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FIXED POINT INDEX FOR ITERATIONS OF MAPS,
TOPOLOGICAL HORSESHOE AND CHAOS

Piotr Zgliczyński

1. Introduction

There are many examples of complicated or chaotic dynamics, but the set
of examples for which chaos has been rigorously demonstrated is quite small. In
most cases where chaotic dynamics has been proven, the strategy has involved
analysing a simple singular map or integrable problem and then perturbing the
results (see [2], [5]). This usually required some estimates on the derivatives of
mappings under consideration.

Another strategy to tackle such problems is to appropriately homotope the
given system to a model problem for which some algebraic invariants could be
explicitly computed and show that these invariants remain unchanged. Nontri-
viality of the algebraic invariant provides a minimal description of the complexity
of the dynamics of the system. In [3], [4] with the help of the discrete Conley
index introduced in [6], this strategy has been applied to the Hénon map and
the Lorenz equations.

In applying this strategy to a concrete problem we must answer three closely
related questions: what algebraic invariants we will use, what is the model map,
what are the appropriate homotopies.
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As the algebraic invariant we choose the fixed point index [1, Chapter VII.5]
and we formulate general sufficient conditions for a homotopy to be appropriate.
As the model maps we choose maps for which all fixed point indices of the perio-
dic points are easily calculable. This class of maps includes for example Smale’s
horseshoe and one-dimensional chaotic maps. We then prove the existence of an
infinite number of periodic orbits for maps which can be appropriately homoto-
ped from model maps and their semiconjugacy to the shift automorphism on two
symbols. In [4, Theorem 2.4] a very similar result was stated for a less general
class of appropriate homotopy maps, but the proof given there has a serious gap
in the part concerning “continuation”.

Our results might find their application in computer assisted proofs of chaos
in dynamical systems. They could be applied to any differential equation for
which numerical integration gives the Poincaré map looking like Smale’s hor-
seshoe. Recently Mischaikow and Mrozek [3] performed successfully this type
of calculation for the Lorenz equations (with nonclassical values of parameters
r = 54, s = 45, q = 10). Pictures obtained by them show that the assumptions
of our Theorem 3.2 are satisfied. This allows application of our Theorems 3.1
and 4.1 to strengthen their results. Similar calculations are being done by the
author [9], [10] to prove the existence of chaotic dynamics in the Hénon map and
Rössler equations. In both cases we consider the classical values of parameters.
Work about classical Lorenz equations is in progress.

2. Continuation of fixed point indices for iterations

We denote by %(x, y) the distance from x to y in Rd. For Z ⊂ Rd and
x ∈ Rd we write %(x, Z) = inf{%(x, y) | y ∈ Z}, B(x, ε) = {y | %(x, y) < ε} and
B(Z, ε) = {y | %(x,Z) < ε}. For mappings F defined on [0, 1]×Z we write Fλ(x)
instead of F (λ, x).

Let f : X → X be a continuous map and Z ⊂ X. We define Inv(Z, f) =⋂∞
i=−∞ f

i
|Z(Z). If Z is compact then Inv(Z, f) is a maximal invariant set conta-

ined in Z. We will often write simply Inv(Z), when f is known from the context.

We say that Z is an isolating neighborhood for f if Z is compact and Inv(Z, f)
⊂ int(Z).
Let Z0, Z1, . . . , Zs be pairwise disjoint. Let α = (α0, α1, . . . , αn), where αi ∈

{0, 1, . . . , s}. Define

Zλα := Zα0 ∩ F−1λ (Zα1) ∩ . . . ∩ F
−n
λ (Zαn).

It can be easily seen that Zλα ∩ Zλβ = ∅ for α 6= β.

Lemma 2.1. LetM ⊂ Rd be a compact set, N a compact subset ofM and F :
[0, 1]×M →M a continuous map. Assume that N is an isolating neighborhood
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for Fλ for every λ ∈ [0, 1]. Then there exists an open set D such that cl(D) ⊂
int(N) and for every λ ∈ [0, 1], Inv(N,Fλ) ⊂ D.

Proof. Let x0 ∈ bd(N) and λ0 ∈ [0, 1]. Since N is an isolating neighbor-
hood for Fλ0 , x0 /∈ Inv(N,Fλ0). So there exists k > 0 such that F kλ0(x0) /∈ N
or x0 /∈ F kλ0|N (N). From compactness of N , local compactness of Rd and the
continuity of F it follows that there exist δ, ε > 0 such that

(2.1) F kλ (x) /∈ Nor x /∈ F kλ0|N (N) for x ∈ cl(B(x0, ε))and |λ− λ0| < δ.

The family of sets Ux,λ = B(x, ε) × ((λ − δ, λ + δ) ∩ [0, 1]) is an open covering
of the compact set bd(N) × [0, 1]. So there exists a finite Uxi,λi , i = 1, . . . , n
subcovering.
Set W :=

⋃n
i=1 Uxi,λi . Obviously W is open in M × [0, 1], contains bd(N)×

[0, 1], and x /∈ Inv(N,Fλ) for every (x, λ) ∈W .
We will construct an open, relatively compact set V ⊂M such that bd(N) ⊂

V and cl(V )× [0, 1] ⊂W . Let x ∈ bd(N). There exists a finite family of balls Yx,i
with center at x and open sets Λi in [0, 1] for i = 1, . . . ,m such that cl(Yx,i)×Λi ⊂
W and {x} × [0, 1] ⊂

⋃m
i=1 Yx,i × Λi. Let Yx :=

⋂m
i=1 Yx,i. Then Yx is obviously

an open ball with center at x and cl(Yx)× [0, 1] ⊂W .
The covering {Yx : x ∈ bd(N)} of bd(N) has a finite subcovering Yxi , i =

1, . . . , p. Define V :=
⋃p
i=1 Yxi . This set is open, bd(N) ⊂ int(V ) and cl(V ) ×

[0, 1] ⊂W .
Put D := int(N) \ cl(V ). Obviously D is open and Inv(N,Fλ) ⊂ D for

every λ. It remains to show that cl(D) ⊂ int(N). This clearly follows from the
fact that bd(N) ⊂ V . �

We are ready to state and prove the following theorem.

Theorem 2.2. Let N =
⋃
Ns, s = 0, . . . ,m, where Ns ⊂ Rd are compact

disjoint sets and cl(int(Ns)) = Ns. Let f, g : N → Rd be continuous maps.
Suppose that there exists the homotopy F connecting f and g and such that
N is an isolating neighborhood for every λ ∈ [0, 1]. Then for any finite sequence
(α0, α1, . . . , αn) ∈ {0, . . . ,m}n+1 the fixed point indices I(fn+1, Nα0∩f−1(Nα1)∩
. . .∩f−n(Nαn)), I(gn+1, Nα0∩g−1(Nα1)∩ . . .∩g−n(Nαn)) are defined and equal.

Proof. Tietze’s theorem allows us to extend the homotopy F to F̃ : [0, 1]×
[−L,L]d → [−L,L]d, where L is such that N ⊂ [−L,L]d and F ([0, 1] × N) ⊂
[−L,L]d. Thanks to this extension one can iterate F̃λ without leaving the domain
of definition. In what follows we use F̃ instead of the original F but we write F
for this extended homotopy.
Fix n and α = (α0, . . . , αn). From Lemma 2.1 one can find open sets D, C

such that

(2.2) cl(D) ⊂ C, cl(C) ⊂ int(N), Inv(N,Fλ) ⊂ D, for all λ ∈ [0, 1].
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We define Ci = C ∩Ni, Di = D ∩Ni. Let δ > 0 be such that

(2.3) B(Di, δ) ⊂ Ci, B(Ci, δ) ⊂ Ni.

Let λ0 ∈ [0, 1]. Then there exists a set Λ open in [0, 1], with λ0 ∈ Λ, such
that for every λ1, λ2 ∈ Λ,

(2.4) %(F iλ1(x), F
i
λ2(x)) ≤ δ for i = 1, . . . , n, x ∈ [−L,L]

d.

We now show that

(2.5) Dλα ⊂ Cλ0α ⊂ int(Nλα) for λ ∈ Λ.

Let x ∈ Dλα. Then F iλ(x) ∈ Dαi for i = 0, . . . , n. But from (2.3) and (2.4) it
follows that F iλ0(x) ∈ Cαi for i = 0, . . . , n. Thus x ∈ C

λ
α. The proof of the

second inclusion is analogous.
We now show that

(2.6) Fn+1λ (x) 6= x for x ∈ Nλα \Dλα.

Suppose there exists an x ∈ Nλα \ Dλα such that Fn+1λ (x) = x. Hence x ∈
Inv(N,Fλ) and for some i = 0, . . . , n, F iλ(x) ∈ Nαi \ Dαi . This means that
Inv(N,Fλ) is not contained in D, contrary to (2.2).
From (2.5) it follows that for λ, λ0 ∈ [0, 1] the sets bd(Dλα), bd(Cλα), bd(Cλ0α ),

bd(Nλα) are all contained in N
λ
α \Dλα. So from (2.6) we see that the fixed point

index for the maps Fn+1λ relative toDλα, C
λ
α, N

λ
α [1, Chapter VII.5] is well defined.

From the excision property of the fixed point index [1, Chapter VII, The-
orem 5.4], (2.6) and (2.5) we conclude that

(2.7) I(Fn+1λ , Dλα) = I(F
n+1
λ , Cλ0α ) = I(F

n+1
λ , Nλα) for all λ ∈ Λ.

Substituting λ := λ0 we derive

(2.7′) I(Fn+1λ0
, Dλ0α ) = I(F

n+1
λ0
, Cλ0α ).

From (2.5) and (2.6) it follows that

∀λ ∈ Λ ∀c ∈ bd(Cλ0α ) Fn+1λ (x) 6= x.

So from the homotopy invariance of the fixed point index [1, Chapter VII, The-
orem 5.8] we obtain

(2.8) I(Fn+1λ , Cλ0α ) = I(F
n+1
λ0
, Cλ0α ) for all λ ∈ Λ.

From (2.7), (2.7′), (2.8) we conclude that

(2.9) I(Fn+1λ , Dλα) = I(F
n+1
λ0
, Dλ0α ) for all λ ∈ Λ.
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From the compactness of [0, 1] and (2.9) we get I(Fn+10 , D0α) = I(F
n+1
1 , D1α).

And finally it follows from (2.7) that I(Fn+10 , N0α) = I(F
n+1
1 , N1α). This finishes

the proof. �

3. Topological horseshoe and chaotic behavior

In this section we discuss examples which illustrate the strength of The-
orem 2.2. We concentrate on maps defined on subsets of the plane.
Let N0 = [−1, 1]× [−1,−0.5], N1 = [−1, 1]× [0.5, 1.0] and N = N0 ∪N1.

�a b

cd

h g

fe

N0

N1

U(a)=U(b) U(g)=U(h)

U(c)=U(d) U(e)=U(f)

�a b

cd

h g

fe

N0

N1

G(a)=G(b) G(e)=G(f)

G(c)=G(d) G(g)=G(h)

Figure 1. U -horseshoe and G-horseshoe

Definition 3.1. The mappings U : N → R2, G : N → R2 defined by

U(x, y) :=

{
(−0.5, 5(x2 + 0.75)) for (x1, x2) ∈ N0,
(0.5,−5(x2 − 0.75)) for (x1, x2) ∈ N1,

G(x, y) :=

{
(−0.5, 5(x2 + 0.75)) for (x1, x2) ∈ N0,
(0.5, 5(x2 − 0.75)) for (x1, x2) ∈ N1,

will be called respectively the U - and G-horseshoe (see Figure 1).

Remark 3.1. The fixed point indices I(fn+1, Nα0 ∩ f−1(Nα1) ∩ . . . ∩
f−n(Nαn)), where αi ∈ {0, 1}, f ∈ {U,G}, are nonzero. This follows easily
from the piecewise linear character of the mappings under consideration. The
corresponding periodic points are hyperbolic.

Definition 3.2. Let P ⊂ R2 be a rectangle [a, b] × [c, d], a ≤ b, c ≤ d,
a, b, c, d ∈ R, and δ ≥ 0. We define

V (P, δ) := [a, a+ δ]× [c, d] ∪ [b− δ, b]× [c, d],
H(P, δ) := [a, b]× [c, c+ δ] ∪ [a, b]× [d− δ, d].
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For any set Z =
⋃
Pi, Pi = [ai, bi]× [ci, di] we define

V (Z, δ) :=
⋃
V (Pi, δ), H(Z, δ) :=

⋃
H(Pi, δ).

Thus V (Z, δ) is the δ-neighborhood in Z of the vertical edges of Z, and
H(Z, δ) is the δ-neighborhood in Z of the horizontal edges of Z. We drop the
parameter δ in the above defined symbols when δ = 0. So for example V (Z) =
V (Z, 0) is the union of the vertical edges.
Now we introduce two simple, geometrical conditions for the set N to be an

isolating neighborhood for a map f : N → R2. The conditions are

f(H(N)) ∩N = ∅,(A)

f(N) ∩ V (N) = ∅.(B)

It is easy to see that if conditions (A) and (B) hold then f(N) ∩N ∩ f−1(N) ⊂
int(N), so N is an isolating neighborhood.
Geometrically (A) means that horizontal edges of N are mapped by f outside

of N , and (B) means that vertical edges of N do not intersect the image of N .

Definition 3.3. Let F : [0, 1] × N → R2 be a continuous homotopy con-
necting f with g. This means that

F (0, x1, x2) = f(x1, x2) and F (1, x1, x2) = g(x1, x2).

F will be called appropriate if conditions (A) and (B) hold for every map Fλ,
λ ∈ [0, 1].

Combining Remark 3.1 and Theorem 2.2 we obtain the following theorem.

Theorem 3.1. Let f : N → R2 be a continuous map. Suppose that there
exists an appropriate homotopy F connecting f with the U - or G-horseshoe.
Then for any finite sequence α0, . . . , αn there exist points x, y satisfying

f i(x) ∈ Nαi for i = 0, . . . , n and fn+1(x) = x,
f i(y) ∈ Nαi for i = 0, . . . , n and fn+1(y) /∈ N.

Proof. The existence of x follows immediately from Remark 3.1 and The-
orem 2.2.
It remains to show the existence of y. From the first assertion we can find

x0, x1 such that

f i(xj) ∈ Nαi for i = 0, . . . , n,

and

fn+1(xj) ∈ Nj for j = 0, 1.
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Consider now the line segment p(t) = (1 − t)x0 + tx1. Obviously p(0) ∈
Nα ∩ f−(n+1)(N0) and p(1) ∈ Nα ∩ f−(n+1)(N1).
Let tm = sup{t | ∀0 ≤ s ≤ t, p(s) ∈ Nα ∩ f−(n+1)(N0)}. Obviously p(tm) ∈

Nα ∩ f−(n+1)(N0) and tm < 1. From (A) and (B) it follows that

f i(p(tm)) ∈ int(Nαi) for i = 1, . . . , n.

Thus

(3.1) ∃ε > 0 ∀0 < δ < ε f i(p(tm + δ)) ∈ int(Nαi) for i = 1, . . . , n.

But from the definition of tm it follows that the following condition

(3.2) f (n+1)(p(tm + δ)) /∈ N0

for some δ < ε, where δ may be chosen arbitrarily small.
Since f (n+1)(p(tm)) ∈ N0, for δ such that (3.1) and (3.2) hold, we get

(3.3) f (n+1)(p(tm + δ)) /∈ N.

This finishes the proof. �

In our opinion Theorem 3.1 fully justifies the following defintion:

Definition 3.4. Maps for which the assumptions of the above theorem hold
will be called topological horseshoes.

A natural question arises when a given mapping f defined on N for which
conditions (A) and (B) hold, may be appropriately homotoped to Smale’s hor-
seshoe. We present a simple criterion for the existence of such a homotopy (see
Figure 2).

�1 2

43

7 8

65

N0

N1

f(1)≈f(2) f(5)≈f(6)

f(3)≈f(4) f(7)≈f(8)

Figure 2. Sketch of the deformed G-horseshoe, obtained in [3] for the
Lorenz equations
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Theorem 3.2. Let f : N → R2 be such that

f([−1, 1]× {−1}) ⊂ {(x, y) | y < −1},
f([−1, 1]× {0.5}) ⊂ {(x, y) | y < −1},
f([−1, 1]× {−0.5}) ⊂ {(x, y) | y > 1},
f([−1, 1]× {1}) ⊂ {(x, y) | y > 1}.

Suppose that there exists δ > 0 such that

f(N) ⊂ {(x, y) | −1 + δ < x < 1− δ}.

Then there exists an appropriate homotopy F connecting f with the G-horseshoe.

Proof. Define F : [0, 1]×N → R2 by

F (λ, x) = (1− λ)f(x) + λG(x).

Obviously for this F conditions (A) and (B) hold. �

Corollary 3.3. If the assumptions of Theorem 3.2 are satisfied then the
assertion of Theorem 3.1 holds.

4. Semiconjugacy with a shift for topological horseshoes

Denote by Σ2 the space of bi-infinite sequences of 0’s and 1’s with the Ti-
khonov topology, and by s the shift on Σ2 given by s((xi)) = (xi−1).
As an application of Theorems 3.1 and 3.2 we prove the following

Theorem 4.1. Let f : N → R2 be a topological horseshoe and assume it is
an injection. Then there exists a continuous surjection σ : Inv(N) → Σ2 such
that σ ◦ f = s ◦ σ. If α ∈ Σ2 is periodic, then σ−1(α) contains periodic points
with the same period.

Proof. We have Inv(N) =
⋂∞
n=−∞ f

n
|N (N). For any i ∈ Z and x ∈ Inv(N)

we define σi(x) = j if f i(x) ∈ Nj . Obviously these maps are well defined and
continuous, and yield a continuous mapping σ : Inv(N)→ Σ2. Obviously σ ◦f =
s ◦ σ. From Theorem 3.1 it follows that σ−1 of any periodic trajectory contains
a periodic orbit with the same period. But periodic points are dense in {0, 1}Z

so the entire {0, 1}Z lies in the image of σ. �

Remark 4.1. Exact calculations performed by Mischaikow and Mrozek in
[3] for the Lorenz equations (nonclassical values of parameters r = 54, s = 45,
q = 10) show that the assumptions of our Theorem 4.1 are satisfied (see Figure 2)
for an appropriately chosen set N = N0 ∪ N1 on the section z = 53, so the
assertion of this theorem holds.
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5. Concluding remarks

The horseshoes are the simplest examples of the applications of our The-
orem 2.2 and conditions (A) and (B). One could easily write down many exam-
ples of such piecewise linear mappings with a larger number of components and
in higher dimensional spaces. One obtains in this way models of chaotic behavior
different from that of horseshoe’s. For example in [10] chaotic dynamics on three
symbols was proved for some Poincaré map for the Rössler system.

Acknowledgments. I express my gratitude to Marian Mrozek for inspira-
tion to undertake this work and many discussions.
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