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EXISTENCE RESULTS FOR RESONANT
PERTURBATIONS OF THE FUČIK SPECTRUM

David G. Costa — Mabel Cuesta

1. Introduction

1.1. Let Ω be a bounded smooth domain in Rm, m ≥ 1. The so-called
Fučik spectrum of −∆ on Ω with Dirichlet boundary condition is the set Σ0 =
Σ(H1

0 (Ω)) of all pairs (α, λ) ∈ R2 for which there exists a nonzero solution of the
problem

(P)(α,λ) −∆u = λu+ − αu−, u ∈ H1
0 (Ω),

where u+ = max{u, 0} and u− = u+−u (see [Fu], where this notion of spectrum
was introduced). In this way, when (α, λ) ∈ Σ0, problem (P)(α,λ) will be called
a resonant problem and it is clear that Σ0 contains the lines R × {λ1} and
{λ1}×R as well as the points (λk, λk), where 0 < λ1 < λ2 < . . . are the distinct
eigenvalues of −∆ on H1

0 (Ω). Also, in the one-dimensional case m = 1 (say, with
Ω = (0, T )), it is easy to see that Σ0 is the union of the two lines R× {λ1} and
{λ1} × R and the curves

Γn,p = {(α, λ) ∈ R2
+ | n/

√
α+ p/

√
λ = T/π},

where R+ = {x ∈ R | x > 0}, n, p ≥ 1 are integers with |n − p| = 0 or 1, and
n+ p ≥ 2. The situation in the case of a general domain Ω ⊂ Rm is much more
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delicate and only a few general facts are known about Σ0 (cf. [Ca, Da, dF-Go,
Ga-Ka, Ma, Ru]). Among other results, [Da] shows that the lines R× {λ1} and
{λ1} × R are isolated in Σ0, and [dF-Go] shows that

Σ0 = R× {λ1} ∪ {λ1} × R ∪ C2 ∪ Σ1
0

where C2 = {(α(r), λ(r)) ∈ R2 | r > 0} is a continuous, strictly decreasing curve
asymptotic to the lines {λ1} × R and R × {λ1}, with α(r) > λ1 and λ(r) > λ1

for all r > 0, and where the set Σ1
0 is contained in the component of R2 \ C2

to which the point (λ1, λ1) does not belong. Recently, we learned about the
results of [Sc3] which, extending the methods of [Ca], provide the most complete
description of the Fučik spectrum and complement all the previously known
results. In particular, it is shown in [Sc3] that there exist decreasing continuous
curves CN,1 and CN,2 passing through each eigenvalue λN (with CN,2 above
CN,1, and possibly coincident) such that, in each square ΛN = [λN−1, λN+1] ×
[λN−1, λN+1], there are no points in the Fučik spectrum inside ΛN lying below
CN,1 or above CN,2.

1.2. In this paper we consider perturbations

(P) −∆u = λu+ − αu− + g(x, u), u ∈ H1
0 (Ω),

of the resonant problem (P)(α,λ) with (α, λ) ∈ C2 which are also resonant in the
sense that the primitive G(x, s) =

∫ s

0
g(x, σ) dσ satisfies

(R) lim
|s|→∞

2G(x, s)/s2 = 0 uniformly for a.e. x ∈ Ω.

Keeping in mind the situation α = λ = λ2 with g(x, s) = g(s)+h(x), h ∈ L∞(Ω)
and g(s) having finite limits g(±∞) = lims→±∞ g(s) which satisfy ±g(±∞) > 0,
g(−∞) < g(s) < g(∞) or ±g(±∞) < 0, g(∞) < g(s) < g(−∞) (Landesman–
Lazer [L-L] situations), it is clear that additional conditions are necessary for
(P) to have a solution. Here, we assume that G(x, s) is nonquadratic at infinity
([Co-Ma2]) in the sense that either (NQ)+ or (NQ)− below holds:

(NQ)± lim
|s|→∞

[sg(x, s)− 2G(x, s)] = ±∞ uniformly for a.e. x ∈ Ω.

We note that the Landesman–Lazer situation recalled above automatically sat-
isfies (NQ)− when ±g(±∞) > 0 holds [resp. satisfies (NQ)+ when ±g(±∞) < 0
holds] and |h|∞ < min{|g(+∞)|, |g(−∞)|}. We also note that (NQ)± allow
many situations where

0 = lim
|s|→0

g(x, s)/s < lim sup
|s|→∞

g(x, s)/s = ∞,

for which one has crossing of infinitely many eigenvalues (see Section 4). In this
respect, our result will complement and extend other results in the literature on
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resonant and double-resonant problems (e.g. [Co-Ol], [Co-Ma1,2], [Cu], [Cu-Go],
[dF-Go], [dF-Mi], [dF-Ru], [Gn-Mi], [Mw-Wd-Wi], [Sc1,2], [Si1,2], [So]).

Our approach is variational and is motivated by the works [Co-Ma, Cu, Cu-
Go]. Throughout this paper, the perturbation g : Ω×R → R is assumed to be a
Carathéodory function with subcritical growth, that is,

(SG) |g(x, s)| ≤ a0|s|p−1 + b0 for a.e. x ∈ Ω, s ∈ R,

for some a0, b0 > 0 and 1 < p < 2m/(m− 2) if m ≥ 3 [resp. 1 < p < ∞ if
m = 1, 2]. So, the weak solutions of (P) are precisely the critical points of the
associated C1-functional I : H1

0 (Ω) → R given by

(1) I(u) =
1
2

∫
Ω

(|∇u|2 − λu2
+ − αu2

−) dx−
∫

Ω

G(x, u) dx = q(u)−N(u).

In Section 2 we prove

Theorem 1. Let (α, λ) ∈ C2. Under conditions (R) and (NQ)+, problem
(P) has at least one weak solution u ∈ H1

0 (Ω).

1.3. From a variational point of view, the geometry of the function I is such
that it is anticoercive on the one-dimensional subspace 〈φ1〉 spanned by the first
eigenfunction of −∆ on H1

0 (Ω). On the other hand, as a consequence of (NQ)+
and of the variational characterization of C2 given in [dF-Go], the functional I
is bounded from below on a corresponding cone M ⊂ H1

0 (Ω) of codimension 1
which “separates” tφ1 and −tφ1 for all t > 0. Moreover, either nonquadratic-
ity condition (NQ)+ or (NQ)− implies (cf. [Co-Ma2]) a compactness condition
of Palais–Smale type [Ce], so that a variant of the Saddle-Point Theorem of
Rabinowitz [Ra] can be used to prove existence of a critical point for I.

Now, when the nonquadraticity condition (NQ)− is assumed instead of
(NQ)+, the functional I turns out to be anticoercive on any two-dimensional
half-space 〈φ1〉 ⊕R+v where v is a nonzero solution of (P)(α,λ). The variational
characterization of C2 in [dF-Go] provides one such v, but there is no known way
(cf. Section 4) of determining all these “generalized eigenfunctions” of (P)(α,λ).
This information is clearly needed for the geometry of the functional in order
to possibly apply some higher linking variational result. Moreover, although the
Fučik spectrum is explicitly known in the one-dimensional situation, no varia-
tional characterization of that spectrum is known under Dirichlet boundary con-
ditions. When periodic boundary conditions are assumed instead of the Dirichlet
condition, the corresponding Fučik spectrum has been characterized by [dF-Ru]
using variational methods. Therefore, we will next consider the corresponding



298 D. G. Costa — M. Cuesta

one-dimensional problem under periodic boundary conditions

(P)1


−u′′ = λu+ − αu− + g(x, u),

u(0) = u(2π),

u′(0) = u′(2π),

and prove in Section 3 the following:

Theorem 2. Assume (α, λ) ∈ CN , N ≥ 2 and that g satisfies (R). Then

(a) if (NQ)+ holds, then problem (P)1 has at least one solution;
(b) if (NQ)− holds and α ≥ λN−1, λ ≥ λN−1 then (P)1 has at least one

solution.

2. The Dirichlet problem

In this section we prove Theorem 1. The proof will be a consequence of
Theorem 2.1 and Corollary 2.5 below.

2.1. We start by recalling a compactness condition of Palais–Smale type
introduced by Cerami [Ce] (see also [Ba-Be-F], [Co-Ma2], [Gn-Mi] for applica-
tions). Let (X, ‖ · ‖) be a real Banach space. A functional I ∈ C1(X,R) is said
to satisfy condition (C) at the level c ∈ R if the following holds:

(C) Any sequence (un) ⊂ X such that I(un) → c and (1+‖u‖)‖I ′(un)‖ → 0
has a convergent subsequence.

If (C) holds for all c ∈ R we say that I satisfies condition (C).
In [Ba-Be-F, Theorem 1.3] it was shown that condition (C) suffices to get

a deformation theorem. Then, by standard minimax arguments, the following
critical point theorem holds true (see [Mw-Wi]).

Theorem 2.1 [Mw-Wi]. Let I ∈ C1(X,R) satisfy condition (C). Assume
that there exist a compact metric space K, a closed part K0 ⊂ K and a map
h0 ∈ C(K0,K) such that

(2.1) max
z∈K0

I(h0(z)) < max
z∈K

I(h(z))

for any h ∈ Γ = {h ∈ C(K,X) | h|K0 = h0}. Set

c = inf
h∈Γ

max
u∈h(K)

I(u).

Then c is a critical value of I.

2.2. Let us now consider X = H1
0 (Ω) and the functional I defined in (1.1)

associated with problem (P). We have the following two analogues of Lemmas
1.2 and 3.1 of [Co-Ma2].
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Lemma 2.2. Assume that g satisfies (R) and either (NQ)+ or (NQ)−. Then
I satisfies condition (C).

Proof. In view of the growth condition (SC) on g, it suffices to show that
“(C)-sequences” are bounded. Assume that (NQ)+ holds true (the proof under
(NQ)− is analogous). By contradiction, suppose that I does not satisfy condi-
tion (C) for some c ∈ R. Then there exists a sequence un ∈ H1

0 (Ω) such that
I(un) → c and ‖I ′(un)‖ · ‖un‖ → 0 but ‖un‖ → ∞. Hence

(2.2) lim
n→∞

∫
Ω

(g(x, un)un − 2G(x, un)) dx = lim
n→∞

(2I(un)− (I ′(un), un)) = 2c.

On the other hand, we claim that there exists some subset Ω0 ⊂ Ω, with
|Ω0| > 0, such that |un(x)| → ∞ for a.e. x ∈ Ω0. To prove this claim, consider
the sequence ûn = un/‖un‖ that converges to some û in the weak sense in H1

0 (Ω)
and strongly in L2(Ω). By Fatou’s lemma and condition (R), we have

lim sup
n→∞

1
‖un‖2

∫
Ω

G(x, un(x)) dx ≤ 0

and, consequently,

0 = lim
n→∞

1
‖un‖2

I(un) ≥ 1
2
(1− λ‖û+‖2

2 − α‖û−‖2
2).

Hence û 6= 0 and it suffices to choose Ω0 = {x ∈ Ω | û(x) 6= 0} to prove the
claim.

Now, using hypothesis (NQ)+ we obtain

lim
n→∞

[g(x, un(x))un(x)− 2G(x, un(x))] = ∞ for a.e. x ∈ Ω0.

Moreover, since (NQ)+ and (SG) imply that

g(x, un)un(x)− 2G(x, un(x)) ≥ −M for a.e. x ∈ Ω,

for some M > 0, we conclude that

lim inf
n→∞

∫
Ω

(g(x, un)un − 2G(x, un)) dx

≥ lim inf
n→∞

∫
Ω0

(g(x, un)un − 2G(x, un)) dx−M |Ω \ Ω0| = ∞,

which contradicts (2.2). �

Lemma 2.3. Assume that g satisfies (R).

(a) If (NQ)+ holds then lim|s|→∞G(x, s) = −∞.
(b) If (NQ)− holds then lim|s|→∞G(x, s) = ∞.
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Proof. (a) By (NQ)+, given M > 0 there exists sM > 0 such that

(2.3) g(x, s)s− 2G(x, s) ≥M ∀|s| ≥ sM , for a.e. x ∈ Ω.

Using (2.3) and integrating the identity

d

ds

(
G(x, s)
s2

)
=
g(x, s)s− 2G(x, s)

s3

over [s, s] ⊂ [sM ,∞] gives the inequality

G(x, s)
s2

− G(x, s)
s2

≥ −M
2

(
1
s2
− 1
s2

)
so that, in view of (R), we obtain

G(x, s) ≤ −M/2 ∀s ≥ sM , for a.e. x ∈ Ω.

Analogously we prove that G(x, s) ≤ −M/2 for all s ≤ −sM and a.e. x ∈ Ω.
Since M is arbitrary, we conclude that (a) holds true. The proof of (b) is similar
and we omit it. �

2.3. We shall use these two lemmas to study the geometry of the functional
I in the next proposition. We recall that, according to our notation, φ1 is the
positive eigenfunction associated with the first eigenvalue λ1 of −∆ in H1

0 (Ω)
and satisfying ‖φ1‖2 = 1.

Proposition 2.4. Assume (R) and (NQ)+. Consider the subspace V =
〈φ1〉 and the cone

M =
{
u ∈ H1

0 (Ω)
∣∣∣∣ ∫

Ω

u+φ1 dx =
α− λ1

λ− λ1

∫
Ω

u−φ1 dx

}
.

Then

(i) lim‖u‖→∞,u∈V I(u) = −∞;
(ii) infu∈M I(u) > −∞.

Proof. (i) Let u = tφ1, t ≥ 0. We have

I(u) =
1
2
t2(λ1 − λ)−

∫
Ω

G(x, tφ1(x)) dx

Since lim|s|→∞ 2G(x, s)/s2 = 0 uniformly for a.e. x ∈ Ω, it follows that, for any
ε > 0, there exists M > 0 such that 2G(x, s) ≥ −εs2 −M for all s ∈ R. Hence

I(u) ≤ 1
2
t2(λ1 − λ) +

εt2

2
+
M

2
|Ω|.

Similarly, for u = tφ1, t ≤ 0, we find

I(u) ≤ 1
2
t2(λ1 − α) +

εt2

2
+
M

2
|Ω|.
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Therefore, by choosing 0 < ε < min{α− λ1, λ− λ1} we obtain

lim
|t|→∞

I(tφ1) = −∞.

(ii) We shall use the following property of the set M (cf. [dF-Go]):

(2.4)
∫

Ω

|∇u|2 dx ≥ λ

∫
Ω

u2
+ dx+ α

∫
Ω

u2
− dx ∀u ∈M.

Notice that (2.4) is equivalent to the estimate q(u) ≥ 0 for all u ∈ M . On the
other hand, since lim|s|→∞G(x, s) = −∞ uniformly for a.e. x ∈ Ω (cf. Lemma
2.3(a)), there exists M > 0 such that G(x, s) ≤ M for all s ∈ R and a.e. x ∈ Ω,
hence

N(u) ≤M |Ω| ∀u ∈ H1
0 (Ω),

and we finally obtain the estimate

I(u) = q(u)−N(u) ≥ −M |Ω| ∀u ∈M,

which proves (ii). �

Corollary 2.5. There exists T > 0 such that

max{I(Tφ1), I(−Tφ1)} < inf
h∈Λ

max
t∈[−1,1]

I(h(t)),

where Λ = {h ∈ C([−1, 1],H1
0 (Ω)) | h(±1) = ±Tφ1}.

Remark 2.6. We apply Theorem 2.1 to the functional I with K = [−1, 1],
K0 = {±1} and h0(±1) = ±Tφ1 (i.e., the “mountain pass” result of Ambrosetti–
Rabinowitz) to conclude that

c = inf
h∈Λ

max
t∈[−1,1]

I(h(t))

is a critical value of I.

Proof of Corollary 2.5. By Proposition 2.4(i) we can choose T > 0
such that

max{I(Tφ1), I(−Tφ1)} < inf
u∈M

I(u).

Let h ∈ C([−1, 1], H1
0 (Ω)), h(±1) = ±Tφ1. It is easy to check that( ∫

Ω

(
h(1)+−

α− λ1

λ− λ1
h(1)−

)
φ1 dx

)( ∫
Ω

(
h(−1)+−

α− λ1

λ− λ1
h(−1)−

)
φ1 dx

)
< 0.

Then, by continuity, there exists some t ∈ ]−1, 1[ such that∫
Ω

(
h(t)+ − α− λ1

λ− λ1
h(t)−

)
φ1 dx = 0,
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i.e., h(t) ∈M . Therefore, we have

max
t∈[1,1]

I(h(t)) ≥ I(h(t)) ≥ inf
M
I > max{I(Tφ1), I(−Tφ1)},

which concludes the proof. �

3. The periodic problem

3.1. In this section we consider the periodic problem

(P)1

{
−u′′(t) = λu+(t)− αu−(t) + g(t, u), t ∈ ]0, 2π[,

u(0) = u(2π), u′(0) = u′(2π),

where g satisfies the regularity and growth conditions of Section 1.
We shall assume here that (α, λ) ∈ Σp, the Fučik spectrum in the periodic

case. This spectrum can be easily computed to be the union of the two lines
R× {0} and {0} × R and the sequence of curves CN given by

CN = {(α, λ) ∈ R2
+ | 1/

√
α+ 1/

√
λ = 2/(N − 1)}, N ≥ 2.

We recall that λN = (N − 1)2, N ∈ N, is the sequence of eigenvalues of
(−u′′, [0, 2π]) with periodic boundary conditions. Notice that, according to the
previous notation, the point (λN , λN ) belongs to CN for all N ≥ 2.

Let us denote by H1
2π the subspace of H1(0, 2π) consisting of the 2π-periodic

functions. As in the Dirichlet case (see Section 2), we associate with problem
(P)1 the functional I : H1

2π → R defined by

I(u) = q(u)−N(u),

where q = q(α,λ) is the quadratic form

q(u) = 1
2 (‖u′‖2

2 − λ‖u+‖2
2 − α‖u−‖2

2)

and N is the nonlinear functional

N(u) =
∫ 2π

0

G(t, u(t)) dt, u ∈ H1
2π.

3.2. It can be easily checked that Lemmas 2.2 and 2.3 also hold in this
periodic setting, for any (α, λ) ∈ Σp. In order to describe the geometry of the
functional I under hypothesis (a) or (b) of Theorem 2, we will make use of the
results in [dF-Ru] concerning two variational characterizations (v.c. for short) of
the set Σp. We briefly recall these results and introduce some necessary notation.

First v.c. Set M = {u ∈ H1
2π | ‖u‖2 = 1}. Let (α, λ) ∈ CN , N ≥ 2. Then

(3.1) 0 = inf
A∈ΓN

max
u∈A

q(α,λ)(u),
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where

ΓN = {A ⊂M | A is compact, invariant and γ0(A) ≥ N − 1}.

Here “invariant” means invariant under the group of translations Tθ, θ ∈ S1

(= R/2πZ), which is defined as follows:

Tθ(u) = u(θ + ·), u ∈ H1
2π.

The map γ0 in the definition of ΓN is the “relative S1-index of Benci” (cf. [Bs-
Ls-Mn-Ru]).

Second v.c. We denote by Sk the sphere of R×Ck with respect to the euclidean
norm. That is,

Sk =
{
z = (x, z1, . . . , zk) ∈ R× Ck

∣∣∣∣ |z|2 = x2 +
k∑

i=1

|zi|2 = 1
}
,

and we set
S0 = {−1, 1}.

On R× Ck consider the following S1-action:

Sθ(x, z1, . . . , zk) = (x, eiθz1, . . . , e
iθzk), θ ∈ S1,

and observe that Sθ(Sk) = Sk for all θ ∈ S1.
From now on we will use the same notation Sθ for the action defined above

regardless of the number of components k, k ∈ N.
Let (α, λ) ∈ CN , N ≥ 2, be given. Let h0 : SN−2 →M be a continuous map

satisfying1

(i) h0 ◦ Sθ = Tθ ◦ h0 ∀θ ∈ S1,

(ii) h0(x, 0, . . . , 0) = x ∀x ∈ R ∩ SN−2,(3.2)

(iii) max
u∈h0(SN−2)

q(α,λ)(u) < 0.

Then

(3.3) inf
h∈ΛN−1

max
u∈h(S+

N−1)
q(α,λ)(u) = 0,

where S+
k = {z = (x, z1, . . . , zk) ∈ Sk | zk ≥ 0} and

ΛN−1 = {h ∈ C(S+
N−1,M) | h|SN−2 = h0}.

3.3. Let us start the proof of Theorem 2(a). It is a consequence of Corollary
3.2 below.

1The existence of such maps h0 is also proved in [dF-Ru].
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Proposition 3.1. Assume that (α, λ) ∈ CN and that g satisfies (R) and
(NQ)+. Let h0 : SN−2 → M be any continuous map satisfying condition (3.2).
Then

(i) limR→∞ maxu∈Rh0(SN−2) I(u) = −∞;
(ii) If ΛR = {h ∈ C(S+

N−1,H
1
2π) | h|SN−2 = Rh0} then, for R > 0 suffi-

ciently large, we have the strict inequality

max
u∈Rh0(SN−2)

I(u) < inf
h∈ΛR

max
u∈h0(S

+
N−1)

I(u).

Proof. (i) Condition (R) implies that, for any ε > 0, there exists M > 0
such that

G(x, s) > −εs2 −M ∀s ∈ R.
For a given ε > 0 (to be determined later), we have the estimate

(3.4) I(u) ≤ q(u) + ε‖u‖2
2 + 2πM.

Let u ∈ Rh0(SN−2). Then ‖u‖2
2 = R2 and, by (3.4),

I(u) ≤ q(u) + εR2 + 2πM = R2(q(u/‖u‖2) + ε) + 2πM,

hence

(3.5) max
u∈Rh0(SN−2)

I(u) ≤ R2( max
v∈h0(SN−2)

q(v) + ε) + 2πM.

Since by (3.2) we have maxv∈h0(SN−2) q(v) < 0, we can choose 0 < ε <

−maxv∈h0(SN−2) q(v) in (3.4) to conclude, from (3.5), that

lim
R→∞

max
u∈Rh0(SN−2)

I(u) = −∞.

(ii) From Lemma 2.3(a) we deduce that there exists M > 0 such that

G(t, s) ≤M ∀s ∈ R, for a.e. t ∈ [0, 2π].

Therefore,

(3.6) I(u) ≥ q(u)− 2πM ∀u ∈ H1
2π.

Let us fix R > 0 in part (i) so that

max
u∈Rh0(SN−2)

I(u) < −2πM

and set ΛR as in the proposition. Given h ∈ ΛR, we distinguish two cases:

(a) 0 ∈ h(S+
N−1). Then

max
u∈h(S+

N−1)
I(u) ≥ I(0) = 0 > −2πM.
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(b) 0 6∈ h(S+
N−1). Consider the map h : S+

N−1 → M defined by h(z) =
h(z)/‖h(z)‖2. Obviously h ∈ ΛN−1 and then, by the second v.c.,

max
v∈h(S+

N−1)
q(v) ≥ inf max

ΛN−1
q = 0.

We now use (3.6) and the above inequality to obtain the estimate

max
u∈h(S+

N−1)

I(u) + 2πM
‖u‖2

2

≥ max
u∈h(S+

N−1)

q(u)
‖u‖2

2

= max
v∈h(S+

N−1)
q(v) ≥ 0,

so that
max

u∈h(S+
N−1)

I(u) > −2πM.

In both cases we have

max
u∈h(S+

N−1)
I(u) > −2πM > max

u∈Rh0(SN−2)
I(u),

which concludes the proof of (ii). �

Corollary 3.2. Under the hypotheses of Theorem 2(a), problem (P)1 ad-
mits at least one solution u ∈ H1

2π.

3.4. Next we deal with case (b) of Theorem 2, where condition (NQ)− is
assumed instead of (NQ)+. Since, by Lemma 2.3, lim|s|→∞G(t, s) = ∞, the
functional I is then anticoercive in any direction v ∈ H1

2π \ {0} with q(v) < 0 or
q(v) = 0. Examples of functions v with q(v) = 0 are the solutions of problem
(P )(α,λ):

(P )(α,λ)

{
−u′′(t) = λu+(t)− αu−(t),

u(0) = u(2π), u′(0) = u′(2π).

Let us introduce some new notation. Given λ1, . . . , λN−1, the N − 1 first
eigenvalues of (−u′′,H1

2π), and (λ, α) ∈ CN , denote by Ej , j = 1, . . . , N − 1, the
eigenspace associated with λj and by F the set of solutions of (P )(α,λ). We write

E1 = R,

Ej = {rφj(θ + ·) | r ≥ 0, θ ∈ S1}, j ≥ 2,

F = {rv(θ + ·) | r ≥ 0, θ ∈ S1},

for some (fixed) λj-eigenfunction φj with ‖φj‖2 = 1, φ1 = 1 and some v ∈ F

with ‖v‖2 = 1. Set E =
⊕N−1

j=1 Ej and assume the following condition (∗) on
(α, λ) ∈ CN :

(∗) α ≥ λN−1, λ ≥ λN−1.

Observe that since (λN−1, λN−1) 6∈ CN we have min{α− λN−1, λ− λN−1} > 0.
This condition (∗) allows us to prove the following lemma.



306 D. G. Costa — M. Cuesta

Lemma 3.3. Let h1 : SN−1 →M be the map defined by

h1(x, r1eiθ1 , . . . , rN−1e
iθN−1)

=
x+

∑N−2
i=1 riφi+1(θi + ·) + rN−1v(θN−1 + ·)

‖x+
∑N−2

i=1 riφi+1(θi + ·) + rN−1v(θN−1 + ·)‖2

.

Then h1 is a well defined continuous map which satisfies (3.2). Moreover, there
exists some c > 0 such that

(3.7) q(u) ≤ −c‖P (u)‖2
2 ∀u ∈ h1(SN−1),

where P : E + F → E, P (u0 + w) = u0 for u0 ∈ E and w ∈ F.

Proof. Let us prove that h1 is well defined. Continuity and condition (3.2)
follow directly from the definition.

We write each u ∈ h1(SN−1) in the form

u =
u0 + w

‖u0 + w‖2
,

where u0 ∈ E and w ∈ F with ‖u0‖2 · ‖w‖2 6= 0. Then u is well defined if we
show that u0 +w 6= 0, i.e. F ∩E = {0}. This is obviously true when α = λ = λN

because then F = EN and it is well known that EN ∩ E = {0}. In the case
α 6= λ, observe that the solutions w ∈ F of problem (P )(α,λ) are at most of class
C2 whereas the functions u0 ∈ E are C∞. Thus again E ∩F = {0}. Also notice
that E∩F = {0} implies that the map P in the lemma is well defined. It is easy
to check that P is continuous.

Let us now prove (3.7). We write the elements u ∈ h1(SN−1) in the form

u = %u0 + w, % ∈ R, u0 ∈ E ∩M, w ∈ F.

Fix u0 ∈ E∩M and w ∈ F . Define the map g : R → R letting g(%) = q(%u0+w).
Then (3.7) is equivalent to showing that there exists a constant c = c(α, λ) > 0
such that

(3.7)′ g(%) ≤ −c%2 ∀% ∈ R.

In order to prove (3.7)′ we first state some properties of the function g:

(a) g(0) = q(w) = 0, since w ∈ F ;
(b) g is differentiable and

g′(%) = 2
( ∫ 2π

0

(%u0+w)′u′0 dt−λ
∫ 2π

0

(%u0+w)+u0 dt+α
∫ 2π

0

(%u0+w)−u0 dt

)
;

(c) g′ is differentiable and

g′′(%) = 2
( ∫ 2π

0

u′
2
0 dt− λ

∫
{%u0+w>0}

u2
0 dt− α

∫
{%u0+w<0}

u2
0 dt

)
.
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As a matter of fact, the differentiability of g′ follows from the property below
(see [So] and [Cu] for a proof):

|{t | (%u0 + w)(t) = 0}| = 0 ∀% ∈ R, ∀u0 ∈ E, ∀w ∈ F such that %u0 + w 6= 0.

Now, since u0 ∈ E ∩M , we have
∫ 2π

0
u′20 dt ≤ λN−1

∫ 2π

0
u2

0 dt = λN−1 and, using
(c), we conclude that

(3.8) g′′(%) ≤ 2 max{λN−1 − λ, λN−1 − α}.

Set c = min{α − λN−1, λ − λN−1}. From condition (∗) we have c > 0. Finally,
from (a), (b) and the Mean Value Theorem, we obtain

g(%) = 1
2g

′′(τ%)%2 for some τ ∈ ]0, 1[,

so that, using (3.8), we conclude the proof of claim (3.7)′. �

Lemma 3.4. Assume that (α, λ) ∈ CN satisfies condition (∗) and consider
h1 defined in Lemma 3.3. Let

Λ = {h ∈ C(S+
N ,M) | h|SN−1 = h1}.

Then there exists some constant d > 0 such that

inf
h∈Λ

max
u∈h(S+

N−1)
q(u) ≥ d.

Proof. We take a point (α′, λ′) ∈ CN+1 such that α < α′ and λ < λ′.
Then, letting d = min{λ′ − λ, α′ − α} > 0, we have

(3.9) q(u) = q(α,λ)(u) ≥ q(α′,λ′)(u) + d‖u‖2
2 ∀u ∈ H1

2π

and, therefore,
inf max

Λ
q ≥ inf max

Λ
q(α′,λ′) + d.

On the other hand, the map h1 satisfies condition (3.2) relative to (α′, λ′). In-
deed,

max
u∈h1(SN−1)

q(α′,λ′)(u) ≤ max
u∈h1(SN−1)

q(u)− d ≤ 0− d < 0

since maxu∈h1(SN−1) q(u) ≤ 0 in view of (3.7). We can then apply the second
v.c. to (α′, λ′) to conclude that

0 = inf max
Λ

q(α′,λ′),

and hence, from (3.9), that
inf max

Λ
q ≥ d. �

We are now ready to announce the following result on the geometry of the
functional I in the case (b) of Theorem 2. The proof of statement (b) in Theorem
2 will follow from Corollary 3.6 of the following proposition.
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Proposition 3.5. Let (α, λ) ∈ CN satisfy condition (∗). Assume that g
satisfies conditions (R) and (NQ)−. Then

(i) limR→∞ maxu∈Rh1(SN−1) I(u) = −∞;
(ii) If ΛR = {h ∈ C(S+

N ,H
1
2π) | h|SN−1 = Rh1} then, for R sufficiently

large, we have

max
u∈Rh1(SN−1)

I(u) < inf
h∈ΛR

max
u∈h(S+

N )
I(u).

Proof. (i) We know from Lemma 2.3 that lim|s|→∞G(t, s) = ∞. Therefore,
there exists some M > 0 such that

G(t, s) ≥M ∀s ∈ R, for a.e. t,

so that we obtain the following estimate from above for the functional I:

(3.10) I(u) = q(u)−N(u) ≤ q(u)− 2πM.

Now, by contradiction, suppose that (i) does not hold. Then there exist A > 0
and a sequence (mk), with mk →∞, such that

−A < max
u∈mkh1(SN−1)

I(u).

Choose a corresponding sequence of points uk ∈ h1(SN−1) such that

(3.11) −A < I(mkuk)

and write mkuk = αku0,k + wk, u0,k ∈ E ∩M, wk ∈ F, αk ≥ 0. We distinguish
two cases:

Case 1: limk→∞ αk = ∞ (for some subsequence). Using Lemma 3.3 and
(3.10), we obtain

I(mkuk) ≤ −cα2
k − 2πM → −∞ as k →∞,

which contradicts (3.11).
Case 2: (αk) is bounded. Write

uk =
αk

mk
u0,k +

wk

mk
and vk =

wk

mk
∈ F.

We then have

(3.12) ‖vk‖2 =
∥∥∥∥uk −

αk

mk
u0,k

∥∥∥∥
2

→ 1,

and, noticing that ‖w′‖2
2 = λ‖w+‖2

2 + α‖w−‖2
2 for all w ∈ F , we see from (3.12)

that (‖vk‖) is bounded. Therefore, there exist a subsequence of (vk) (still denoted
by vk) and some v0 ∈ H1

2π such that

vk ⇀ v0 in H1
2π, vk → v0 in L2.
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Since αk/mk → 0 as k →∞, we also have

uk ⇀ v0 in H1
2π, uk → v0 in L2.

In particular, ‖v0‖2 = limk→∞ ‖uk‖2 = 1, so that v0(t) 6= 0 for a.e. t and,
therefore,

(3.13) mk|uk(t)| → ∞ as k →∞, for a.e. t.

Finally, using the fact that lim|s|→∞G(x, s) = ∞ and Fatou’s lemma, it follows
that

N(mkuk) =
∫ 2π

0

G(t,mkuk(t)) dt→∞ as k →∞

and, hence,

(3.14) I(mkuk) ≤ 0−N(mkuk) → −∞ as k →∞,

which contradicts (3.11). This concludes the proof of (i).
(ii) Let 0 < ε < d where d is the constant in Lemma 3.4. Condition (R)

implies that there exists aε ∈ L1 such that

G(t, s) ≤ εs2 + aε(t) ∀s ∈ R, for a.e. t,

so that

I(u) ≥ q(u)− ε‖u‖2
2 − ‖aε‖1.

Fix R > 0 in (i) such that

(3.15) max
u∈Rh1(SN−1)

I(u) < −‖aε‖1

and let h ∈ ΛR. We distinguish 2 cases:

(a) 0 ∈ h(S+
N ). Then

(3.16) max
u∈h(S+

N )
I(u) ≥ 0 ≥ −‖aε‖1.

(b) 0 6∈ h(S+
N ). Then, defining h : S+

N → M by h(z) = h(z)/‖h(z)‖2, it is
clear that h ∈ Λ and, therefore,

max
u∈h(S+

N )

I(u) + ‖aε‖1

‖u‖2
2

≥ max
v∈h(S+

N )
q(v)− ε ≥ inf max

Λ
q − ε = d− ε > 0,

so that

(3.17) max
u∈h(S+

N )
I(u) > −‖aε‖1.

The proof of (ii) readily follows from (3.15)–(3.17). �
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4. Some examples and final comments

In this section, as stated in the introduction, we provide some nontrivial
examples where both the resonance condition (R) and the nonquadraticity at
infinity condition (NQ)± hold, and yet the nonlinearity crosses infinitely many
eigenvalues. We will also try to illustrate the technical difficulties which may arise
in higher dimensions, even in the particular case of a simple domain Ω ⊂ R2 and
with resonance (from above) at the second branch C2 of the Fučik spectrum.

4.1. We start with some examples (cf. also [Co-Ma]).

Example 1. Let ψ : [1,∞] → R be any continuous function such that

ψ(s) ≥ 0,
∫ ∞

1

ψ(t) dt <∞,

and define H(s) = d +
∫ s

1
ψ(t) dt, s ≥ 1, where d ∈ R is such that H(s) → 1

as s → ∞ and H is supposed to be extended to the whole real line as an even
function of class C1 with H(0) = 1. Then it is easy to see that the function

G(s) = 1
2 (λs2+ + αs2−)[H(s)− 1]

satisfies conditions (R) and (NQ)+. Moreover, one has crossing of all the eigen-
values in the sense that

0 = lim
|s|→0

g(s)/s < lim sup
|s|→∞

g(s)/s = ∞.

Example 2. Suppose that g : R → R is a continuous function satisfying (R)
and (NQ)+, with the quantity sg(s)− 2G(s) tending to ∞ at least linearly, that
is, such that

δ(G) := lim inf
|s|→∞

sg(s)− 2G(s)
|s|

= δ > 0.

In this case, we can think of δ(G) as a measure of deviation from quadraticity
at infinity for the function G (clearly, δ(G) = ∞ is possible). Now, consider the
resonant problem

(4.1) −∆u = λu+ − αu− + g(u) + h(x), u ∈ H1
0 (Ω),

where h ∈ L∞(Ω) is given. Then, as an immediate consequence of Theorem 1,
we obtain the following:

Corollary. Let (α, λ) ∈ C2. Under the above conditions, problem (4.1) has
a weak solution u ∈ H1

0 (Ω) provided that |h|∞ < δ. In particular, if δ(G) = ∞,
then problem (4.1) has a solution for any given h ∈ L∞.

We should note that the above result is in the spirit of the Landesman–
Lazer results, as we briefly pointed out in the introduction. In fact, assume
that the limits g(±∞) = lims→±∞ g(s) exist and are distinct, say g(−∞) <
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g(∞). Without loss of generality (by subtracting and adding the average of these
numbers on the right hand side of (4.1)), we may assume that g(−∞) = −g(∞) <
0. Then, in this context, an analogue of the Landesman–Lazer situation might
state that a weak solution exists provided that

(LL) |hk|∞ < g(∞),

where hk denotes the projection of h onto the set of “generalized (α, λ)-eigenfunc-
tions”.

Example 3. Although (as shown above) these situations of nonquadraticity
at infinity partially extend the Landesman–Lazer situations, they do not easily
compare with those of Ahmad–Lazer–Paul (cf. [A-L-P], [Ra2]). Indeed, in the
context of problem (4.1) (with h = 0 for simplicity), an analogue of the Ahmad–
Lazer–Paul situation might state that a solution exists provided that

(ALP) g(s) is bounded and G(±∞) = lim
|s|→∞

G(s) = ∞.

Consider the following examples of continuous functions g : R → R:

(a) g(s) is odd and such that G(s) = s log(s) for s > 0 large;
(b) g(s) is odd, 4-periodic, and such that g(s) > 0 for 0 < s < 2 and

g(s) < 0 for 2 < s < 4, with
∫ 2

0
g = 4,

∫ 4

2
g = −2, g(1) = 1 and

G(1) = 2.

In case (a), it is easy to check that g satisfies both conditions (R) and (NQ)−,
but it does not satisfy (ALP) above, since g(s) = 1 + log(s) (for s > 0 large)
is not bounded. On the other hand, in case (b), the function g clearly satis-
fies (ALP), while (NQ)± does not hold since a simple calculation shows that
(4j − 3)g(4j − 3)− 2G(4j − 3) = −3 for all j ≥ 1.

Finally, we would like to make a few comments on these resonant Fučik
problems, nonquadratic at infinity, which hopefully will illustrate their intrinsic
complexity when trying to handle them by variational methods in the case of
higher dimensional domains. As we saw in this paper, some specific knowledge of
the Fučik spectrum and of variational properties of the “generalized eigenfunc-
tions” was needed in order to determine the geometry of the functional I and
be able to use min-max techniques. More precisely, when (α, λ) belonged to C2

and (NQ)− was assumed, we would have resonance from above at (α, λ) (since
lim|s|→∞G(x, s) = ∞ by Lemma 2.3(b)) and, as a result, the functional I was
anticoercive on any two-dimensional half-space 〈φ1〉 ⊕ R+v, with v an arbitrary
“generalized eigenfunction” (i.e., solution of (P )(α,λ)). Thus, some precise in-
formation on “all” these generalized eigenfunctions was necessary to handle the
case of resonance from above at C2. In Section 3, the one-dimensional periodic
problem was considered in general situations of resonance (from below or from
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above) at an arbitrary eigenvalue λk, precisely because both the Fučik spectrum
and a variational characterization of C2 were known in this case.

Let us next consider one of the simplest possible domains in R2, namely the
unit disc Ω = {(x, y) | x2 +y2 < 1}. When α = λ = λk (the usual kth eigenvalue
of −∆ on H1

0 (Ω)), it is known (see [Wa] and [A-C]) that λk = ν2 where ν is a
positive zero of some (unique) Bessel function Jl(r) of first kind (l = 0, 1, 2, . . .).
Moreover, λk is either a simple or a double eigenvalue depending on whether l = 0
or l ≥ 1, respectively. For a simple eigenvalue, a corresponding (radial) eigen-
function is J0(νr), whereas, for a double eigenvalue, two linearly independent
eigenfunctions spanning the eigenspace Nk are given by v1(r, θ) = Jl(νr) cos(lθ)
and v2(r, θ) = Jl(νr) sin(lθ). Now, in view of the radial symmetry of both the
domain Ω and the operator −∆, given θ̂ ∈ [0, 2π), any of the functions v1(·, θ̂+·),
v2(·, θ̂ + ·) is again a λk-eigenfunction (and it is clear from the cosine (or sine)
addition formula how these eigenfunctions are expressed in terms of v1 and v2).
On the other hand, when α 6= λ, we still have a whole “continuum” of generalized
eigenfunctions obtained as above by “rotating” any given generalized eigenfunc-
tion v(r, θ). However, as the set Fk of all these generalized (α, λ)-eigenfunctions
is no longer a vector space, it is not hard to imagine the technical difficulties
arising from a possible “infinitude” of linearly independent such functions.
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