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FIXED POINTS, NASH GAMES AND THEIR ORGANIZATIONS

Kokou Y. Abalo — Michael M. Kostreva

The concepts of (S, σ)-invariance and (S, σ, R,M)-invariance are introduced
and are used to prove two existence theorems of equilibrium in the sense of Berge
[2] and Nash [1, 2] using fixed point arguments. Radjef’s results [8] have been
extended. Conditions under which these equilibria are Nash are also shown.

Assuming that each player’s strategy set is a subset of a reflexive Banach
space and that the strategies can be partitioned in such a way that the argmax
of each player’s objective over an element of the considered partition is unique
and satisfies one of the invariance properties, equilibria exist. Similar results are
obtained for games with an infinite number of players.

I. Introduction

In the theory of games one is concerned with concepts of interactions between
several individuals and/or several groups. From the earliest development of
the theory the cooperative and noncooperative types of interactions have been
considered separately. Different concepts of solution of a game exist in these two
branches of game theory.

Here we will be concerned with noncooperative games and the solution con-
cept is Berge equilibrium as related to Nash equilibrium. We wish to study the
organization of Nash equilibria in noncooperative games as a foundational issue.
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In the traditional organization of a noncooperative game each player has an ob-
jective functional (which depends on all players’ strategy variables, in general)
which is to be maximized by selecting a strategy from his own set of strategies.

The dependency on other players’ strategy variables allows for complex in-
teractions between the functionals and it is crucial, even to the definition of
Nash equilibria, that each player know the opponents’ strategies. Indeed, it is
this interconnection which makes it a game rather than a set of independent
optimization problems.

Recently, another approach to noncooperative games has been studied by
Radjef [8]. In a Radjef-type organization, each player optimizes the same objec-
tive as before, but now it is done with respect to all opponents’ strategies. The
information from opponents is shared by projections. That type of organization
of a game is a special case of more general equilibria in the sense of Berge [2]. In
this paper, we prove existence theorems for each of the Berge type of equilibrium,
generalizing therefore the result of Radjef [8]. Moreover, conditions are shown
under which Berge equilibria are also Nash equilibria points, giving yet another
option when it comes to selecting Nash equilibria points.

This paper can be divided into two parts. The first part deals with games
with a finite number of players. From the literature, we observe that within the
traditional organization of the Nash games, two quite general existence results
have been obtained. In [4], Ky Fan proved the existence of a Nash equilibrium for
real-valued continuous, quasi-concave functionals on compact, convex strategy
sets in real separated topological vector spaces. Later in [5], Granas applied the
approach of KKM-maps to obtain the same result in another way. For reflexive
Banach spaces, the present approach generalizes the earlier results even within
the traditional game organization, and it places the Radjef-type organization in
a general theory.

The second part treats the case of games with an infinite number of players.
The results obtained here, even though similar to those of Part 1, are general-
izations of the results of Part 1 and their proofs use slightly different arguments.
Also, while these results generalize those found in Ma [6], they constitute, to
our knowledge, the first results in the literature as far as the study of the Berge
equilibria is concerned.

II. Notations and definitions

A game is defined as Γ = (I, Ji,Ωi) where I = {1, . . . , N} is the set of
players and for each i ∈ I the nonempty set Ωi is the ith player’s strategy set.
We will assume that Ωi ⊆ Ei. Elements of Ωi will be denoted by ui, and Ji will
denote the ith player’s payoff functional defined on Ω =

∏N
i=1 Ωi. The following
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notations will also be used:

−i = {1, . . . , i− 1, i + 1, . . . , N}, u−i = (u1, . . . , ui−1, ui+1, . . . , uN ),

Ω−i = Ω1 × . . .× Ωi−1 × Ωi+1 × . . .× ΩN , ui(u) = arg max
ui∈Ωi

Ji(ui, ·).

Definition 1 ([2], p. 88). A feasible strategy ũ is an equilibrium point for
Γ for the set S of players if

Js(ũ) ≥ Js(us, ũ−s) ∀s ∈ S, ∀u ∈ Ω.

Definition 2 ([2], p. 88). A feasible strategy ũ is a simple equilibrium
point or a Nash equilibrium point for Γ if

Ji(ũ) ≥ Ji(ui, ũ−i) ∀i ∈ I, ∀u ∈ Ω.

Remark 1. A Nash equilibrium point for Γ is an equilibrium for each {i}
and thus, the notion of Nash equilibrium is a special case of that of an equilibrium
as defined by Berge.

Definition 3 ([2], p. 88). Let R = {Ri : 1 ≤ i ≤ k} be a partition of I

and S = {Si : 1 ≤ i ≤ k} be subsets of I. A feasible strategy ũ is an equilibrium
point for Γ for the set R relative to the set S if

Jr(ũ) ≥ Jr(us, ũ−s) ∀r ∈ Ri, ∀s ∈ Si, ∀u ∈ Ω.

Remark 2. A simple equilibrium point is an equilibrium for R = {{i} :
i ∈ I} relative to S = {{i} : i ∈ I}.

Now we introduce a theorem of Berge concerning the inverse image set of a
function.

Theorem ([2], p. 35). Let X and Y be Hausdorff topological spaces. Let
T : X → Y be a continuous multifunction with nonempty images, and let the
function f : X × Y → R be continuous. Then:

(i) The function µ : X → Y given by µ(x) = maxy∈T (x) f(x, y) is continu-
ous.

(ii) The multifunction M : X → Y given by M(x) = arg maxy∈T (x) f(x, y)
is u.s.c.

The theorem stated above will be referred to throughout this paper as Berge’s
Maximum Theorem in the form of its corollary.
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Corollary. Let X and Y be Hausdorff topological spaces. Let T : X →
Y be a continuous multifunction with nonempty images, and let the function
f : X × Y → R be continuous. Then the multifunction M : X → Y given by
M(x) = arg maxy∈T (x) f(x, y) is continuous on X if for any x ∈ X, M(x) is a
singleton.

III. Results. Part 1

There are three theorems which cover the case of a finite number of players.
They are presented here in increasing order of organizational complexity.

Theorem 1. For each i ∈ I, let Ωi be convex, closed, bounded subsets of
the reflexive Banach spaces Ei such that:

(i) Ji(·) is continuous on Ω.
(ii) ui(u) is a singleton for each fixed u−i in Ωi.

Then Γ has a Nash equilibrium.

Proof. Let Ωi ⊆ (Ei, τi) and τ =
∏N

i=1 τi where τi is the weak topology
of Ei. Then Ωi is compact in (Ei, τi). Therefore from (i), (ii) and by Berge’s
Maximum Theorem, we conclude that ui(·) is continuous.

Now, consider the mapping û(·) from (Ω, τ) into itself defined by û(u) =∏N
i=1 ui(u). Then û(·) is continuous. We know that ũ is a Nash equilibrium of Γ

if and only if ũ is a fixed point of û(·). By Tikhonov’s fixed point theorem [9], the
mapping û(·) has a fixed point ũ, and such a fixed point is a Nash equilibrium
according to [1, p. 282]. This completes the proof.

Example 1. Consider the game of two players in which ui ∈ [−1, 1], i = 1, 2,
and

J1 = u2 − 2u2
1, J2 = u1 − 2u2

2.

Then u1(u) = {0}, u2(u) = {0}, and û(u) = u iff u = (0, 0).

Example 2. Consider the game of three players in which ui ∈ [−1, 1], i =
1, 2, 3, and

J1 = −u2
3, J2 = −u2

1 − u2
2, J3 = −u2

1.

Then u1(u) = [−1, 1]. The traditional organization method does not work since
u1(u) is not a singleton.

Example 3. Consider the game of three players in which ui ∈ [−1, 1], i =
1, 2, 3, and

J1 = −u2
1, J2 = −u2

3 − u2
2, J3 = −u2

1.

Then u3(u) = [−1, 1]. This game also is not amenable to traditional organization
since u3(u) is not a singleton.
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Definition 4. Let S = {Si : 1 ≤ i ≤ N} be such that I =
⋃N

i=1 Si and
Si are nonempty pairwise distinct. The game Γ is said to be (S, σ)-invariant if
there is a permutation σ on I such that:

(i) ProjΩσ(i)
(arg maxuSi

∈ΩSi
Ji(uSi

, ·)) 6= ∅.
(ii) ProjΩσ(i)

(arg maxuSi
∈ΩSi

Ji(uSi
, ·)) ⊆ uσ(i)(u).

Example 1 (ctd.). The game is (S, σ)-invariant iff Si = {i}.

Example 2 (ctd.). We have

u1(u) = [−1, 1], u2(u) = {0}, u3(u) = [−1, 1].

Let S1 = {3}, S2 = {1, 2} and S3 = {1}. Define σ by σ(1) = 3, σ(2) = 2,
σ(3) = 1. Then

ProjΩσ(1)
(arg max
uS1∈ΩS1

J1(uS1 , ·)) = {0},

ProjΩσ(2)
(arg max
uS2∈ΩS2

J2(uS2 , ·)) = {0},

ProjΩσ(3)
(arg max
uS3∈ΩS3

J3(uS3 , ·)) = {0},

and
{0} ⊆ u1(u), {0} ⊆ u2(u), {0} ⊆ u3(u).

Hence this game is (S, σ)-invariant.

Example 3 (ctd.). We have

u1(u) = {0}, u2(u) = {0}, u3(u) = [−1, 1].

This game cannot be (S, σ)-invariant.

Theorem 2. For each i ∈ I, let Ωi be convex, closed, bounded subsets of
the reflexive Banach spaces Ei such that:

(i) Ji(·) is continuous on Ω.
(ii) Γ is (S, σ)-invariant.
(iii) uSi

(·) = arg maxuSi
∈ΩSi

Ji(uSi
, ·) is a singleton for each fixed element

u−Si in Ω−Si .

Then Γ has an equilibrium point of type S which is also Nash.

Proof. We will first show that Γ has an equilibrium ũ of type S and then
complete the proof by showing that ũ is Nash.

Just as in the proof of Theorem 1, we find that uSi
(·) is continuous.

Let θ be any permutation on I and consider the mappings û(·) and û′(·) from
(Ω, τ) into (Ω, τ) defined by

û(u) =
N∏

θ(i)=1

ProjΩθ(i)
(uSi

(u)) and û′(u) =
N∏

i=1

ui(u).
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Then û(·) is continuous. Now, ũ is an equilibrium of type S as defined in [2,
p. 88] for the game Γ if and only if ũ is a fixed point of û(·). Since by Tikhonov’s
fixed point theorem [9], the mapping û(·) has a fixed point ũ, this concludes the
proof of the existence of an equilibrium point of type S.

Now, let us show that ũ is also a Nash point. Let θ = σ. Since by (ii) any
fixed point of û(·) is also a fixed point of û′(·), it follows that ũ is also a Nash
equilibrium of Γ. This completes the proof of the theorem.

Remark 3. (i) As far as the existence of an equilibrium of type S is con-
cerned, Theorem 2 is an extension of Radjef’s result [8] for two reasons. While
Radjef considers only the case when σ is defined by σ(i) = i + 1 for 1 ≤ i < N ,
σ(N) = 1 and Si = −i, Theorem 2 addresses the cases of any permutation and
any partition of the set I.

(ii) If σ(i) = i for 1 ≤ i ≤ N , and Si = {i}, then we get Theorem 1.

The following example illustrates Theorem 2.

Example 2 (ctd.). The traditional organization method does not work since
u1(u) is not unique. The following demonstrates how to apply Theorem 2 to this
example.

û(u) = (ProjΩσ(3)
(uS3(u)),ProjΩσ(2)

(uS2(u)),ProjΩσ(1)
(uS1(u))).

So û(u) = u if and only if u = (0, 0, 0).

Remark 4. In particular, by [7, Theorem 2, p. 72] the results above hold if
conditions (ii) of Theorem 1 and (iii) of Theorem 2 are replaced by the following
conditions respectively:

(ii) Ji(ui, ·) is strictly quasi-concave on Ωi.
(iii) Ji(uSi

, ·) is strictly quasi-concave on ΩSi
.

Definition 5. For M ≤ N , let R = {Rm : 1 ≤ m ≤ M} and S = {Sm : 1 ≤
m ≤ M} be a partition of I and a set of pairwise disjoint sets respectively, such
that I =

⋃M
i=1 Si. Assume that there is a permutation σ on I such that:

(i) σ(rm) ∈ Sm for all rm ∈ Rm and any fixed m.
(ii) arg maxuSm∈ΩSm

Jj(uSm
, ·) = arg maxuSm∈ΩSm

Jk(uSm
, ·) for all k, j ∈

Rm and any fixed m.
(iii) ProjΩσ(rm)

(arg maxuSm∈ΩSm
Jrm

(uSi
, ·)) ⊆ uσ(rm)(u) for all rm ∈ Rm

and any fixed m.

Then the game Γ is said to be (S, σ, R,M)-invariant.

Example 3 (ctd.). Set

S1 = {1}, S2 = {2, 3}, R1 = {1}, R2 = {2, 3},
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and σ(i) = i for i = 1, 2. Then

uS1(u) = {0}, uS2(u) = {(0, 0)}, u1(u) = {0},
u2(u) = {0}, u3(u) = [−1, 1],

ProjΩ1
(arg max
uS1∈ΩS1

J1(uS1 , ·)) ⊆ u1(u),

ProjΩ2
(arg max
uS2∈ΩS2

J2(uS2 , ·)) ⊆ u2(u),

ProjΩ3
(arg max
uS2∈ΩS2

J2(uS2 , ·)) ⊆ u3(u),

which shows that this game is (S, σ, R, 2)-invariant.

Remark 5. If Γ is (S, σ)-invariant, then it is also (S, σ, R,N)-invariant.

Theorem 3. For each i ∈ I, let Ωi be convex, closed, bounded subsets of
the reflexive Banach spaces Ei such that:

(i) Ji(·) is continuous on Ω.
(ii) Γ is (S, σ, R,M)-invariant.
(iii) uSm

(u) = arg maxuSm∈ΩSm
Jrm

(uSm
, ·) is a singleton for all rm ∈ Rm

and each fixed m and u−Sm in Ω−Sm .

Then Γ has an equilibrium point for R relative to S which is also Nash.

Proof. As in the proof of Theorem 2, we will first show that Γ has an
equilibrium ũ for R relative to S and then complete the proof by showing that
ũ is Nash.

As before, uSm(·) is continuous.
Let θ be any permutation on M such that properties (i) and (ii) of Definition

3 are satisfied. Then, from (ii), the set S′ = {S′
m : 1 ≤ m ≤ M} where S′

m is the
image of Rm by θ is a partition of I. Moreover, for a fixed m and any k, j ∈ Rm,
we have

ProjΩS′
m

arg max
uSm∈ΩSm

Jj(uSm
, ·) = ProjΩS′

m

arg max
uSm∈ΩSm

Jk(uSm
, ·).

Let û(·) be a mapping from (Ω, τ) into itself such that the θ(rm)th component
ûθ(rm)(u) of û(u) is defined as the projection on Ωθ(rm) of uSm

(u). Consider also
the mapping û′(·) from (Ω, τ) into itself defined by û′(u) =

∏N
i=1 ui(u). Then

û(·) is continuous. Notice that ũ is an equilibrium for R relative to S for the
game Γ as defined in [2, p. 88] if and only ũ is a fixed point of û(·). Since by
Tikhonov’s fixed point theorem [9], the mapping û(·) has a fixed point ũ, this
concludes the proof of the existence of an equilibrium point for R relative to S.

Let us show that ũ is also a Nash point. Let θ = σ. Since the game Γ is
(S, σ, R,M)-invariant, any fixed point of û(·) is also a fixed point of û′(·). Then
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by [1] it follows that ũ is also a Nash equilibrium point of Γ. This completes the
proof of the theorem.

An illustrative example for Theorem 3 will now be presented.

Example 3 (ctd.). Theorem 2 does not work because there are no N non-
empty pairwise distinct subsets Si of I such that condition (ii) of Theorem 2 is
satisfied. Theorem 3 applied to this game yields the following result: û(u) = u

if and only if u = (0, 0, 0).

Remark 6. (i) Theorem 3 is a generalization of Theorem 2. This follows
from the previous remark. In fact, Theorem 2 can be obtained if M = N and
Ri = {i} in Theorem 3.

(ii) In particular, by [7, Theorem 2, p. 72] the same result holds if assumption
(iii) in Theorem 3 is replaced by the following assumption:

(iii′) Jrm
(uSm

, ·) is strictly quasi-concave on ΩSm
for all rm ∈ Rm, for fixed

m and u−Sm in Ω−Sm .

IV. Results. Part 2

The following theorem is the infinite number of players version of Theorem 1
of Part 1.

Theorem 4. Let {Ei}i∈I be a family of reflexive Banach spaces. Let {Ωi}i∈I

be a family of closed, bounded, convex sets such that Ωi ⊆ Ei for each i ∈ I.
Let {Ji(·)}i∈I be a family of real-valued continuous functions on Ω =

∏
i∈I Ωi

such that ui(u) is a singleton for each fixed element u−i in Ω−i. Then the game
Γ = (I, Ji,Ωi) has a Nash equilibrium.

Proof. Since ui(·) is continuous, by [3, p. 51, Corollary 7.23] the composite
mapping û(·) from (Ω, τ) into itself defined by û(u) =

∏
i∈I ui(u) is continuous.

By [9], û(·) has a fixed point ũ which by [1] is a Nash point for Γ. The proof is
complete.

The notions of (S, σ)-invariance and (S, σ, R,M)-invariance in case I is an
infinite set can naturally be generalized as follows.

Definition 6. Let S = {Si}i∈I be such that I =
⋃

i∈I Si and Si are
nonempty pairwise distinct. The game Γ is said to be (S, f)-invariant if there is
a one-to-one function f on I such that:

(i) ProjΩf(i)
(arg maxuSi

∈ΩSi
Ji(uSi

, ·)) 6= ∅.
(ii) ProjΩf(i)

(arg maxuSi
∈ΩSi

Ji(uSi
, ·)) ⊆ uf(i)(u).
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Definition 7. Let R = {Rm}m∈M be a partition of I and S = {Sm}m∈M

be a set of pairwise disjoint sets such that I =
⋃

m∈M Sm. Assume that there is
a one-to-one function f on I such that:

(i) f(rm) ∈ Sm for all rm ∈ Rm and fixed m.
(ii) arg maxuSm∈ΩSm

Jj(uSm , ·) = arg maxuSm∈ΩSm
Jk(uSm , ·) for all k, j ∈

Rm and any fixed m.
(iii) ProjΩf(rm)

(arg maxuSm∈ΩSm
Jrm

(uSm
, ·)) ⊆ uf(rm)(u) for all rm ∈ Rm.

Then the game Γ is said to be (S, f, R,M)-invariant.

Now, let us prove the analogues of Theorems 2 and 3 in the situation of an
infinite number of players.

Theorem 5. Let {Ei}i∈I be a family of reflexive Banach spaces. Let {Ωi}i∈I

be a family of closed, bounded, convex sets such that Ωi ⊆ Ei for each i ∈ I. Let
{Ji(·)}i∈I be a family of real-valued functions defined on Ω =

∏
i∈I Ωi such that

for each i ∈ I:

(i) Ji(·) is continuous on Ω.
(ii) Γ is (S, f)-invariant.
(iii) uSi(·) = arg maxuSi

∈ΩSi
Ji(uSi , ·) is a singleton.

Then Γ has a Nash equilibrium.

Proof. Again, uSi
(·) is continuous. Now let g be any one-to-one function

on I and consider the mappings û(·) and û′(·) from (Ω, τ) into (Ω, τ) defined by

û(u) =
∏

g(i)∈I

ProjΩg(i)
(uSi(u)) and û′(u) =

∏
i∈I

ui(u).

Then û(·) is continuous by [3, p. 51, Corollary 7.23]. Now, ũ is an equilibrium
of type S for the game Γ as defined in [2, p. 88] if and only ũ is a fixed point of
û(·). Since by Tikhonov’s fixed point theorem [9], the mapping û(·) has a fixed
point ũ, this concludes the proof of the existence of an equilibrium point ũ of
type S.

Now, let us show that ũ is also a Nash equilibrium point. By [1], for ũ ∈ Ω
to be a Nash equilibrium of Γ it is sufficient that ũ is a fixed point of û(·). Since
by (ii) any fixed point of û(·) is also a fixed point of û′(·), we have just shown
that ũ is also a Nash equilibrium. The proof is complete.

Theorem 6. Let {Ei}i∈I be a family of reflexive Banach spaces. Let {Ωi}i∈I

be a family of closed, bounded, convex sets such that Ωi ⊆ Ei for each i ∈ I. Let
{Ji(·)}i∈I be a family of real-valued functions defined on Ω =

∏
i∈I Ωi such that

for each i ∈ I:

(i) Ji(·) is continuous on Ω.
(ii) Γ is (S, f, R,M)-invariant.
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(iii) uSm
(u) = arg maxuSm∈ΩSm

Jrm
(uSm

, ·) is a singleton for all rm ∈ Rm

for each fixed m and u−Si in Ω−Si .

Then Γ has a Nash equilibrium.

Proof. First, uSm(·) is again continuous on ΩSm . From (ii), the set S′ =
{S′

m}m∈M where S′
m is the image of Rm by f is a partition of I. Moreover, since

Γ is (S, f, R,M)-invariant, we have

ProjΩS′
m

arg max
uSm∈ΩSm

Jj(uSm , ·) = ProjΩS′
m

arg max
uSm∈ΩSm

Jk(uSm , ·)

for each fixed m and any j, k ∈ Rm.
Let û(·) be a mapping from (Ω, τ) into itself such that the f(rm)th component

ûf(rm)(u) of û(u) is defined as the projection on Ωf(rm) of uSm(u). Now consider
also the mapping û′(·) from (Ω, τ) into itself defined by u′(u) =

∏
i∈I ui(u).

Then û(·) is continuous by [3, p. 51, Corollary 7.23]. By [1], for ũ ∈ Ω to be an
equilibrium of type R relative to S for the game Γ it is necessary and sufficient
that ũ is a fixed point of û(·). Since by Tikhonov’s theorem [9] such a fixed point
exists, this implies the existence of an equilibrium point ũ of type R relative
to S.

Now, since by (ii) any fixed point of û(·) is also a fixed point of û′(·) and since
any fixed point of û′(·) is by definition a Nash equilibrium point we conclude that
ũ is also a Nash equilibrium point. The proof is complete.

Remark 7. If in Theorems 4, 5 and 6 instead of um(u), uSm
(u) being sin-

gletons we require that Jm(·) be strictly quasi-concave respectively on Ωm and
ΩSm

, then these results still hold and their proofs can be obtained by using a
theorem of Ma [6, p. 415, Theorem 4].

V. Conclusion

We have shown that under an invariance property that has been introduced
in this paper, different types of equilibria as defined by Berge can also be Nash
equilibria for N -person games. Part of the results proved in this paper generalize
the Radjef-type organization. Similar results for an infinite number of players
are the first obtained in the case of Berge equilibria. Even though these results
have been proved under some strong assumptions, they will be of interest for
some specific Nash games. Finally, our results contribute a new solution to the
problem of selecting appropriate Nash equilibria.
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