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THE CONLEY INDEX AND THE CRITICAL GROUPS
VIA AN EXTENSION OF GROMOLL–MEYER THEORY

K. C. Chang — N. Ghoussoub

Dedicated to Louis Nirenberg on the occasion of his 70th birthday

We investigate, in a variational setting, the relationship between the Gro-
moll–Meyer pairs of a dynamically isolated critical set and the Conley index pairs
of its isolating invariant neighbourhoods. We show that the information given by
the critical groups of such a set is equivalent to that given by the Conley index.
This allows us to derive—in a non-compact setting—various invariance properties
for the Conley index from those of the critical groups, as well as a formula relating
the degree of a gradient vector field in an isolating neighbourhood to the Conley
index pair associated with it.

0. Introduction

The Conley index provides an algebraic-topological measure of an isolated
invariant subset of a compact space on which a two-sided flow is acting. In a vari-
ational context, i.e., when a gradient flow on a compact manifold is considered,
such an index generalizes the Morse index of a non-degenerate critical point. In
the last decade, Conley’s theory have been actively refined and extended to the
non-compact case in order to overcome the limitations to its applicability in the
theory of partial differential equations. See, for example, Rybakowski [R], Benci
[B], Salamon [S].
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At the same time, Morse theory was also being extended and developed to
overcome the non-compactness, regularity and degeneracy problems that occur
in many important variational problems. Some compactness is usually restored
by imposing the Palais–Smale condition on the functional f under study, while
the problems of regularity (i.e., when f is not C2) have been handled by the
introduction of the critical groups for an isolated critical point (Rothe [Ro],
Chang [Ch]). An alternative definition of the critical groups—via the concept
of a (G-M)-pair—was also given by Gromoll–Meyer [G-M] in a seminal paper
where they also deal with possibly degenerate but always isolated critical points.
In his 1983 lecture notes at Montreal, the first-named author showed—among
other things—that the two notions of critical groups coincide and established the
homotopy invariance of (G-M)-pairs. He also indicated how the whole Gromoll–
Meyer theory can be naturally extended to isolated critical sets.

In this paper, we investigate the connection between these theories and more
precisely we establish the close relationship between the (G-M)-pairs of an iso-
lated critical set and the Conley index pairs for its isolating invariant neighbour-
hoods. This correspondence allows us to deduce various stability properties of
the Conley index from their counterparts in the Gromoll–Meyer theory extended
to isolated critical sets. Now, many of these properties (of the Conley index) have
been extended to the non-locally compact case by Benci [B], Rybakowski [R],
Salamon [S] and others under various hypotheses, but even though we only deal
here with a variational setting, the advantages of our approach are three-fold:

First, the proofs of the various properties of the critical groups (which are
ultimately transferable to the Conley index!) are much simpler than in Con-
ley’s theory and its non-compact extensions. Secondly, it eliminates some of the
unnatural hypotheses that are usually imposed on the critical set like connected-
ness and the likes and thirdly, it allows us to establish a relationship between the
degree of a gradient vector field in an isolating neighbourhood and the Conley
index pair associated with it, a fact that is not usually dealt with in classical
Conley theory.

In this paper, we shall restrict ourselves to the study of variational structures.
For the convenience of the reader, the notions of isolated critical sets and their
critical groups will be reviewed and studied in detail. In this paper, we shall call
them dynamically isolated critical sets to distinguish them from the “topologi-
cally isolated” critical sets. We also recall the notions of isolated invariant set
and their isolating neighbourhoods. We mainly prove that the (G-M)-pairs are
Conley index pairs and that the Conley index coincides with the critical groups.
Since the homotopy invariance for critical groups and other properties have been
proved very simply in [Ch], many of them will automatically hold for the Conley
index.
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I. Dynamically isolated critical sets and
their isolating neighbourhoods

A flow on a metric space M is a continuous map η : R ×M → M that has
the following properties:

(i) η(0, x) = x for any x ∈M , and
(ii) η(t1, η(t2, x)) = η(t1 + t2, x) for any t1, t2 ∈ R and x ∈M .

For a subset B of M and δ > 0, we denote by Nδ(B) the δ-neighbourhood
of B, i.e., the set {x ∈M : dist(x,B) < δ}.

We shall use the following set of notation: For T > 0, let

BT =
⋃
|t|≤T

η(B, t), where η(B, t) = {y = η(x, t) : x ∈ B}

B̃ = B∞ =
⋃
t∈R

η(B, t) and B̃+ =
⋃
t≥0

η(B, t).

If T1 ≤ 0 ≤ T2, we shall write

GT1
T2

(B) = {x ∈ cl(B) : η(x, [T1, T2]) ⊂ cl(B)} =
⋂

T1≤t≤T2

η(cl(B), t),

GT (B) = G−T
T (B) and I(B) = G∞(B) =

⋂
t∈R

η(cl(B), t).

In addition, for any x ∈M , we consider

ω(x) =
⋂
t>0

cl(η(x, [t,∞)) (the ω-limit set of x) and

ω∗(x) =
⋂
t>0

cl(η(x, [−∞,−t]) (the ω∗-limit set of x).

We now recall a few definitions.

Definition I.1 (invariant subset). A subset B ofM is called invariant (with
respect to η) if for all x ∈ B and for all t ∈ R, η(x, t) ∈ B.

It is easy to see that, given a closed set A ⊂ M , the (possibly empty) set
I(A) =

⋂
t∈R η(A, t) is a maximal closed invariant subset in A.

Now, we come to define the important notions of an isolated invariant set
and an isolating neighbourhood.

Definition I.2 (isolated invariant set). An invariant set A is called isolated
if there exists a closed neighbourhood U and T1 < 0 < T2 such that

(I.1) A = I(U) ⊂ GT1
T2

(U) ⊂ int(U).

In this case, U is called an isolating neighbourhood of A.

Remark I.3. Conley’s definition of an isolated invariant set says that A =
I(U) ⊂ int(U). This is equivalent to the above definition in the compact case
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but not in general. It was Benci [B] who came up with this stronger notion that
seems to be suitable for the non-locally compact setting.

The following notion is crucial to what follows.

Definition I.4 (Mean Value Property). A subset W of M is said to have
the Mean Value Property (for short (MVP)) if for any x ∈ M and any t0 < t1,
we have

(I.2) η(x, [t0, t1]) ⊂W whenever η(x, ti) ∈W for i = 0, 1.

In the sequel, we shall restrict ourselves to a variational context that we now
describe.

Suppose M is a C1-Finsler manifold and let f ∈ C1(M,R) be a function
satisfying the Palais–Smale condition (for short (P-S)): a sequence (xn)n in M

is relatively compact whenever (f(xn))n is bounded and ‖df(xn)‖ → 0.
We denote by K = Kf the critical set of f . A pseudo-gradient vector field

for f (for short p.g.v.f.) is defined to be a section V of the tangent bundle T (M)
satisfying, for all x ∈M ,

(I.3) 〈df(x), V (x)〉 ≥ ‖df(x)‖2,

and

(I.4) ‖V (x)‖ ≤ A‖df(x)‖

for some constant A > 0. With such a vector field, we may associate a flow η on
M as a solution to the Cauchy problem

(I.5)

{
η̇(x, t) = V1(η(x, t)),

η(x, 0) = x,

where

(I.6) V1(x) = g(x)
V (x)
‖V (x)‖

and g(x) = min{dist(x,K), 1}.

Thus, ‖V1(x)‖ ≤ 1 for any x ∈M and the flow η is well defined on M × R.
The following notion is also useful.

Definition I.5 (invariant hull). Given a subset S ⊂ M , we define the in-
variant hull of S to be

(I.7) [S] = {x ∈M : ω(x) ∪ ω∗(x) ⊂ S}.

Note that if S ⊂ Kf , then ω(x) = ω(η(x, t)) and ω∗(x) = ω∗(η(x, t)) for all t
and all x ∈ S. Therefore [S] is a minimal invariant set containing S.
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Theorem I.6. Let f be a C1-functional satisfying the (P-S ) condition and
suppose that W is a closed (MV P ) neighbourhood of a subset S of Kf satisfying
W ∩Kf = S and W ⊂ f−1[α, β], where α, β are regular values of f . Then [S]
is an isolated invariant set. Moreover, any closed neighbourhood U of [S] with
U ⊂W is an isolating neighbourhood for [S].

We shall split the proof into several lemmas of independent interest. First,
we exploit the (P-S) condition.

Lemma I.7. Suppose f is a C1-functional satisfying the (P-S ) condition.
Then, for any x ∈ M , the set ω(x) is compact and is a subset of Kc for some
critical value c, where Kc = K∩f−1(c). The same holds true for the sets ω∗(x).

Proof. First, we show that ω(x) is on one level, say ω(x) ⊂ f−1(c) for some
c ∈ R. Indeed, if not, then there exist tn, t′n ↑ ∞ such that η(x, tn) → y and
η(x, t′n) → y′ with f(y) < f(y′). We may always assume that t′n > tn, which
means that

f(y′) = lim
n
f(η(x, t′n)) ≤ lim

n
f(η(x, tn)) = f(y),

which is a contradiction.
Next, we prove that ω(x) ⊂ K. Indeed, if y ∈ ω(x)\K, choose regular values

a < b such that both f(x) and f(y) are in (a, b). Since Kb
a = K ∩ f−1[a, b] is

compact, there exists r > 0 such that Br(y) ∩Nr(Kb
a) = ∅. By definition, there

exists tn → ∞ such that xn = η(y, tn) ∈ Br(y). However, we claim that there
exists t′n →∞ such that x′n = η(y, t′n) ∈ ∂Nr(Kb

a), because if not, there must be
T > 0 such that η(y, [T,∞)) ∩ Nr(Kb

a) = ∅. Since there exists δ > 0 such that
‖f ′(x)‖ ≥ δ for all x ∈ f−1[a, b] \Nr(Kb

a), we have

f(y) = lim
n
f(xn) ≤ lim inf

t→∞
f(η(x, t)) ≤ a,

which is impossible. Now we choose t′n, t′′n →∞ with t′n < t′′n such that

x′′n = η(x, t′′n) ∈ Br(y), x′n = η(x, t′n) ∈ ∂Nr(Kb
a), η(x, [t′n, t

′′
n])∩Nr(Kb

a) = ∅.

Then we have

t′′n − t′n ≥ |η(x, t′′n)− η(x, t′n)| ≥ dist(Br(y), Nr(Kb
a))

and

f(x′n)− f(x′′n) ≥ δr(t′′n − t′n).

Again, this is impossible and the lemma is proved.

We are now interested to know under what condition on a neighbourhood W
of a critical set S, we have I(W ) = [S]. We shall need the following
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Lemma I.8. Let f be a C1-functional satisfying the (P-S ) condition and
suppose that W is a closed (MV P ) neighbourhood of a critical set S satisfying
W ∩K = S. Then

(1) I(W ) = [S] ⊂ int(W ),
(2) for any T1 < 0 < T2, the set GT1

T2
(W ) is again a closed (MV P ) neigh-

bourhood of [S].

Proof. (1) We first establish that:
• [S] ⊂ I(W ): Indeed, if x ∈ [S], then by definition ω(x) ∪ ω∗(x) ⊂ S. This

implies that there are t±n → ±∞ such that η(x, t±n ) ∈ W . By the Mean Value
Property of W , we have η(x, [t−n , t

+
n ]) ⊂ W . Since n is arbitrary, it follows that

η(x, t) ∈W for all t. This proves that x ∈ I(W ).

• I(W ) ⊂ [S]: For all x ∈ I(W ), η(x, t) ∈W for all t ∈ R. Since W is closed,
ω(x) ∪ ω∗(x) ⊂ W . According to Lemma I.7, ω(x) ∪ ω∗(x) ⊂ K. Therefore
ω(x) ∪ ω∗(x) ⊂W ∩K = S, that is, x ∈ [S].

• [S] ⊂ int(W ): For x ∈ [S], there exist t− < 0 < t+ and neighbourhoods U±
of y± = η(x, t±) such that U± ⊂ W . Set V± = η(U±,∓t±) and V = V+ ∩ V−.
Then V is a neighbourhood of x satisfying η(V, t±) ⊂ U± ⊂ W . By the (MVP)
property of W , we have V ⊂W . This completes the proof of part (1).

To prove (2) first note that GT1
T2

(W ) is closed and has the (MVP). By (1),
[S] = I(W ) ⊂ GT1

T2
(W ). It remains to verify that [S] ⊂ int(GT1

T2
(W )). But,

if that is not the case, then there exists x ∈ [S] ∩ ∂GT1
T2

(W ). That is, there
exists a sequence xn /∈ GT1

T2
(W ) satisfying xn → x. This means that there are

tn ∈ [T1, T2] such that η(xn, tn) /∈ W . By extracting a subsequence, t′n → t, we
deduce that η(x, t) /∈ int(W ). But x ∈ [S], which means η(x, t) ∈ [S] ⊂ int(W )
by the first part. This is a contradiction.

Lemma I.9. Suppose W is a closed (MVP) neighbourhood of a critical set
S. Assume that W ∩K = S and W ⊂ f−1[α, β], where α, β are regular values
of f . Then, for any neighbourhood U of S, there exists T > 0 such that

(I.11) GT (W ) =
⋂
|t|≤T

η(W, t) ⊂ int(U).

Proof. Let x /∈ int(U). We need to show that there exists t ∈ [−T, T ] such
that η(x, t) /∈ W . Now, by the (P-S) condition, there exists δ > 0 such that
dist(x,K) ≥ δ and ‖f ′(x)‖ ≥ δ for all x ∈W \ int(U). Set T > δ−2(β − α). We
consider three cases.

(a) If x /∈W , then take t = 0 so that η(t, x) = x /∈W .
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(b) If x ∈W \ ĩnt(U) and η(x, [−T, T ]) ⊂W , then η(x, [−T, T ]) ⊂W \ ĩnt(U)
and therefore,

f(η(x,−T ))− f(η(x, T )) ≥ 2δ2T > β − α,

which is impossible. It follows that in this case η(x, [−T, T ]) 6⊂W .

(c) If x ∈ (ĩnt(U) \ int(U)) ∩W = (ĩnt(U) ∩W ) \ int(U), then

either x ∈
⋃
t>0

η(int(U), t) or x ∈
⋃
t<0

η(int(U), t).

In the first case, we have t1 ≤ 0 ≤ t2 such that

η(x, [t1, t2]) ⊂ (ĩnt(U) ∩W ) \ int(U) and η(x, t1 − ε) ∈ U, η(x, t2 + ε) /∈W

for all small enough ε > 0. But again, we would have β−α > δ2(t2− t1) so that
t2 < T . Similarly, in the second case t1 > −T .

In both cases, we conclude that η(x, [−T, T ]) 6⊂ W and the proof of the
lemma is complete.

Now, we come to the

Proof of Theorem I.6. Let W be a closed (MVP) neighbourhood of S
such that W ∩Kf = S. From Lemma I.8, we obtain [S] = I(W ) ⊂ int(W ).

Let now U be any closed neighbourhood of [S] satisfying U ⊂W . We have

[S] = I([S]) ⊂ I(U) ⊂ I(W ) = [S],

so that I(U) = [S]. By definition, I(U) ⊂ GT1
T2

(U) for any T1 < 0 < T2 and by
Lemma I.9, there exists T > 0 such that G−T

T (U) ⊂ G−T
T (W ) ⊂ int(U). The

proof of Theorem I.6 is complete.

We now recall the following key concept:

Definition I.10 (dynamically isolated critical set). A subset S of the crit-
ical set K is said to be a dynamically isolated critical set if there exist a closed
neighbourhood O of S and regular values α < β of f such that

(I.8) O ⊂ f−1[α, β]

and

(I.9) cl(Õ) ∩K ∩ f−1[α, β] = S.

We shall then say that (O, α, β) is an isolating triplet for S.

Here are some common examples of isolated critical sets, The proofs are left
to the interested readers. See also the examples in Section III.
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Examples. 1) It is clear that if c is an isolated critical level, i.e., there are
no critical points on the levels [c − ε, c + ε] \ {c} for some ε > 0, then the set
Kc = K ∩ f−1(c) is a dynamically isolated critical set.

2) If x0 is a non-degenerate critical point for a C2-functional f , then the
singleton S = {x0} is a dynamically isolated critical set.

3) More generally, if x0 is an isolated critical point, i.e., {x0} = Kf ∩ U for
some open set U , that is located on an isolated critical level, then again the
singleton S = {x0} is a dynamically isolated critical set.

Here is the main result of this section:

Theorem I.11. Let f be a C1-functional satisfying the (P-S ) condition on
a C1-Finsler manifold M . If S is a dynamically isolated critical set for f , then
[S] is an isolated invariant set. Moreover, if (O, α, β) is an isolating triplet for S,
then any closed neighbourhood U of [S] with U ⊂ O is an isolating neighbourhood
for [S].

Theorem I.11 follows immediately from Theorem I.6 and the following result.

Lemma I.12. Let (O, α, β) be an isolating triplet associated with a dynami-
cally isolated critical set S. Then there exists T > 0 such that

(I.10) OT ∩ f−1[α, β] = Õ ∩ f−1[α, β] = cl(Õ) ∩ f−1[α, β].

Moreover, the set {O}β
α = Õ ∩ f−1[α, β] is a closed (MV P ) neighbourhood of

both S and [S].

Proof. Set Y = cl(Õ)∩f−1[α, β]. We need to show that Y = OT∩f−1[α, β]
for some T > 0. According to the (P-S) condition, there exists δ > 0 such that

dist(x,K) ≥ δ and ‖f ′(x)‖ ≥ δ for all x ∈ Y \ O.

If now η(x, [0, t]) ⊂ Y \ O then

β − α ≥ f(x)− f(η(x, t)) ≥ −
∫ t

0

〈f ′(η(x, s)), η̇(x, s)〉 ds ≥ δ2t.

Let T > δ−2(β−α). If there exist y ∈ Y \OT , then there exist x ∈ O and t > T

such that y = η(x, t) and η(x, [0, t]) ∩ O = ∅. This is clearly impossible and the
lemma is proved.

II. The critical groups of an isolated critical set

In this section, we define the critical groups associated with a dynamically
isolated critical set and we show that they are independent of the choice of their
isolating triplet.
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Definition II.1 (critical groups). Let S be a dynamically isolated critical
set of a C1-functional f and let (O, α, β) be any isolating triplet for S. For each
integer q, we shall call the qth cohomology group

(II.1) Cq(f, S) = Hq(fβ ∩ Õ+, fα ∩ Õ+)

the qth critical group for S.

Obviously, we need to show the following

Proposition II.2. The critical groups of a critical set S do not depend
on the special choice of its isolating triplet (O, α, β) nor on the choice of the
pseudo-gradient vector field for f .

Proof. We verify the invariance in few steps.
1) First, assume the flow η and the neighbourhood O are fixed. The fact that

the relative cohomology groups associated with different regular levels β and α

are isomorphic is an immediate consequence of the basic deformation lemma
between regular sublevels. (See for instance [Ch].)

2) Suppose now that (O, β, α) and (O1, β, α) are two isolating triplets for S,
with O c O1 c S. We need to prove that

(II.2) Hq(fβ ∩ Õ+, fα ∩ Õ+) = Hq(fβ ∩ Õ+
1 , fα ∩ Õ+

1 ).

For that, we first show the following

Claim 1. If O c S, then there exists δ > 0 such that dist(∂(Õ+), [S]) ≥ δ.

Indeed, if not, there exist xn ∈ ∂(Õ+) such that xn → x ∈ [S]. This implies
that there exist Zn ∈ ∂O and tn ∈ [0, T ] such that xn = η(Zn, tn) → x. There
exists a subsequence t′n → t so that Z ′n = η(x′n,−t′n) → η(x, t) = Z. Since
∂O is closed, Z ∈ ∂O. But since x ∈ [S], we deduce that Z ∈ [S], which is a
contradiction.

Choose now α1 < α such that (O1, β, α1) is also an isolating triplet for S.
Set L = Õ+ ∩ f−1(α1), L1 = Õ+

1 ∩ f−1(α1) and R = {x ∈ Õ+ : ω(x) 6⊂ S} and
define a projection π : R → L in the following way:

For x ∈ R, there exists a unique y ∈ L and a unique t ∈ R such that
y = η(x, t). Let π(x) = y and p(x) = t. We need to show the following

Claim 2. If we let C = L \ π(R), then dist(C, π(∂(Õ+))) > 0.

Indeed, if not, there exist yn ∈ π(∂(Õ+)) such that yn → y ∈ C. This yields
the existence of Zn ∈ ∂O and tn ∈ [0, T ] such that Zn = η(yn,−tn). Thus,
there exists a convergent subsequence tn′ → t along which Z ′n = η(yn′ ,−tn′) →
η(y,−t) = Z. Since ∂O is closed, Z ∈ ∂O. This is a contradiction as y ∈ C and
therefore Claim 2 is proved.
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Now, setting R1 = {x ∈ Õ+
1 : ω(x) 6⊂ S} and s0 = dist(C, π(∂Õ+

1 )) > 0, we
define a family of functions for τ ∈ [0, 1]:

ϕτ (s) =

{
1− τ, s ≥ s0,

1− s−1
0 sτ, 0 ≤ s ≤ s0,

and a deformation ψ : [0, 1]× (fβ ∩ Õ+) → fβ ∩ Õ+ in the following way:

ψ(τ, x) =

{
η(y,−ϕτ (dist(y, C)t) if x ∈ R ∩ f−1[α, β],

x if x ∈ (fβ ∩ Õ+) \ R,

where y = π(x) and t = p(x). We have ψ(0, x) = x, and

ψ(1, x) =


y, x /∈ Õ+

1 ∩ f−1[α1, β],

η(y,−(1− dist(y, C)/s0)t), x ∈ R1 ∩ f−1[α1, β],

x, x ∈ (fβ ∩ Õ+) \ R.

Set D1 = ψ(1, fβ ∩ Õ+) and D2 = D1 \ (L̃ \ L1)+. By excision and deformation,
we obtain

H∗(fβ ∩ Õ+, fα ∩ Õ+) = H∗(D1, ψ(1, fα ∩ Õ+)) (by deformation)

= H∗(D2, ψ(1, fα ∩ Õ+) \ (L̃ \ L1)+) (by excision)

= H∗(D2, ψ(1, fα1 ∩ Õ+
1 )) (by deformation)

= H∗(fβ ∩ Õ+
1 , fα1 ∩ Õ+

1 ) (by deformation)

= H∗(fβ ∩ Õ+
1 , fα ∩ Õ+

1 ).

By a similar technique, one may also prove the invariance of the critical groups
under small perturbations of the flow.

III. Gromoll–Meyer pairs associated with
a dynamically isolated critical set

First recall the following definition:

Definition III.1 (Gromoll–Meyer pairs). Let f be a C1-functional on a
Finsler manifold M and let S be a subset of the critical set Kf for f . A pair
(W,W−) of subsets is said to be a (G-M)-pair for S associated with a p.g.v.f. X
if, for the flow η associated with X by (I.5), the following conditions hold:

(1) W is a closed (MVP) neighbourhood of S satisfying W ∩ K = S and
W ∩ fα = ∅ for some α.

(2) W− is an exit set for W , i.e., for each x0 ∈ W and t1 > 0 such that
η(x0, t1) /∈ W , there exists t0 ∈ [0, t1) such that η(x0, [0, t0]) ⊂ W and
η(x0, t0) ∈W−.

(3) W− is closed and is a union of a finite number of submanifolds that are
transversal to the flow η.
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Example. If f is a C1-functional satisfying the (P-S) condition on a Finsler
manifold M and if x0 is an isolated critical point located on an isolated critical
level, then one can associate with {x0} a (G-M)-pair in the following way:

For simplicity, assume that M is a Hilbert space and that x0 = 0 and f(0)
= 0. Choose ε > 0 and δ > 0 such that 0 is the unique critical value in [−ε, ε]
and x0 = 0 is the unique critical point in the ball Bδ centred at 0. By the (P-S)
condition, we have

β = inf
x∈Bδ\Bδ/2

‖df(x)‖ > 0.

Take 0 < λ < 2δ/β and define g(x) = f(x)+λ‖x‖2. Choose now γ and µ in such
a way that if W = f−1[−γ, γ] ∩ gµ and W− = f−1(−γ) ∩W , then the following
conditions hold:

0 < γ < min{ε, 3δ2λ/8} and δ2λ/4 + γ < µ < δ2λ− γ,

Bδ/2 ∩ f−1[−γ, γ] ⊂W ⊂ Bδ ∩ f−1[−ε, ε],
f−1[−γ, γ] ∩ g−1(µ) ⊂ Bδ \Bδ/2,

and
〈dg(x), df(x)〉 > 0 for all x ∈ Bδ \ int(Bδ/2).

We leave it to the reader to verify that (W,W−) is a (G-M)-pair for x0 (see [Ch]).
More generally, if f is a C1-functional satisfying the (P-S) condition on a

Finsler manifold M and if S is a dynamically isolated critical set for f , then
there are many ways to associate a (G-M)-pair (W,W−) with S. Indeed, if
(O, β, α) is an isolating triplet for S, then one can easily verify that W = {O}β

α

and W− = W ∩ f−1(α′) where α < α′ < min{f(x) : x ∈ S} form a (G-M)-pair
for S. Actually, as the following proposition shows, one can find a (G-M)-pair
inside any isolating neighbourhood of S.

Proposition III.2. Assume (O, β, α) is an isolating triplet for a dynam-
ically isolated critical set S. Then, for any neighbourhood U for [S] such that
U ⊂ {O}β

α, there exist a (G-M )-pair (W,W−) for S such that W ⊂ U .

Proof. Indeed, let α < α′ < min{f(x) : x ∈ S}. By Lemma I.12, {O}β
α′ is

an (MVP) neighbourhood of [S]. By Lemma I.9, there exists T > 0 such that
W = G−T

T ({O}β
α′) ⊂ int(U). Lemma I.8 yields that W is also a closed (MVP)

neighbourhood of [S]. It is also clear that W ∩K = S and W ∩ fα = ∅.
We now look for an exit set E for W . Set L(α′) = {O}β

α′ ∩ f−1(α′), which is
a submanifold of f−1(α′). Since W is a neighbourhood of S, there is no critical
point in {O}β

α′ \ W . Therefore, for all x ∈ E, there exists t > 0 such that
y = η(x, t) ∈ L(α′). However, by the definition of W , we have t ≡ −T . Thus
E = η(L(α′),−T ) is also a submanifold that is transversal to η. This proves
that (W,W−) = (W,E) is a (G-M)-pair for S.
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The following theorem is the main result of this section.

Theorem III.3. Let f be a C1-functional on a C1-Finsler manifold M and
let S be a dynamically isolated critical set for f . Then, for any (G-M )-pair
(W,W−) for S, we have

(III.1) H∗(W,W−) ∼= H∗(fβ ∩ W̃+, fα ∩ W̃+) ∼= C∗(f, S)

where (O, α, β) is an isolating triplet for S.

Proof. First we show that

(III.2) H∗(fβ ∩ W̃+, fα ∩ W̃+) ∼= H∗(W̃+, W̃+
− )

where

W̃+ =
⋃
t≥0

η(W, t) and W̃+
− =

⋃
t≥0

η(W−, t).

For that, we define deformation retractions

σ1 : W̃+
− × [0, 1] → fα ∩ W̃− and σ2 = W̃+ × [0, 1] → fβ ∩ W̃+

as follows: Let γ1 : W̃+
− → R1 be the first hitting time of the level α from W̃+

− .
That is,

η(x, γ1(x)) ∈ f−1(α) ∀x ∈ W̃+
− \ fα,

γ1(x) = 0 ∀x ∈ fα ∩ W̃+
− .

Since η is transversal to f−1(α), γ1 is necessarily continuous.
Similarly, let γ2 : W̃+ → R1 be the first hitting time of the level β from W̃+.

Again,

η(x, γ2(x)) ∈ f−1(β) ∀x ∈ W̃+ \ fβ ,

γ2(x) = 0 ∀x ∈ fβ ∩ W̃+,

and γ2 is continuous. Set

σi(x, s) = η(x, sγi(x)), i = 1, 2.

Noticing that fα∩W̃+
− = fα∩W̃+ (becauseW∩fα = ∅), and using the mean value

property, we obtain (III.2) by simply applying the strong deformation retractions
σ1, σ2 and by exploiting the homotopy invariance of homology groups.

Next, we show that

(III.3) H∗(W̃+, W̃+
− ) ∼= H∗(W,W−).
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For δ > 0, let Wδ =
⋃

t>δ η(W−, t) and let s : W̃+ → R+ be the first hitting
time of W−, so that

η(y,−s(y)) ∈W− if y ∈ W̃+
− ,

s(y) = 0 if y ∈ W̃+ \ W̃+
− .

Since η is transversal to W−, the map s is continuous and the set Wδ which is
equal to {y ∈ W̃ : s(y) > δ} is open relative to W̃ , and the closure of Wδ in W̃

is
W δ = {y ∈ W̃ : s(y) ≥ δ} ⊂ {y ∈ W̃ : s(y) > 0} = int(W̃+

− ).

By excision, we have

(III.4) H∗(W̃+, W̃+
− ) ∼= H∗(W̃+ \Wδ, W̃

+
− \Wδ).

Now define a strong deformation retraction by reversing the flow:

σ : (W̃ \Wδ, W̃
+
− \Wδ)× [0, 1] → (W,W−), σ(y, t) = η(y,−ts(y)).

This proves that

(III.5) H∗(W̃+ \Wδ, W̃
+
− \Wδ) ∼= H∗(W,W−).

Combining (III.4) and (III.5), we obtain (III.3). Apply now Proposition II.2,
(III.2) and (III.3) to complete the proof of the theorem.

We now study the stability of the critical groups for isolated critical sets
under perturbations of the flow.

Let ηλ be a family of flows associated with the same function f . The following
“uniform continuity condition” is assumed: for all ε > 0 and T > 0, there exists
δ = δ(ε, T ) such that

(III.6) (d(x, x′) + |t− t′|+ |λ− λ′| < δ and |t|, |t′| ≤ T )

⇒ d(ηλ(x, t), ηλ′(x′, t′)) < ε.

Under this assumption, if (O, α, β) is an isolating triplet for S for the flow ηλ,
then it will still be an isolating triplet for S for the flow ηλ′ as long as |λ− λ′| is
small enough.

Moreover, under the same uniform continuity assumption, the notion of iso-
lating neighbourhood of S is also stable under small perturbations of the flow,
since if |λ− λ′| < δ, then clearly,

dist({O}β
α(λ), {O′}β

α(λ′)) < ε, dist([S]λ, [S]λ′) < ε,

and
dist(GT

λ ({O}β
α), GT

λ′({O}β
α)) < ε,

where λ and λ′ (in the subscripts or in the brackets) denote the dependence on
the flows.
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Now, we turn to the study of the effect of perturbing functionals on (G-M)-
pairs of isolated critical sets.

Theorem III.4. Let f be a C1-functional on M that satisfies the (P-S )
condition and let (W,W−) be a (G-M )-pair for a critical set Sf . If O ⊂ O ⊂
int(O) is a neighbourhood of Sf , then there exists ε > 0 depending on f and W
such that for all g ∈ C1(M,R) with ‖f − g‖C1(W ) < ε, there is a p.g.v.f ηg of g
for which (W,W−) is still a (G-M )-pair for any critical set Sg for g such that
W ∩Kg = Sg.

Proof. Let X be the p.g.v.f. for f with which (W,W−) is associated. In
view of the (P-S) condition, we can choose O′ ⊂ O′ ⊂ O such that Sf ⊂ O′

and β = inf {‖f ′(x)‖ : x ∈ W \ O′} > 0. Take 0 < ε < 1
6β and consider any

g ∈ C1(M,R) such that ‖f − g‖C1(W ) < ε. Note that Sg is necessarily included
in O′.

Consider now a p.g.v.f. Y of g that satisfies ‖X − Y ‖ < ε. Define % ∈
C1−0(M,R) such that 0 ≤ % ≤ 1 and

%(x) =

{
1, x ∈ O′,
0, x /∈ O,

and set V (x) = 5
4 [%(x)Y (x) + (1− %(x))X(x)]. For x /∈ O′, we have

‖V (x)‖ ≤ 5
4 (‖Y (x)‖+ ε) ≤ 13

4 ‖g
′‖,

and

〈V (x), g′(x)〉 ≥ 5
4 (‖g′(x)‖2 − ε‖g′(x)‖) ≥ 5

4 (‖g′(x)‖2 − 1
5‖g

′(x)‖2) = ‖g′(x)‖2.

If x ∈ O′, then V (x) = Y (x), which means that V is also a p.g.v.f. of g.
Now V (x) = 5

4X(x) outside O. Thus, the flow ηg associated with V remains
the same as the flow of X. In particular, they coincide on W−. It is then
not difficult to see that W satisfies the (MVP) with respect to the flow ηg and
therefore that (W,W−) is still a (G-M)-pair for Sg with respect to ηg.

IV. Conley’s index pairs of an isolating neighbourhood

In this section, we turn to the Conley index. We first establish the rela-
tionship between the (G-M)-pairs for dynamically isolated critical sets and the
Conley index pairs for their corresponding isolating neighbourhoods. We first
recall Conley’s definitions.

Definition IV.1 (index pair). A pair (N,N0) of closed subsets of M is
called an index pair for an isolating neighbourhood U if

(a) There exists T > 0 such that GT (cl(N \N0)) ⊂ int(N \N0).
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(b) N0 is positively invariant with respect to N , i.e., for all t > 0 and for all
x ∈ N0, η(x, [0, t]) ⊂ N implies that η(x, [0, t]) ⊂ N0.

(c) N0 is an exit set for N , i.e., for all x ∈ N and any t1 > 0 such that
η(x, t1) /∈ N , there exists t0 ∈ [0, t1) such that η(x, [0, t0]) ⊂ N and
η(x, t0) ∈ N0.

(d) cl(N \N0) ⊂ U and there exists T > 0 such that GT (U) ⊂ cl(N \N0).

Definition IV.2 (Conley index). Let (N,N0) be an index pair for an iso-
lating neighbourhood U . The homotopy type of the pointed space N \ N0 is
called the Conley index of U and is denoted by [N \N0].

As noted by Conley–Zehnder [C-Z], Salamon [S] and Benci [B], the Conley
index is a topological invariant for isolating neighbourhoods, i.e., if (N,N0) and
(Ñ , Ñ0) are two index pairs for U , then [N \N0] = [Ñ \ Ñ0].

Thus, for two pairs (N,N0), (Ñ , Ñ0) for U , we haveH∗(N,N0) ∼= H∗(Ñ , Ñ0),
where the Alexander–Spanier cohomology H∗(A,B, F ) is defined on a pair of
topological spaces (A,B) for some coefficient field F . If (N,N0) is a pair of
ANR’s, then H∗(N,N0) ∼= H∗(N/N0, [N0]).

Here and in the sequel, we shall omit the coefficient field F . Thus, for two
pairs (N,N0) and (Ñ , Ñ0) associated with U , we have H∗(N,N0) ∼= H∗(Ñ , Ñ0).

Theorem IV.3. Let f be a C1-functional satisfying the (P-S ) condition on
a C1-Finsler manifold M and let S be a dynamically isolated critical set for f
with an isolating triplet (O, α, β). Then:

(1) If (W,W−) is any (G-M )-pair for S with W ⊂ {O}β
α, then (W,W−) is

a Conley index pair for any isolating neighbourhood U of [S] satisfying
W ⊂ U ⊂ {O}β

α.
(2) If U is any isolating neighbourhood for [S] such that U ⊂ {O}β

α, then
for any Conley index pair (N,N0) of U , we have H∗(N,N0) ∼= C∗(f, S).

Proof. (1) By Theorem I.6, W is also a closed neighbourhood of [S]. Since
W−, the exit set of W , is transversal to η, it is necessarily positively invariant.
It remains to verify conditions (a) and (d) in the definition of a Conley index
pair.

First note that cl(W \W−) = W and int(W \W−) = int(W ). By Lemma
I.9, there exists T > 0 such that GT (cl(W \W−)) ⊂ int(W ) = int(W \W−) and
therefore (a) holds.

As to (d), again apply Lemma I.9 to obtain T > 0 such that GT (U) ⊂
GT ({O}β

α) ⊂ int(W ) ⊂W . This establishes part (1) of the theorem.
For (2), first choose a (G-M)-pair (W,W−) such that W ⊂ U . The existence

of such a pair follows from Proposition III.2. According to Theorem III.3 and
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part (1) above, we have

H∗(N,N0) = H∗(W,W−) = C∗(f, S),

which completes the proof of Theorem IV.3.

Now, we can deduce the following homotopy invariance result for Conley
index pairs.

Theorem IV.4. Suppose that {fλ}, λ ∈ [0, 1], is a family of C1-functions
satisfying the (P-S ) condition, and that {Sλ} is a family of dynamically isolated
critical sets of fλ with isolating neighbourhoods Uλ. Assume that (Nλ, N

0
λ) is a

family of index pairs for Uλ and that all Uλ’s are included in a set U on which fλ

is uniformly bounded. If the map λ → fλ is continuous from [0, 1] into C1(U),
then the groups H∗(Nλ, N

0
λ) are independent of λ.

Proof. This is a combination of Theorems III.3 and IV.3.

In [Ch], the first-named author establishes a relationship between the critical
groups of a functional and the topological degree of its gradient vector field.
Theorem IV.3 now allows us to transfer such an information to the Conley index.

Corollary IV.5. Let H be a Hilbert space and let f be a C2-function on
H satisfying the (P-S ) condition. Let U be an isolating neighbourhood on which
the vector field df is of the form I − T where T is a compact mapping. Then,
for any Conley index pair (N,N0) for U such that 0 /∈ f ′(∂N), we have

deg(df,N, 0) =
∞∑

q=0

(−1)q rankHq(N,N0).

Proof. Take any (G-M)-pair (W,W−) for the dynamically isolated critical
set S := I(U)∩Kf such that W ⊂ N . The existence of such a pair follows from
Proposition III.2. Since there are no critical points in N \W , by excision we get

deg(df,N, 0) = deg(df,W, 0).

On the other hand, it has been proved in [Ch, Th. 4.2] that

deg(df,W, 0) =
∞∑

q=0

(−1)q rankHq(W,W−).

Our conclusion then follows from Theorem IV.3.
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