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1. Introduction

We consider the semilinear Dirichlet problem

(D) −∆u = f(u) in Ω, u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded domain with Lipschitz boundary and f : R → R
is of class C1 with f(0) = 0. Thus u0 ≡ 0 is a trivial solution of (D) and we
are interested in finding and studying nontrivial solutions. One way of obtaining
these is to compare the behavior of f near the origin and near infinity. We shall
always assume that f grows subcritically at infinity so that variational methods
can be applied and the associated functional satisfies the Palais–Smale condition.

Suppose f ′(0) < λ1 where 0 < λ1 < λ2 ≤ λ3 ≤ . . . are the eigenvalues
(counted with multiplicities) of −∆ on Ω with homogeneous Dirichlet boundary
conditions. If f grows superlinearly at infinity then the mountain pass theorem
of Ambrosetti and Rabinowitz [AR], [R] together with the maximum principle
guarantees the existence of a positive solution u+ and a negative solution u−
of (D). Using linking or Morse type arguments Wang [Wa] obtained a third
nontrivial solution u1. In this paper we shall refine Wang’s result and obtain
more information on u1 and on other solutions whose existence is proved via
Morse theory. Let us illustrate this with the following two theorems. More
general results will be stated and proved later.
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Theorem 1. Suppose f ′(0) < λ2 and f grows superlinearly but subcritically
at infinity. Then there exists a solution u1 of (D) which changes sign. If u2 is
a second nontrivial solution then u2 > u1 (respectively, u2 < u1) implies that
u2 is positive (respectively, negative). If f ′(0) < λ1 then there exist a positive
solution u+ of (D) and a negative solution u− such that u1 − u+ and u1 − u−
both change sign.

If f ′(0) < λ1 the existence of three solutions is well known. Observe that
the solution u1 exists even in the resonant case f ′(0) = λ1 without any further
condition on the behavior of f near 0. This seems to be new. Our main new
observation, however, is that the Morse type arguments which yield the existence
of u1 can be used in combination with the maximum principle to prove that u1

changes sign and to obtain information on the relation of other solutions to u1

and u0 ≡ 0. We only know of the paper [CCN] by Castro et al. where the
existence of a sign changing solution is proved using much stronger hypotheses
on f however.

Theorem 2. Suppose f ′(t) → ω ∈ R as |t| → ∞.

(a) If neither ω nor f ′(0) are eigenvalues of −∆ on Ω with homogeneous
Dirichlet boundary conditions and if there exists k ≥ 2 such that λk lies between
ω and f ′(0) then (D) has a sign changing solution.

(b) If ω < λ2 < f ′(0) then (D) has a sign changing solution u1 even if
ω = λ1 and f ′(0) = λk for some k ≥ 3. Moreover, any positive solution is larger
than u1 and any negative solution is smaller than u1.

(c) If ω < λ1 < λ2 < f ′(0) then (D) has three nontrivial solutions u+ > 0,
u− < 0 and u1 such that u−(x) < u1(x) < u+(x) for every x ∈ Ω. Moreover,
any other positive solution is larger than u+ and any other negative solution is
smaller than u−.

The existence of the solutions is well known if f ′(0) and ω are not eigenvalues
of −∆. In that case and assuming ω < λ1 Hofer [H] proved even the existence
of four nontrivial solutions u+, u−, u1, u2 of (D) using degree theory. Since we
allow f ′(0) to be an eigenvalue the degree of the trivial solution may be 0 and
all its critical groups (see below) may vanish.

In order to prove results of this type we develop new variational methods
for functionals Φ defined on partially ordered Hilbert spaces whose gradient is
of the form ∇Φ = Id−K where K is a compact and order preserving nonlinear
operator. For the application to (D) we have

Φ(u) =
1
2

∫
Ω

|∇u|2 dx−
∫

Ω

F (u) dx

where F (u) =
∫ u

0
f(t) dt is the primitive of f . That the gradient of Φ (with

respect to a properly chosen scalar product on H1
0 (Ω)) is of the above form is
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a consequence of the maximum principle. We refer the reader to the papers by
Amann [A], Chang [Ch1], Hofer [H] or Wysocki [Wy] where this observation is
used to prove the existence of positive solutions of (D) under various hypotheses
on f . Here we show how the maximum principle can be used to prove that certain
solutions change sign. The philosophy of our results is that if the behavior of
the energy functional Φ near the origin and near infinity implies the existence of
a critical point u1 whose critical group

Ck(Φ, u1) := Hk(Φc,Φc − {u1})

is not trivial for some k ≥ 2 then this critical point can be neither positive nor
negative. Here Hk denotes singular homology theory with arbitrary coefficients,
c = Φ(u1) and Φc = {u ∈ H1

0 (Ω) : Φ(u) ≤ c} is the sublevel set as usual. We
emphasize that there may be many positive or negative critical points and they
may have nontrivial critical groups in all possible dimensions. Moreover, positive
or negative critical points may accumulate at 0. In other words, there will be no
assumptions at all on the set of positive or negative solutions.

The paper is organized as follows. In Section 2 we develop some abstract
critical point theory for functionals on partially ordered Hilbert spaces which
respect the partial order in the sense mentioned above. The results of this
section will be proved in Section 3. These two sections form the core of the
paper and are of independent interest. Finally, in Section 4 we state and prove
generalizations of Theorems 1 and 2.

Acknowledgements. The first named author was supported by the DFG
through a Heisenberg award. The research was done during visits of the first
named author at the Department of Mathematics of Utah State University and
at the Forschungsinstitut für Mathematik of the ETH Zürich. He thanks both
institutions for their kind invitation and hospitality.

2. Critical point theory for functionals
on partially ordered Hilbert spaces

Let E be a Hilbert space and PE ⊂ E a closed cone, that is, PE = PE is
convex, R+ · PE ⊂ PE and PE ∩ (−PE) = {0}. As usual, this turns E into a
partially ordered space where

u ≥ v :⇔ u− v ∈ PE , u > v :⇔ u ≥ v and u 6= v.

If u − v 6∈ PE ∪ (−PE) then u and v are said to be noncomparable. A map
f : E → E is called order preserving if

u ≥ v ⇒ f(u) ≥ f(v) for all u, v ∈ E.
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Let X ⊂ E be a Banach space which is densely embedded into E. We set
P := X ∩ PE and assume that P has nonempty interior P

◦
6= ∅. We also assume

that there exists an element e ∈ P
◦

such that 〈u, e〉 > 0 for all u ∈ P \ {0}. Here
〈−,−〉 denotes the scalar product of E. Thus X is a partially ordered Banach
space and we define

u � v :⇔ u− v ∈ P
◦
.

The elements of P
◦

are called positive, those of −P
◦

negative. A map f : X → X

is said to be strongly order preserving if

u > v ⇒ f(u) � f(v) for all u, v ∈ X.

Next we consider a function Φ : E → R which satisfies the conditions:

(Φ1) Φ ∈ C2(E, R), Φ(0) = 0, Φ′(0) = 0 and the Palais–Smale condition
holds for Φ. Any critical point of Φ lies in X.

(Φ2) The gradient of Φ is of the form ∇Φ = Id − KE where KE : E → E

is a compact (nonlinear) operator. Moreover, KE(X) ⊂ X and the
restriction K := KE |X : X → X is of class C1 and strongly order
preserving.

(Φ3) Any eigenvector of the (Fréchet) derivative DKE(0) ∈ L(E) lies in X,
the largest eigenvalue of DKE(0) is simple and its eigenspace is spanned
by a positive eigenvector.

These assumptions are slightly weaker than the hypotheses (ΦΦ) of [H]. There
it is assumed in addition that KE and DKE(u) ∈ L(E) are regular in the
following sense: There exists a finite sequence E = En ⊃ En−1 ⊃ . . . ⊃ E1 ⊃
E0 = X of Banach spaces Ei such that K and DK(u), u ∈ X, induce continuous
operators Ei → Ei−1 for i = 1, . . . , n. Moreover, it is assumed that KE and
DKE(u) are order preserving and DK(u) ∈ L(X), u ∈ X, is strongly order
preserving. Then (Φ3) is a consequence of the Krein–Rutman theorem.

Finally, we need an assumption on the behavior of Φ near infinity. We shall
distinguish between the cases of Φ coercive, Φ superquadratic, and Φ asymptot-
ically quadratic.

(Φ4) One of the following holds:
(i) Φ is bounded below.
(ii) For every u ∈ E − {0} we have Φ(tu) → −∞ as t → ∞. There

exists a < 0 such that Φ(u) ≤ a implies Φ′(u)u < 0.
(iii) There exists a compact self-adjoint linear operator AE ∈ L(E) such

that ∇Φ(u) = u− AEu + o(‖u‖E) as ‖u‖E →∞. All eigenvectors
of AE lie in X, the largest eigenvalue is simple and its eigenspace
is spanned by a positive eigenvector v∞ ∈ P

◦
such that 〈u, v∞〉 > 0

for every u ∈ P \ {0}. Moreover, the restriction A := AE |X is a
bounded linear operator A ∈ L(X).
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By a result of Kaclovic et al. [KLW], Φ must be coercive if (Φ4)(i) holds and
the Palais–Smale condition is satisfied. Case (ii) in (Φ4) models the superlin-
ear growth of f in the application to (D) whereas case (iii) corresponds to the
asymptotically linear growth of f near infinity.

Now we define the Morse index µ∞ ∈ N ∪ {∞} and the nullity ν∞ ∈ N of
Φ at infinity depending on whether (i), (ii) or (iii) holds in (Φ4). In case (i) we
set µ∞ := 0 and in case (ii) we set µ∞ := ∞. In both cases the nullity is trivial,
ν∞ := 0. If (iii) holds then µ∞ is the dimension of the negative eigenspace
of Id − AE , that is, the number of eigenvalues of AE which are larger than 1,
counted with multiplicities. We do allow that Id − AE has a kernel, so the
nullity ν∞ := dim ker(Id − AE) of Φ at infinity may be nonzero. Thus even
in the case µ∞ = 0 it is possible that Φ is not bounded below. Similarly, the
origin may be a degenerate critical point of Φ with nullity ν0 := dim kerΦ′′(0) =
dim ker(Id−DK(0)) possibly nontrivial.

Theorem 2.1. Suppose the Morse index µ0 of Φ at 0 is at least 2 and
µ∞ + ν∞ ≤ 1. Then Φ has a critical point u1 ∈ X which is not comparable to
0, that is, u1 6∈ P ∪ (−P ). Moreover, for any critical point u2 of Φ the following
implications hold: u2 > 0 implies u2 � u1, and u2 < 0 implies u2 � u1.

If Φ is bounded below then it has a positive critical point u+ ∈ X and a
negative critical point u− ∈ X, hence u+ � u1 � u−. For any critical point
u2 of Φ the following implications hold: u2 > 0 implies u2 � u+, and u2 < 0
implies u2 � u−.

Now we consider a dual situation to 2.1.

Theorem 2.2. Suppose µ∞ ≥ 2 and µ0 + ν0 ≤ 1. Then Φ has a critical
point u1 ∈ X which is not comparable to 0. Moreover, for any critical point u2

of Φ the following implications hold: u2 < u1 implies u2 � 0, and u2 > u1

implies u2 � 0.
If 0 is a possibly degenerate strict local minimum then Φ has a positive critical

point u+ ∈ X and a negative critical point u− ∈ X. For any critical point u2

of Φ the following implications hold: u2 < u+ implies u2 � 0, and u2 > u−
implies u2 � 0. In particular, u1 is not comparable to u+ nor u−.

The positive and negative critical points in 2.1 and 2.2 are of a different
nature. In 2.1 they are local minima whereas in 2.2 they are of mountain pass
type. Our last result in this section deals with a situation where both Morse
indices µ0 and µ∞ may be larger than 1. In that case Φ need not have a positive
or a negative critical point even if µ0 6= µ∞. There still exists a critical point
which is not comparable to 0. For simplicity we only deal with the nondegenerate
case at 0 and at infinity.
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Theorem 2.3. Suppose µ0 6= µ∞, max{µ0, µ∞} ≥ 2 and ν0 = ν∞ = 0.
Then Φ has a critical point which is not comparable to 0.

Remarks 2.4. a) The nondegeneracy assumptions in 2.3 can be avoided. In
that case one has to work with the critical groups C∗(Φ, 0) = H∗(Φ0,Φ0\{0})
of Φ at 0 and the critical groups C∗(Φ,∞) = H∗(E,Φa) of Φ at infinity as
discussed in [BL]; here a < 0 is a strict lower bound for the critical values of
Φ. Essentially a critical point of Φ outside of the union of the cones P ∪ (−P )
exists if Ck(Φ, 0) 6= Ck(Φ,∞) for some k ≥ 2. In other words, positive or
negative critical points can only contribute to the homology in dimensions k = 0
or k = 1. Although there may clearly exist positive (and negative) critical
points with arbitrary Morse indices their homologies have to cancel each other in
dimensions 2 or larger. In [BL] one can find a number of computations of C∗(Φ, 0)
and of C∗(Φ,∞) in the degenerate case. In particular, we want to mention
Theorem 3.9 of [BL] which states that Ck(Φ,∞) = 0 for k 6∈ [µ∞, µ∞ + ν∞].
The corresponding result for Ck(Φ, 0) is due to Gromoll and Meyer [GM]. The
nontriviality of Ck(Φ, 0) or Ck(Φ,∞) for some k follows from local or global
linking conditions or the angle conditions in [BL].

b) The existence of the critical points u+, u− in 2.1 and 2.2 is well known
(cf. [H]). The existence of u1 in 2.1 and 2.2 seems to be new in the degenerate
case when the nullities ν0 or ν∞ are not trivial. In that case the critical groups
C∗(Φ, 0) or C∗(Φ,∞) may all be trivial. We refer the reader to the book by
Chang [Ch2] and the references therein for existence results. The case ν∞ > 0
has been treated in [BL]. The main new information contained in 2.1 to 2.3 is
the localization of u1 in relation to the origin and to other critical points. We
believe that the method for proving the existence of u1 is also of interest since
it yields automatically the additional information.

c) If 0 is a nondegenerate critical point with Morse index at least 2 and if Φ
is coercive then a simple argument using degree theory or the Morse inequalities
yields the existence of four nontrivial critical points: a positive and a negative
local minimum, a mountain pass type solution and a fourth solution (cf. [H],
Theorem 6). The nondegeneracy assumptions at the origin and at infinity are
essential for this argument.

3. Proof of 2.1 to 2.3

The main ingredient in the proof of the results from Section 2 is the negative
gradient flow ϕt of Φ on E, that is,

d

dt
ϕt = −∇Φ ◦ ϕt, ϕ0 = id.

Because of (Φ2) we have ϕt(u) ∈ X for u ∈ X and ϕt induces a continuous (local)
flow on X which we continue to denote by ϕt. The main order related property of



Sign Changing Solutions 121

ϕt is that the positive cone P and the negative cone −P are positively invariant.
More generally, we have:

Lemma 3.1. Suppose Φ′(u0) = 0, so that u0 ∈ X by (Φ1). Then for every
v ∈ P −{0} and every t > 0 we have ϕt(u0± v) ∈ u0±P

◦
. Consequently, u0±P

and u0 ± P
◦

are positively invariant.

Proof. It suffices to show that for v ∈ P\{0} the vector field −∇Φ points
at u0 + v inside the cone u0 + P

◦
, that is,

u0 + v −∇Φ(u0 + v) ∈ u0 + P
◦

for v ∈ P\{0}.

This follows easily from (Φ2):

u0 + v −∇Φ(u0 + v) = K(u0 + v) � K(u0) = u0.

The same argument applies to u0 − v. �

Proof of 2.1. Since µ0 ≥ 2 the smallest eigenvalue of Φ′′(0) = Id−DKE(0)
is negative and the associated eigenspace is spanned by a positive eigenvector.
Therefore there exists a subset S of the unstable set Wu(0) ⊂ X of 0 which is
homeomorphic to S1 and intersects P

◦
and −P

◦
:

S ⊂ W u(0) = {u ∈ X : ϕt(u) → 0 as t → −∞}

S ∼= S1, S ∩ P
◦
6= ∅ 6= S ∩ (−P

◦
).

Now µ∞ + ν∞ ≤ 1 implies that (Φ4)(i) or (iii) holds. In case (i) set v∞ :=
e ∈ P

◦
, in case (iii) let v∞ ∈ P

◦
be the unique positive eigenvector of Id−A with

‖v∞‖ = 1 which spans the one-dimensional eigenspace of Id−AE belonging to the
largest eigenvalue of AE . In any case, Φ is bounded below on X ∩ (span{v∞})⊥

which is a codimension one subspace of X. We choose any a < inf Φ(X ∩
(span{v∞})⊥). We claim that the ω-limit set of S contains a critical point u1

outside of P ∪ (−P ). Arguing indirectly we suppose that there are no critical
points in ω(S)\(P ∪ (−P )) where

ω(S) = {u ∈ X : there exist sequences tn →∞, un ∈ S

with ϕtn(un) → u as n →∞}

is the ω-limit set of S. For every u ∈ S there exists τ(u) ≥ 0 such that ϕt(u) ∈
Φa ∪ P

◦
∪ (−P

◦
) for all t ≥ τ(u). By continuity of ϕt and compactness of S there

exists τ ≥ 0 such that ϕτ (S) ⊂ Φa ∪ P
◦
∪ (−P

◦
). This is not possible, however,

since by our assumption on e ∈ P
◦

or on v∞ in (Φ4) we have

Φa ∪ P
◦
∪ (−P

◦
) ⊂ X\(span{v∞})⊥

and X\(span{v∞})⊥ = X+ tX− is the topological sum of the two subsets

X± = {u ∈ X : ±〈v∞, u〉 > 0}.
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Clearly S∩P
◦
6= ∅ 6= S∩(−P

◦
) implies ϕτ (S)∩X± 6= ∅ by Lemma 3.1 contradicting

the fact that S is connected. This shows that there exists a critical point u1 ∈
ω(S) ∩ X\(P ∪ (−P )). Now let u2 be a critical point of Φ with u2 > 0. Then
u2 ∈ P

◦
by (Φ2), hence 0 ∈ u2 − P

◦
. Lemma 3.1 then implies that S ⊂ u2 − P

◦

and therefore u1 ∈ ω(S) ⊂ u2 − P
◦
, that is, u1 � u2.

Finally, if Φ is bounded below we choose v+ ∈ S∩P
◦

and v− ∈ S∩(−P
◦
). Then

we have ω(v+) ⊂ P
◦

and ω(v−) ⊂ −P
◦

by Lemma 3.1 and ω(v±) 6= ∅ because
Φ is bounded below and satisfies the Palais–Smale condition. Consequently,
there exist critical points u± ∈ ω(v±). The implications u2 > 0 ⇒ u2 � u+ and
u2 < 0 ⇒ u2 � u− for critical points u2 of Φ follow as above from u± ∈ ω(v±) ⊂
ω(S). �

Proof of 2.2. Let v0 ∈ P
◦

be the unique normalized positive eigenvector of
Φ′′(0) = Id−DKE(0) which spans the one-dimensional eigenspace belonging to
the largest eigenvalue of DKE(0). Since µ0 + ν0 ≤ 1, the stable set of 0,

W s(0) = {u ∈ X : ϕt(u) → 0 as t →∞}

contains a subset S ⊂ X\(P ∪ (−P )) of the form

S = {u + α(u) : u ∈ X ∩ (span{v0})⊥, ‖u‖X = ε}

where α : U2ε(0) ∩ (span{v0})⊥ → span{v0} is continuous. In fact, if µ0 = 1
and ν0 = 0 then the graph of α is the local stable manifold of 0, graph(α) =
W s(0) ∩ U2ε(0). If µ0 = 0 and ν0 = 1 then kerΦ′′(0) = span{v0}, Φ′′(0) is
positive definite on (span{v0})⊥ and the graph of α describes part of the stable
set W s(0) which need not be a manifold any more in this degenerate case. If
µ0 = 0 and ν0 = 0 we may choose α ≡ 0.

Since µ∞ ≥ 2 there exist R > 0 and two orthonormal vectors v∞, w∞ ∈ X

such that v∞ ∈ P
◦

and Φ(u) < 0, Φ′(u)u < 0 for every u ∈ span{v∞, w∞} with
‖u‖ ≥ R. This is clear in the case (Φ4)(ii) when µ∞ = ∞. If on the other hand,
(Φ4)(iii) applies, then the negative eigenspace of Id − A has dimension µ∞ ≥ 2
and we may choose v∞ ∈ P

◦
and w∞ from this negative eigenspace. Then we set

T := {tv∞ : −R ≤ t ≤ R} ∪ {R(v∞ cos θ + w∞ sin θ) : 0 ≤ θ ≤ π}

and C := conv(T ), the convex hull of T . Clearly T is homeomorphic to S1 and
C to B2. An easy degree argument shows that (C, T ) and S link. By this we
mean that for every continuous deformation ht : C → X with h0(u) = u for
u ∈ C and ht(T )∩S = ∅ for t ∈ [0, 1], we have ht(C)∩S 6= ∅ for t ∈ [0, 1]. From
this we deduce that the ω-limit set of C has nonempty intersection with S, so
there exists v ∈ ω(C) ∩ S. From the construction of S it follows that ϕt(v) → 0
as t → ∞. In addition, v ∈ ω(C) implies limt→−∞Φ(ϕt(v)) ≤ max Φ(C). As
a consequence of the Palais–Smale condition there exists a critical point u1 in
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the α-limit set of v. This has the required properties. First of all, it cannot be
comparable to 0 because u1 ∈ α(v) ∩ (P

◦
∪ (−P

◦
)) would imply v ∈ P

◦
∪ (−P

◦
) by

Lemma 3.1. This is not possible since v ∈ S ⊂ X\(P ∪ (−P )). The implications

Φ′(u2) = 0, u2 < u1 ⇒ u2 � 0

and

Φ′(u2) = 0, u2 > u1 ⇒ u2 � 0

follow as in the proof of Theorem 2.1.

It remains to prove the existence of a positive critical value u+ and a negative
critical value u− if 0 is a strict local minimum. In fact, the existence of u+ and
u− is a simple mountain pass argument. We leave it to the reader to show that
there even exist v+ ∈ P

◦
and v− ∈ −P

◦
with ϕt(v±) → 0 as t → ∞ and with

nonempty α-limit sets α(v+) ⊂ P
◦

and α(v−) ⊂ −P
◦
. The proof uses similar ideas

to the above and is simpler. Now we choose critical points u± ∈ α(v±). These
satisfy the required implications as usual. �

Proof of 2.3. First we observe that the set of critical values of Φ is bounded
below by some a ∈ R. This is obvious if (i) or (ii) of (Φ4) holds. In case (iii) it
follows easily from the Palais–Smale condition and the nondegeneracy hypothesis
that ν∞ = 0. We fix such a strict lower bound a ∈ R and compute the critical
groups C∗(Φ,∞) = H∗(E,Φa) of Φ at infinity.

Proposition 3.2. Suppose (Φ1)–(Φ4) hold and ν∞ = 0. Then for any k ∈ Z
we have

Hk(X, X ∩ Φa) ∼= Hk(E,Φa) ∼=

{
F if k = µ∞,

{0} if k 6= µ∞.

Proof. The isomorphism Hk(X, X ∩ Φa) ∼= Hk(E,Φa) is a simple conse-
quence of a result of Palais [P]. In the case (Φ4)(i) we have µ∞ = 0 and a < inf Φ,
so Φa = ∅ and Hk(E,Φa) ∼= Hk(pt) is as required.

In the case (Φ4)(ii) the set Φ−1(a) is radially homeomorphic to the unit
sphere of E and Φa is radially homotopy equivalent to Φ−1(a). Since this sphere
is contractible we obtain Hk(E,Φa) ∼= {0} for all k ∈ Z.

Finally, if (Φ4)(iii) holds the proposition has been proved in [BL], Theorem
3.9. The assumption (A∞) in [BL] is slightly different from those considered
here but the proof applies without changes since ν∞ = 0. �

If (Φ4)(iii) applies and ∇Φ− Id + AE ∈ C1(E,E) is bounded then a proof of
3.2 can be found in [Ch2].
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Proposition 3.3. Suppose (Φ1)–(Φ4) hold with µ0, µ∞ ≥ 1 and ν0, ν∞ = 0.
If all critical points of Φ lie in P ∪ (−P ) then

Hk(X, Φa
X) ∼=

{
F if k = µ0,

0 if k 6= µ0,

where Φa
X := X ∩ Φa = {u ∈ X : Φ(u) ≤ a}.

Postponing the proof of Proposition 3.3 we first deduce Theorem 2.3. If
µ0 = 0 then Theorem 2.1 applies. Similarly, if µ∞ = 0 then 2.3 follows from 2.2.
Finally, if µ0, µ∞ ≥ 1 and µ0 6= µ∞ the existence of a critical point of Φ outside
of P ∪ (−P ) is a consequence of 3.2 and 3.3. This proves Theorem 2.3. �

The rest of this section provides a proof of Proposition 3.3.

Lemma 3.4. Under the hypotheses of Proposition 3.3 every u ∈ X satisfies
precisely one of the following conditions.

(i) u ∈ P ∪ (−P ) ∪ Φa.
(ii) ϕt(u) 6∈ P ∪ (−P ) for all t ≥ 0 and ϕt(u) → 0 as t →∞.
(iii) There exists a unique T > 0 such that

ϕt(u) 6∈ P ∪ (−P ) for 0 ≤ t < T, ϕT (u) ∈ P ∪ (−P ) and Φ(ϕT (u)) ≥ a.

(iv) There exists a unique T > 0 such that

Φ(ϕT (u)) = a and ϕT (u) 6∈ P ∪ (−P ).

Proof. The lemma follows from 3.1 and the Palais–Smale condition. �

Since ν0 = 0 we can apply the Grobman–Hartman theorem to the flow ϕt on
X. This yields a local homeomorphism χ : (U, 0) → (X, 0) such that ϕt ◦χ(u) =
χ ◦ e−Ltu. Here L := Id −DK(0) ∈ L(X), U is a neighborhood of 0 in X and
the conjugacy holds for u, e−Ltu ∈ U . We split X = V ⊕ W into the positive
eigenspace V and the negative eigenspace W of −L, hence dimV = µ0. We also
write u = v + w ∈ V + W according to this decomposition. For ε > 0 with
U2ε(0) ⊂ U we set

A := {χ(v + w) : v ∈ V, w ∈ W, ‖v‖X , ‖w‖X ≤ ε},
B := {χ(v + w) : v ∈ V, w ∈ W, ‖v‖X = ε, ‖w‖X ≤ ε}.

By Lemma 3.4 there exists T ≥ 0 such that

ϕT (B) ⊂ P
◦
∪ (−P

◦
) ∪ Φa−1.

This is clear since the case 3.4(ii) does not apply for u ∈ B and since

‖u−K(u)‖X ≥ const · ‖u−K(u)‖E = const · ‖∇Φ(u)‖E
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is bounded away from 0 uniformly for u ∈ (
⋃

t≥0 ϕt(B))\(P ∪(−P )∪Φa−1). The
last statement follows from the Palais–Smale condition. Now we consider the set

Z := P ∪ (−P ) ∪ ϕT (A) ∪ Φa
X .

Lemma 3.5. Under the hypotheses of Proposition 3.3 the pair (Z,Φa
X) is ho-

motopy equivalent to the pair (X, Φa
X). In particular, H∗(X, Φa

X) ∼= H∗(Z,Φa
X).

Proof. First we observe that Z and Z
◦

are positively invariant with respect
to the flow ϕt. This follows from our choice of T because an element u ∈ ϕT (A)
can leave ϕT (A) only via ϕT (B) which is already contained in P

◦
∪ (−P

◦
)∪Φa−1

X .
Next it follows from 3.1 and 3.4 that for every u ∈ X there exists a time T (u) ≥ 0
with ϕT (u)(u) ∈ Z

◦
. We choose ε(u) > 0 such that ϕT (u)(v) ∈ Z

◦
provided

that ‖v − u‖X < ε(u). Then we take a locally finite partition of unity (πι)ι∈I

subordinate to the open covering (Kε(u)(u) : u ∈ X) of X and choose a family
(uι)ι∈I of points uι ∈ X with supp(πι) ⊂ Kε(uι)(uι). Finally, we define

τ : X → [0,∞), τ(u) :=
∑
ι∈I

πι(u)T (uι),

and

h : X × [0, 1] → X, h(u, t) := ϕtτ(u)(u).

This defines a continuous deformation of (X, Φa
X) into (Z,Φa

X). �

It is not difficult to see that (Z,Φa
X) is a strong deformation retract of

(X, Φa
X). To see this one checks that the map

τ : X → [0,∞), τ(u) := inf{t ≥ 0 : ϕt(u) ∈ Z}

is continuous. Then the map

h(u, t) := ϕtτ(u)(u)

defines a strong deformation retraction of X into Z. Proposition 3.3 is a conse-
quence of 3.5 and the next lemma.

Lemma 3.6. Under the hypotheses of Proposition 3.3 we have

Hk(Z,Φa
X) ∼=

{
F if k = µ0,

0 if k 6= µ0.

Proof. Setting Z1 := P ∪ (−P ) ∪ Φa
X we first compute H∗(Z1,Φa

X) and
H∗(Z,Z1) and apply then the long exact sequence of the triple (Z,Z1,Φa

X). If
µ∞ = ∞ then by a radial homotopy Φa

X and Z1\{0} are homotopy equivalent,
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hence H∗(Z1\{0},Φa
X) ∼= {0}. Now we use the long exact sequence of the triple

(Z1, Z1\{0},Φa
X) in order to obtain

Hk(Z1,Φa
X) ∼= Hk(Z1, Z1\{0}) ∼= δk1F :=

{
F if k = 1,

0 if k 6= 1.

The last isomorphism follows from the excision property and the homotopy in-
variance of homology because H∗(Z1, Z1\{0}) ∼= H∗(P ∪ (−P ), P ∪ (−P )\{0}) ∼=
H∗(R, R\{0}).

If µ∞ < ∞ (but µ∞ ≥ 1 by assumption) we replace the radial homotopy
from above by the deformation (t, u) 7→ e−tLu where L = Id − A ∈ L(X). Let
v∞ ∈ P with ‖v∞‖E = 1 be the unique normalized eigenvector of L belonging to
the smallest eigenvalue of L. Since µ∞ ≥ 1 this smallest eigenvalue is negative.
For u ∈ P ∪ (−P )\{0} we have 〈u, v∞〉 6= 0, hence ‖e−tLu‖E → ∞ as t → ∞.
This implies

d

dt
Φ(e−tLu) = −‖Le−tLu‖2E + o(‖e−tLu‖2) → −∞ as t →∞

and therefore Φ(e−tLu) → −∞ as t → ∞. This shows that also in the case
1 ≤ µ∞ < ∞ the sublevel set Φa

X is a (strong) deformation retract of Z1\{0}.
Arguing as above we see that Hk(Z1,Φa

X) ∼= δk1F holds provided µ∞ ≥ 1.
Next we compute H∗(Z,Z1). If µ0 = 1 then the unstable manifold of 0 for

the flow ϕt is contained in P
◦
∪ (−P

◦
)∪{0}. Therefore Z1 is a strong deformation

retract of Z and H∗(Z,Z1) ∼= {0}. Now we consider the case µ0 > 1. Here we
first use the excision property again in order to see that

H∗(Z,Z1) ∼= H∗(ϕT (A), ϕT (A) ∩ Z1).

The version of the excision property which we use is the following: H∗(M1 ∪
M2,M2) ∼= H∗(M1,M1∩M2). This does not hold for arbitrary topological spaces
but it does in our case where M1,M2 ⊂ X are closed subsets of M1 ∪M2 and
deformation retracts of open neighborhoods in X. Now we look at the following
part of the long exact sequence of the triple (ϕT (A), ϕT (A)∩Z1, ϕ

T (A)∩Z1\{0}):

Hk(ϕT (A), ϕT (A) ∩ Z1\{0}) → Hk(ϕT (A), ϕT (A) ∩ Z1)

→ Hk−1(ϕT (A) ∩ Z1, ϕ
T (A) ∩ Z1\{0}).

Clearly ϕT (A)∩Z1\{0} is homotopy equivalent to ϕT (B), because B is the exit
set of A. This yields

Hk(ϕT (A), ϕT (A) ∩ Z1\{0}) ∼= Hk(ϕT (A), ϕT (B))
∼= Hk(A,B) ∼= Hk(Dµ0 , Sµ0−1) ∼= δkµ0F.

Moreover, again by excision we obtain

Hk−1(ϕT (A) ∩ Z1, ϕ
T (A) ∩ Z1\{0}) ∼= Hk−1(P ∪ (−P ), P ∪ (−P )\{0}) ∼= δk2F.
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Putting these facts together we get in the case µ0 > 1:

Hk(Z,Z1) ∼= Hk(ϕT (A), ϕT (A) ∩ Z1) ∼= δkµ0F⊕ δk2F

∼=


F⊕ F if µ0 = 2 and k = 2,

F if µ0 > 2 and k ∈ {2, µ0},
0 else.

The computation also shows that there is a generator of H2(Z,Z1) corresponding
to the δk2F summand which maps to a generator of H1(Z1, Z1\{0}) ∼= δk1F
under the boundary homomorphism H2(Z,Z1) → H1(Z1, Z1\{0}) of the triple
(Z,Z1, Z1\{0}).

Now we can compute H∗(Z,Φa
X). If µ0 = 1 we have H∗(Z,Z1) ∼= {0} so the

long exact sequence of (Z,Z1,Φa
X) yields

Hk(Z,Φa
X) ∼= Hk(Z1,Φa

X) ∼= δk1F = δkµ0F

as claimed. It remains to consider the case µ0 > 1. Again we use the long exact
sequence

. . . → Hk(Z1,Φa
X) → Hk(Z,Φa

X) → Hk(Z,Z1) → Hk−1(Z1,Φa
X) → . . .

Now Hk−1(Z1,Φa
X) ∼= δk2F, Hk(Z,Z1) ∼= δkµ0F⊕ δk2F and the generator of δk2F

in H2(Z,Z1) maps onto a generator of H1(Z1,Φa
X) ∼= H1(Z1, Z1\{0}). Therefore

Hk(Z,Φa
X) ∼= δkµ0F holds also in the case µ0 > 1. �

4. Applications

In this section we apply the results of Section 2 to the Dirichlet problem

(D) −∆u = f(u) in Ω, u = 0 on ∂Ω

and prove generalizations of the theorems mentioned in the introduction. The
domain Ω ⊂ RN will always be bounded with Lipschitz boundary, and the
nonlinearity f has to satisfy the condition

(f1) f ∈ C1(R), f(0) = 0.

Different growth conditions for f at infinity will be needed depending on the
result. In order to state them let 0 < λ1 < λ2 ≤ λ3 ≤ . . . be the eigenvalues of
the problem

(L) −∆u = λu in Ω, u = 0 on ∂Ω.

For our first result we assume one of the following hypotheses:

(f2) lim sup|t|→∞ f(t)/t < λ1.

(f3) f ′(t) → ω < λ2 as |t| → ∞.
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Theorem 4.1. Suppose (f1) holds and f ′(0) > λ2.

(a) If in addition (f2) or (f3) holds then (D) has a solution u1 which changes
sign. Any positive solution is larger than u1, any negative solution is smaller
than u1.

(b) If (f2) holds then (D) has a positive solution u+ and a negative u−,
hence u−(x) < u1(x) < u+(x) for every x ∈ Ω. Any other positive solution is
larger than u+, any other negative solution is less than u−.

Parts (b) and (c) from Theorem 2 are special cases of 4.1(a), (b), respectively.
Next we assume one of the following hypotheses on f for |t| → ∞. As in the
introduction F denotes the primitive of f .

(f4) f ′(t) → ω ∈ R as |t| → ∞. If ω is an eigenvalue of (L) with eigenspace
V = {u ∈ C∞

0 (Ω) : −∆u = ωu} then∫
Ω

F (u(x))dx →∞ for u ∈ V, ‖u‖ → ∞,

or ∫
Ω

F (u(x))dx → −∞ for u ∈ V, ‖u‖ → ∞.

(f5) There exist constants R > 0 and θ > 2 such that

0 < θF (t) ≤ tf(t) for |t| ≥ R.

(f6) There exist constants a > 0, p ∈ (2, 2N/(N − 2)) such that

|f ′(t)| ≤ a(|t|p−2 + 1) for all t ∈ R.

(f7) There exists λ ∈ R such that f ′(t) > λ for all t ∈ R.

The next result generalizes Theorem 1 from the introduction.

Theorem 4.2. Suppose (f1) and (f4) hold with ω > λ2, or (f1), (f5), (f6)
and (f7) hold.

(a) If f ′(0) < λ2 then (D) has a solution u1 which changes sign. This
solution has the property that any solution u2 > u1 must be positive and any
solution u2 < u1 must be negative.

(b) If f ′(0) < λ1 then (D) has a positive solution u+ and a negative solution
u− with the following property. Any solution u2 < u+ must be negative, and any
solution u2 > u− must be positive.

It is also possible to prove the existence of a positive and/or a negative
solution if f ′(0) = λ1 provided F (t) > (λ1/2)t2 for t > 0 and/or t < 0, |t| small.
Now we state a generalization of part (a) of Theorem 2 from the introduction.
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Theorem 4.3. Suppose (f1) holds and f ′(0) is not an eigenvalue of (L).
Then (D) has a sign changing solution if in addition (f5) and (f6) apply. There
also exists a sign changing solution in the case of (f4) provided ω is not an
eigenvalue of (L) and there exists k ≥ 2 such that f ′(0) < λk < ω or ω < λk <

f ′(0).

The nonresonance conditions on f ′(0) and ω in 4.3 can be replaced by con-
ditions on higher order terms of f .

Remark 4.4. As mentioned in the introduction the existence of the solutions
in 4.1 to 4.3 was known, at least in the nonresonance cases; see for instance [AR],
[Ch2], [CLL], [H], [Wa]. The existence of a sign changing solution has been proved
in [CCN] under much stronger assumptions on f than those of 4.2. In [CCN]
it is assumed that f ′(0) < λ1, that (f1), (f6) and a variation of (f5) holds.
Moreover, f ′(t) > f(t)/t has to hold for all t 6= 0 and f(t)/t → ∞ as |t| → ∞.
This implies (f7). In this situation Castro et al. prove the existence of a sign
changing solution u1 with precisely two nodal components, that is, Ω\u−1

1 (0) has
exactly two components. We do not know whether a similar result is true in the
situation we consider. On the other hand, our results give more information on
the relation between the sign changing solution and the positive and negative
solutions.

Proof of 4.1. Before introducing the variational setting we need to modify
the nonlinearity f in the case of (f2). In [H], Proof of Theorem 8, it is shown that
there exists a C1-modification f̃ of f satisfying f̃(0) = 0, lim sup|t|→∞ f̃(t)/t <

λ1, f̃ ′(0) > λ2, and in addition |f̃ ′(t)| < λ for all t ∈ R, and some λ ∈ R.
Moreover, solutions of (D) are precisely the solutions of the modified Dirichlet
problem

−∆u = f̃(u) in Ω, u = 0 on ∂Ω.

Thus we may assume that |f ′(t)| < λ in addition to (f2). If (f3) holds then f ′(t)
is bounded anyway. We fix λ > 0 with |f ′(t)| < λ for all t ∈ R.

Let E be the Sobolev space H1
0 (Ω) equipped with the inner product

〈u, v〉 :=
∫

Ω

∇u · ∇v dx + λ

∫
Ω

uv dx.

The ordering on E is given by the closed cone PE := {u ∈ E : u ≥ 0 almost
everywhere}. Let X be the Banach space C1

0(Ω) with the usual norm. It is well
known that X is dense in E and that P := X ∩ PE = {u ∈ C1

0(Ω) : u ≥ 0} has
nonempty interior P

◦
. The element e ∈ P

◦
such that 〈u, e〉 > 0 for all u ∈ P \ {0}

is the unique normalized positive eigenfunction of −∆ on Ω with homogeneous
Dirichlet boundary conditions. Since f ′(t) is bounded the energy

Φ(u) :=
1
2

∫
Ω

|∇u|2dx−
∫

Ω

F (u) dx
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defines a C2-functional Φ : E → R. The Palais–Smale condition is satisfied in
case (f2) because then Φ is coercive, so Palais–Smale sequences are bounded
and have a convergent subsequence since ∇Φ is a compact perturbation of the
identity. If (f3) holds with ω 6= λ1 then the Palais–Smale condition can be
deduced similarly. If ω = λ1 then the associated eigenspace is one-dimensional
and spanned by the positive eigenfunction e. It follows that

∫
Ω

F (te) dx →∞ as
|t| → ∞, again by (f3). This is the Landesman–Lazer condition which implies the
Palais–Smale condition. It follows from standard regularity theory that critical
points of Φ lie in X. Therefore (Φ1) from Section 2 is satisfied.

Setting g(t) := f(t) + λt and G(t) :=
∫ t

0
g(s) ds we can write Φ as

Φ(u) =
1
2
‖u‖2E −

∫
Ω

G(u) dx.

Since g′(t) > 0 by our choice of λ it follows that Φ satisfies (Φ2) and (Φ3) from
Section 2; see [H]. Moreover, Φ is bounded below and coercive if (f2) holds. In
the case of (f3) it is easy to see that Φ is asymptotically linear and (Φ4)(iii) is
satisfied. Now Theorem 4.1 follows from Theorem 2.1. The Morse index µ0 of
Φ at 0 is at least 2 because f ′(0) > λ2. Moreover, in the case of (f2) we have
µ∞ = 0 = ν∞ because Φ is bounded below. Finally, if (f3) applies then

(µ∞, ν∞) =


(0, 0) if ω < λ1,

(0, 1) if ω = λ1,

(1, 0) if λ1 < ω < λ2.

Therefore µ∞ + ν∞ ≤ 1 as required. �

For the proof of 4.2 we can apply Theorem 2.2 as above. We leave it to the
reader to check that the hypotheses (Φ1) to (Φ4) hold. In fact, (f4) corresponds
to (Φ4)(iii), and (f5)–(f7) to (Φ4)(ii).

Finally, 4.3 follows from 2.3. �
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