ ∩ p(S)) ⊂ p−1(p(S)) for every S ⊂ E then
we say that p is without missing branches.

Example 1. Let E = (([−1, 0) ∪ (0, 1])× {1}) ∪ ([−1, 1]× {0}), B = [−1, 1]
(we shall take the natural topologies in all cases unless otherwise stated) and
p(x, y) = x. It is easy to see that ∆(p) = {0} and p has a “hole” at (0, 1).

Example 2. Let E = ({0}×{1})∪([−1, 1]×{0}), B = [−1, 1] and p(x, y) =
x. In this case p has “missing branches”. To see this, take S = (0, 1]× {0}.

Example 3. Every covering is a branched covering with ∆ = ∅. This is the
reason why it is without holes and without missing branches.

A branched covering p is called simple if each b ∈ ∆ has a neighbourhood
U in B such that the punctured neighbourhood U \ {b} is open and evenly
covered. We define the singular degree of a branched covering as the maximal
cardinality of singular fibres if it is finite, and ∞ otherwise. The regular degree
of a branched covering is the same quantity for regular fibres. Moreover, we
say that p has a finite degree of branching if for every e ∈ p−1(∆) there exist a
natural number M and a neighbourhood U of e such that fibres of the mapping
p|U \p−1(∆) : U \p−1(∆)→ p (U)\∆ have at most M elements. Next, p is said
to be primitive if its singular degree equals 1.

If every point b ∈ B has a neighbourhood V such that each point z ∈ p−1(V )
belongs to a certain set Z ⊂ E which is homeomorphically mapped onto V by p,
then p is said to be decomposable into homeomorphisms . Finally, let p be a simple
branched covering with singular set ∆. We say that p is with homeomorphisms on
sheets if for every b ∈ ∆ and its open, evenly covered punctured neighbourhood
U\{b} every homeomorphism p|Wα from a sheetWα over U\{b} can be extended
to a homeomorphism onto the neighbourhood U of b.

It is easy to see that every branched covering with homeomorphisms on sheets
is decomposable into homeomorphisms.

3. Strong and locally strong mappings

Let f : X → Y be a mapping of topological spaces. We say that f is strong at
x ∈ X if for every neighbourhood U of x there exists a neighbourhood V of f(x)
such that f−1(V ) ⊂ U . If f is strong at each point of its domain then it is strong.
We say that f is locally strong at x ∈ X when there exists a neighbourhood U
of x such that f |U is strong at x. If f is locally strong at every x ∈ X then f is
called locally strong.
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The following facts are obvious:

(1) A mapping f : X → Y is strong at x ∈ X if and only if for every
generalized sequence {xα}α∈A, where A is a directed set, the condition
f(xα)→ f(x) implies xα → x.

(2) If f is strong at x and f(x) ∈ int f(X) (for example, if f is a surjection)
then f is open at x. This means that for each neighbourhood U of x
the set f(U) is a vicinity (maybe not open) of f(x).

(3) An open injection is strong.
(4) If X is a T1-space and f : X → Y is strong at x ∈ X then the fibre of
x is a single point.

(5) A locally strong mapping may not be open (see Example 2).

Proposition 1. Let p : E → B be a branched covering with singular set ∆.
Assume that p is strong at any point of p−1(∆). Then p is without holes. More-
over, if E is a T1-space then p is primitive.

Proof. This follows from (1) and (4).

Proposition 2. If p : E → B is a branched covering with singular set ∆
which is strong at points of p−1(∆), primitive1 and simple then p is with homeo-
morphisms on sheets.

Proof. Apply the relevant definitions.

Remark. The condition of strongness on p−1(∆) cannot be replaced by the
condition of local strongness or openness.

Example 4. Let E = {(x, y) ∈ R2 | x ∈ [−1, 1], |y| = |x|}. We add the
set N = {(x, y) ∈ R2 | x ∈ [0, 1], y + x = 0} to a basis of the topology on
E, take B = [−1, 1], p(x, y) = x and ∆ = {0}. The mapping p|N is strong at
(0, 0), so p is locally strong at (0, 0) and open at (0, 0). Nevertheless, for the
sheet W = {(x, y) ∈ E | x = y, x 6= 0} over B \ {0}, the homeomorphism
p|W :W → B \ {0} cannot be extended to a homeomorphism onto B.

4. Spreading mappings

Let f : X → Y be a mapping of topological spaces. If the connected compo-
nents of the preimages of all open sets in Y form a basis of the topology on X
then we say that p is a spreading mapping. Likewise, for a point x ∈ X, if the
family of connected components L of the preimages of neighbourhoods of f(x)
such that x ∈ L forms a vicinity basis of x in X then p is called a spreading
mapping at x.

1If E is a T1-space then this assumption can be omitted.
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The following facts are obvious:

(1) If f : X → Y is a spreading mapping at x then it is continuous at x.
(2) The domain of a spreading mapping is locally connected.
(3) f : X → Y is a spreading mapping if and only if it is a spreading
mapping at every e ∈ X.

(4) If X is locally connected then any local homeomorphism f : X → Y is
a spreading mapping.

(5) Let X be a locally connected space, x ∈ X, and Y be any topological
space. If f : X → Y is continuous at x and strong at x then it is also a
spreading mapping at x. The assumption that f is strong at x cannot
be replaced by the assumption that f is locally strong at x (see the
following example).

Example 5. Let E =
⋃∞
i=1 Ci, where Ci is the closed interval connecting

the origin of R2 with the point (1, 1/i). We add the set N = {(x, y) ∈ E | x ∈
Cj ⇒ x < 1/j} to a basis of the topology induced on E from R2. Let B = [0, 1],
p(x, y) = x and ∆ = {0}. The branched covering p with singular set ∆ is locally
strong and continuous. The preimages of neighbourhoods of 0 ∈ B are connected
but they do not form a vicinity basis of (0, 0).

Proposition 3. Let E be a locally connected space and let p : E → B be a
branched covering onto a topological space B with singular set ∆. If p is strong
on p−1(∆) then it is a spreading mapping.

Proof. This follows from (5) above.

If X and Y are locally connected T1-spaces then any spreading mapping from
X into Y is called a spread in the sense of R. H. Fox (see [3]). The language of
spreads gives another possibility to define a branched covering. Every surjective
branched covering in the sense of R. H. Fox is a branched covering in our sense.

5. The Absolute Covering Homotopy Property
is not in general satisfied for branched coverings

One of the most important properties of unbranched coverings is the Absolute
Covering Homotopy Property. A mapping p : E → B has this property when for
every topological space X and every mapping f : X → E, if H : [0, 1]×X → B
is a homotopy (i.e. it is continuous) for which p ◦ f = H(0, · ) then there exists
a homotopy H̃ : [0, 1] × X → E satisfying p ◦ H̃ = H and H̃(0, · ) = f . The
question whether branched coverings also have this property is natural. There is
an example of a branched covering where only arcs of the base space are constant
mappings (we say that B is totally pathwise disconnected in this case (see for
instance [6, p. 31])). However, in “regular” cases branched coverings do not have
the ACHP. This is shown in the theorem below.
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Lemma 1. Let p : E → B be a continuous mapping which has the ACHP.
Assume that fibres of p are totally pathwise disconnected. If x and y belong to
the same fibre and there exists an arc u such that u joins x to y and p ◦ u is a
contractible loop then x = y.

Proof. The proof is standard and left to the reader.

Theorem 1. Let E be a locally arcwise connected space and B be a semilo-
cally simply connected space. If p : E → B is an open and simple branched
covering with discrete fibres and the ACHP then p is a covering (i.e. ∆(p) = ∅).

Proof. Suppose ∆(p) 6= ∅ and fix b ∈ ∆(p). Notice that B is locally arcwise
connected. There exists an arcwise connected neighbourhood U of b such that
U \ {b} is open, evenly covered and the mapping π1(U, b) → π1(B, b), induced
by the inclusion, is trivial. Let U \ {b} =

⋃
α∈A Sα be the decomposition into

connected components. The sets Sα are closed in U \ {b}, open and arcwise
connected. Fix cα ∈ Sα for each α ∈ A. If p−1(U \ {b}) =

⋃
i∈I W̃i is a

decomposition into sheets then, for a given α0 ∈ A, we obtain:

(1) There exists an arc v : [0, 1]→ U such that v(0) = cα0 , v(1) = b.
(2) For each i ∈ I the set p−1(cα0) ∩ W̃i consists of one point cα0i .
(3) By the ACHP, for every i ∈ I there exists exactly one lifting vi of an
arc v such that vi(0) = c

α0
i .

Let us denote vi(1) by ei. We can define the following mapping:

Eα0 : I 3 i 7→ ei ∈ p−1(b).

This definition does not depend on the choice of cα0 ∈ Sα0 and v. Indeed, take
another ĉα0 ∈ Sα0 and an arc v̂ : [0, 1] → U such that v̂(0) = ĉα0 , v̂(1) = b.
For every i ∈ I there exist a unique point ĉα0i ∈ p−1(ĉα0) ∩ W̃i and a unique
lifting v̂i of v̂ for which v̂i(0) = ĉ

α0
i . Let êi = v̂i(1). Notice that p|p−1(Sα0) ∩

W̃i : p−1(Sα0) ∩ W̃i → Sα0 is a homeomorphism. Hence there exists an arc
z : [0, 1]→ p−1(Sα0) ∩ W̃i such that z(0) = cα0 , z(1) = ĉα0 . The arc v−1i · z · v̂i :
[0, 1] → p−1(U) joins ei to êi. The mapping p ◦ (v−1i · z · v̂i) is a loop which is
contractible in B. By Lemma 1, ei = êi.

Injectivity of Eα0 . For given i, j ∈ I such that Eα0(i) = Eα0(j) we know that
vi(1) = vj(1), where vi is the lifting of v which begins at c

α0
i , and vj is the

lifting of v which begins at cα0j . Hence p ◦ (vi · v
−1
j ) is a loop at c

α0 with the
image in U . It is contractible because p ◦ (vi · v−1j ) = v · v−1. By Lemma 1,
cα0i = (vi · v

−1
j )(0) = (vi · v

−1
j )(1) = c

α0
j , so i = j.

Surjectivity of Eα0 . Let f ∈ p−1(b). By the ACHP, there exists a lifting vf
of v which ends at f . There is a unique i0 ∈ I such that cα0i0 = vf (0) ∈ p

−1(cα0).
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Thus f = vf (1) = ei0 . Similar bijections Eα exist for all α ∈ A. Let us define,
for every α ∈ A, the bijection

Sα = E−1α ◦ Eα0 : I → I (α ∈ A)

and sets
Wαi = p

−1(Sα) ∩ W̃Sα(i), Wi =
⋃
α∈A
Wαi .

We shall prove that U is evenly covered. We have

p−1(U) =
⋃
i∈I
(Wi ∪ {Eα0(i)}),

(Wi ∪ {Eα0(i)}) ∩ (Wj ∪ {Eα0(j)}) = ∅ for i 6= j.
The sets Wi ∪ {Eα0(i)} (i ∈ I) are pairwise disjoint and p maps each of them
bijectively onto U . It suffices to prove that they are all open. All Wi (i ∈ I) are
open. We shall prove that the set Wi ∪{Eα0(i)} is a neighbourhood of Eα0(i) for
every i ∈ I. Let V be an arcwise connected neighbourhood of Eα0(i) contained in
{Eα0(i)}∪p−1(U \{b}). Suppose that V is not contained in Wi∪{Eα0(i)}. Then
there exist j ∈ I \{i} and d ∈ V ∩Wj which can be joined by an arc l : [0, 1]→ V
to Eα0(i). Let l′ : [0, 1] → p−1(V ) be the lifting of (p ◦ l)−1 which begins at
l(1) = d. The point p(d) belongs to a certain Sα1 , so d ∈ p−1(Sα1) ∩ W̃Sα1 (j).
Notice that l′ defines the bijection Eα1 , that is,

l′(1) = Eα1(Sα1(j)) = Eα0(j).

The arc l · l′ joins Eα0(i) to Eα0(j) and p◦ (l · l′) = (p◦ l) · (p◦ l)−1 is a contractible
loop. By Lemma 1, Eα0(i) = Eα0(j) and i = j. The contradiction proves that
V ⊂Wi∪{Eα0(i)}. Thus all sets Wi∪{Eα0(i)}, for i ∈ I, are open and the proof
is complete.

6. The Arc Lifting Property

Since branched coverings in “regular” cases do not have the ACHP in general,
we shall seek sufficient conditions for the existence of a lifting of an arc. Clearly,
we cannot expect the uniqueness of this lifting.

Theorem 2. Let p : E → B be a branched covering with singular set ∆. If p
is decomposable into homeomorphisms then it has the Arc Lifting Property: for
every arc v : [0, 1] → B and e ∈ E there exists an arc ṽ : [0, 1] → E such that
ṽ(0) = e and p ◦ ṽ = v.

Proof. Let an arc η : [0, 1] → B and a point x ∈ p−1(η(0)) be given.
For every t ∈ [0, 1] we can find a neighbourhood Ut of η(t) such that if z ∈
p−1(Ut) then there exists a set Z ⊂ E such that z ∈ Z and p|Z : Z → Ut is a
homeomorphism.
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The family {η−1(Ut) : t ∈ [0, 1]} is open and covers [0, 1]. By the Lebesgue
lemma, there exists ε > 0 such that for all t ∈ [0, 1] we can find some t′ for which
(t − ε, t + ε) ⊂ η−1(Ut′). We can put ε = 1/N , where N is an integer. Then
[j/N, (j + 1)/N ] ⊂ η−1(Utj ) with some tj ∈ [0, 1] and we can define the lifting η̃
of η step by step.

Let Z1 be chosen for t = t1 and z = x ∈ p−1(Ut1). Put η̃1 : [0, 1/N ] 3 t 7→
((p|Z1)−1 ◦ η)(t) ∈ E. Then η̃1(0) = x.
If the mapping η̃n−1 : [(n − 2)/N, (n − 1)/N ] → E is defined then we can

choose Zn for t = tn, z = η̃n−1((n−1)/N). The function η̃N : [(n−1)/N, n/N ] 3
t 7→ ((p|Zn)−1 ◦ η)(t) ∈ E is continuous. By the bijectivity of p|Zn, we have
η̃n−1((n− 1)/N) = η̃n((n− 1)/N). Then η̃ =

⋃N
i=1 η̃i is continuous and satisfies

η̃(0) = η̃1(0) = x and p ◦ η̃(t) = η(t) for every t ∈ [0, 1].

Theorem 3. Let p : E → B be a primitive branched covering which is strong
at all points of p−1(∆). If ∆ is discrete then p has the ALP.

Proof. We can assume that ∆ = ∆(p). Take an arc η : [0, 1] → B and a
point x ∈ p−1(η(0)). For every b ∈ ∆ there exists a neighbourhood Ub such that
Ub ∩∆ = {b}. The open family {η−1(B \∆)} ∪ {η−1(Ub) : b ∈ ∆} covers [0, 1].
By the Lebesgue lemma, there exists a natural number N such that for every
n ∈ {1, . . . , N} either (A) η([(n−1)/N, n/N ])∩∆ = ∅ or (B) η([(n−1)/N, n/N ])
∩∆ = {b}, for some b ∈ ∆. If (A) holds, then, by the ACHP for coverings, the
lifting of η|[(n − 1)/N, n/N ] exists. If (B) holds, then p−1(bn) = {en} and the
lifting of η on [(n−1)/N, n/N ] which begins at xn = p−1(η((n−1)/N)) is defined
as follows:

In every connected component Sj (j ∈ J) of η−1(B\∆)∩ [(n−1)/N, n/N ] we
choose a point dj . If (n− 1)/N /∈ Sj , then dj is any point, and if (n− 1)/N ∈ Sj
then dj = (n−1)/N . Further, we choose ej ∈ p−1(η(dj)). If dj = (n−1)/N then
ej = xn, if dj 6= (n− 1)/N then we choose any ej . On every Sj there exists a
lifting ξnj : Sj → E of the arc η|Sj by the ACHP for coverings and the fact that
Sj is a locally finite union of closed intervals. The lifting η̃n : [(n − 1)/N, n/N ]
→ E is defined by

η̃n(t) =

{
en if η(t) = bn,

ξnj(t) if t ∈ Sj .

By definition, we have η̃n((n− 1)/N) = xn, and p ◦ η̃n = η|[(n− 1)/N, n/N ]. We
get the lifting η̃ of η taking the union of all η̃n (n = 1, . . . , N) as in the preceding
theorem. It is continuous due to the assumption that p is strong at points of
p−1(∆).
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7. Graphs as branched coverings of S1

Let us recall the definition of a graph. A topological pair (X,X0) is called a
graph if:

(A) X is a Hausdorff space (T2),
(B) X0 (the set of vertices) is a closed and discrete subspace of X,
(C) X \X0 is the disjoint union of a family K = {ei | i ∈ I} of sets (open
edges) which are homeomorphic to the open interval (0, 1),

(D) for every i ∈ I, the set ei (closed edge) is homeomorphic to S1 or [0, 1]
and the set ei \ ei has one or two points,

(E) any subset A ⊂ X is closed in X if and only if A ∩ ei is closed in ei for
every i ∈ I (weak topology on X).

A graph X is nondegenerate if and only if the set of edges is not empty. It
is finite if the number of vertices and edges is finite, and it is locally finite if for
every x ∈ X0 the number of edges ei such that x ∈ ei is finite.

Proposition 4. Every nondegenerate graph (X,X0) is a branched covering
of the circle S1 with one-point singular set {s} = p (X0).

Proof. The proof is obvious.

Remark. The above mentioned branched covering is not necessarily without
holes. To see this, take an infinite sequence of points in different open edges
whose images converge to the singular point.

Lemma 2. Assume that X is a Hausdorff space and p : X → S1 is a branched
covering with singular set {s} and discrete fibres. If the closure of any connected
component S of p−1(S1 \ {s}) is compact then the following facts hold:
(1) ∂S is a finite set contained in X0 = p−1(s).
(2) For every x ∈ ∂S there exists a generalized sequence {tα}α∈A (A is a
directed set) in [0, 1] with all accumulation points in {0, 1} and such
that h−1(tα)→ x.

(3) There exist points 0S ∈ h−1((0, 1/4])\h−1((0, 1/4]), 1S ∈ h−1([3/4, 1))\
h−1([3/4, 1)).

(4) For every generalized sequence {xα}α∈A in S the following implications
hold: h(xα)→ 0⇒ xα → 0S and h(xα)→ 1⇒ xα → 1S.

(5) For every neighbourhood U of 0S (resp. 1S) w X there exists t ∈ (0, 1)
such that h−1((0, t)) ⊂ U (resp. h−1((t, 1)) ⊂ U).

(6) ∂S has one or two points and S is homeomorphic to S1 or to [0, 1], where
h = (f |(0, 1))−1 ◦ (p|S), and f : [0, 1] 7→ e2πit ∈ S1 is a parametrization
of the unit circle.

Proof. The set S1 \ {s} is simply connected and locally arcwise connected.
Thus the covering p|X \ X0 : X \ X0 → S1 \ {s} is trivial and connected
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components of p−1(S1 \ {s}) are sheets over S1 \ {s}. Consequently, S is open
and its boundary is included in X0.

(1) The boundary of S is a compact subset of X0.

(2) Since h is a homeomorphism, no point of (0, 1) can be an accumulation
point of {tα}.
(3) Follows from compactness of S.

(4) We prove that h(xα) → 0 ⇒ xα → 0S . We know that {xα}α∈A has an
accumulation point f1 in ∂S. Assume that f1 6= 0S . By (2) and (3), there exists
a generalized sequence {tβ}β∈B in (0, 1/4] for which h−1(tβ)→ 0S . Only 0 is an
accumulation point of {tβ}β∈B . Therefore tβ → 0. Let ∂S = {0S , f1, . . . , fm}.
There exist disjoint neighbourhoods U0, U1, . . . , Um of 0S , f1, . . . , fm, respec-
tively. The generalized sequences {tβ}β∈B and {h(xα)}α∈A are convergent to 0.
Hence there exist sequences of indices {αn}n∈N and {βn}n∈N such that xαn ∈ U1,
h−1(tβn) ∈ U0, αn+1 ≥ αn, βn+1 ≥ βn and 16xαn+1 < 4h−1(tβn) < xαn < 1/4
for every natural n. In each closed interval [tβn , h(xαn)], there exists tn for
which h−1(tn) ∈ ∂U0. The sequence {h−1(tn)} has an accumulation point in
∂S ∩ ∂U0 which does not belong to {0S , f1, . . . , fm}. The contradiction proves
that 0S = f1.

(5) Let us fix a neighbourhood U of 0S . We assume that there exists a
sequence {tn} in [0, 1] for which tn → 0 but h−1(tn) /∈ U for every natural n.
The sequence {h−1(tn)} is not convergent to 0S . This contradicts (4).
(6) Let y ∈ ∂S. There exists a generalized sequence {tα}α∈A in [0, 1] such

that h−1(tα)→ y and all accumulation points of {tα}α∈A belong to {0, 1}. There
are three cases:

(i) tα → 0. Then, by (4) and (A), y = 0S .
(ii) tα → 1. Similarly, y = 1S .
(iii) {0, 1} is the set of accumulation points of {tα}α∈A. There are subse-
quences convergent to 0 and 1, respectively. We get y = 0S = 1S .

If 0S = 1S then p|S : S → S1 is a homeomorphism. If 0S 6= 1S then we define
the mapping h̃ : S → [0, 1] by

h̃(x) =


0 if x = 0S ,

1 if x = 1S ,

h(x) if x ∈ S.

The mapping h̃ is continuous, bijective and defined on a compact set. So, it is a
homeomorphism.

Theorem 4. For a Hausdorff space X, the following conditions are equiva-
lent:
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I) There exists a branched covering p : X → S1 with singular set {s} which
is proper and has finite fibres.

II) There exists a subspace X0 of X such that (X,X0) is a finite nonde-
generate graph.

Moreover, every nondegenerate finite graph is a branched covering of S1 which
is without holes and with one-point singular set {s}.

Proof. I) ⇒ II). Take X0 = p−1(s). Since the covering p|X \X0 is trivial,
it is easy to see that axioms (A), (B), (C), (D) and (E) of a graph are satisfied
(we take connected components of X \X0 as open edges). Clearly, this graph is
finite and nondegenerate.
II) ⇒ I). This follows from Proposition 4. The set X is compact, so p is

proper.
If any of conditions I), II) is satisfied then p is closed, so, p : E → B is a

branched covering without holes.

Theorem 5. For a Hausdorff space X, the following conditions are equiva-
lent:

I) X is locally connected and there exists a branched covering p : X →
S1 with singular set {s}, finite degree of branching and discrete fibres,
in which the closure of every connected component of p−1(S1 \ {s}) is
compact.

II) There exists a subset X0 of X for which (X,X0) is a locally finite
nondegenerate graph.

Proof. I) ⇒ II). Let X0 = p−1(s). Axioms (A), (B), (C) and (D) are
satisfied. Take A ⊂ X. If for every connected component L of p−1(S1 \ {s}) the
set A ∩ L is closed in L then this property also holds in X. We shall prove that
the union

A = (A ∩X0) ∪
⋃
{L ∩A | L is a connected component of p−1(S1 \ {s})}

is locally finite. It suffices to check this at points x ∈ X0. The connected
neighbourhood V of x which is contained in the neighbourhood {x}∪(X \X0) is
a subset ofW = {x}∪

⋃
{L is a connected component of p−1(S1 \{s})} | x ∈ L}.

Hence W is a neighbourhood of x. By assumption, there exists a neighbourhood
U of x and a natural number M for which p|U \ p−1(∆) has fibres of not more
thanM elements each. If L is a connected component of p−1(S1 \{s}) such that
x ∈ L, then x = 0L or x = 1L. The number of L such that x = 0L is not greater
than M . A similar property holds for x = 1L. Hence there are not more than
2M connected components L such that x ∈ L. Therefore A is closed in X. The
reverse implication is trivial.
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So, (X,X0) is a nondegenerate graph. Actually, its local finiteness is already
proved.

II) ⇒ I). It is obvious that graphs are locally connected. We construct a
branched covering in a standard way, so its fibres are discrete. Local finiteness
of the graph implies the finite degree of branching of the branched covering.
Since connected components of p−1(S1 \ {s})} are open edges, their closures are
compact.

8. A topological proof of Bertini’s theorem

Topological branched coverings may be applied in some theorems in analytic
geometry. We give below the sketch of proof of a topological version of a theorem
from Abhyankar’s book [1] where the statement becomes more general and the
proof is simpler. For the details see [5] .

Theorem 6 (cf. [1, (39.7)]). Let Z be a connected topological manifold (with-
out boundary) modelled on a real normed space E of dimension at least 2 and let
Y be a simply connected and locally simply connected topological space. Suppose
that V is a closed subset of Y × Z and π : Y × Z → Y denotes the natural
projection. Assume that πV : V → Y is a branched covering whose regular fibres
are finite and whose singular set ∆ = ∆(πV ) does not disconnect Y at any of
its points.2 Put X = (Y × Z) \ V and L = {p} × Z, where p ∈ Y \∆. If there
exists a continuous mapping h : Y → Z whose graph is contained in X, then the
inclusion i : L \ V ↪→ X induces an epimorphism i∗ : π1(L \ V )→ π1(X).

Sketch of proof. To prove that j∗ : π1(L\V )→ π1(X \(∆×Z)), induced
by inclusion, is an epimorphism take a loop u = (f, g) : [0, 1]→ X \ (∆×Z)) at
(p, h(p)). Define a new loop w : [0, 1]→ X \ (∆× Z)) by the formula

w(t) =

{
u(2t) for 0 ≤ t ≤ 1/2,
(f(2− 2t), h(f(2− 2t))) for 1/2 < t ≤ 1.

Then [u] = [w] and the loop w can be continuously transformed to a loop whose
image is in L \ V thanks to a generalization of (39.2) in [1] for topological man-
ifolds. To prove that k∗ : π1(X \ (∆× Z))→ π1(X), induced by inclusion, is an
epimorphism take a loop u = (f, g) : [0, 1]→ X at (p, h(p)). Then the loop f at
p is equivalent in Y to a loop v whose image does not intersect ∆ (it suffices to
take a union of local homotopies). We can choose v such that the loop (v, g),
whose image is in X \ (∆× Z)), is equivalent in X to the loop u.

2For every y ∈ Y and its connected neighbourhood U there exists a neighbourhood W ⊂ U

such that W \∆ is connected.
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