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Introduction

Recently, the problem how to describe the limit behaviour of solutions of
evolution equations for which the Cauchy problem can have non-unique solu-
tion arouses much interest (see, for example, [3], [5], [6], [8], [14]). Trajectory
attractors can help to solve such problems.

In the present paper we study trajectory attractors for the non-autonomous
reaction-diffusion system

(1) ∂tu = a∆u− f0(u, t) + g0(x, t), u|∂Ω = 0 (or ∂u/∂ν|∂Ω = 0)

where u = u(x, t) = (u1, . . . , uN ), x ∈ Ω b Rn, t ≥ 0, f0(v, s) = (f1
0 , . . . , f

N
0 ),

(v, s) ∈ RN × R+, g0(x, s) = (g1
0 , . . . , g

N
0 ), x ∈ Ω, s ≥ 0. We assume that the

matrix a and the functions f0, g0 satisfy some general conditions (see Section 2).
These conditions provide the existence of a solution u of the Cauchy problem for
the system (1) (u|t=0 = u0, u0 ∈ H = (L2(Ω))N ). However, this solution can be
non-unique because we do not suppose any Lipschitz conditions for f0(v, s) with
respect to v.

The pair of functions (f0(v, s), g0(x, s)) = σ0(s) is called the symbol of equa-
tion (1). To construct a trajectory attractor for (1), we consider the family of
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all such systems with shifted symbols σ0(s + h) = (f0(v, s + h), g0(x, s + h)),
h ≥ 0. We also include in this family every symbol σ(s) = (f(v, s), g(x, s))
that is the limit of some sequence {σ0(s+ hm)}m∈N, hm ≥ 0, in an appropriate
topological space Ξ+. The topology in Ξ+ provides the solvability of the equation
of the form (1) with symbol σ(s) = (f(v, s), g(x, s)). The family {σ(s)} of such
symbols is said to be the hull H+(σ0) of the function σ0 in Ξ+, i.e. H+(σ0) =
[{(f0(v, s + h), g0(x, s + h)) | h ≥ 0}]Ξ+ . Here [ · ]Ξ+ means the closure in Ξ+.

We assume that H+(σ0) is compact in Ξ+.

To every equation of the form (1) with a symbol σ(s) = (f(v, s), g(x, s)) ∈
H+(σ0), there corresponds a trajectory space K+

σ = {u(x, s), s ≥ 0} that consists
of all solutions u(x, s) = u(s) of this equation in a weak sense. Here we replace t
by s. Consider the united trajectory space K+

Σ =
⋃

σ∈H+(σ0)
K+

σ . The translation
semigroup {T (t) | t ≥ 0} acts on K+

Σ : T (t)u(s) = u(t+ s). Evidently, T (t)K+
σ ⊆

K+
T (t)σ, therefore T (t)K+

Σ ⊆ K+
Σ for all t ≥ 0. Now, we embed the set K+

Σ into an
appropriate topological space Θ+ such that K+

Σ is closed in Θ+. The topology
in Θ+ is a local weak convergence topology on every segment [t1, t2] ⊆ R+ (see
Section 2).

A global attractor (in the topology Θ+) of the translation semigroup {T (t)}
acting on K+

Σ is said to be a trajectory attractor AH+(σ0) of the family of equa-
tions (1) with symbols σ ∈ H+(σ0). More, precisely, the set AH+(σ0) is compact
in Θ+, it is strictly invariant with respect to {T (t)}: T (t)AH+(σ0) = AH+(σ0) for
t ≥ 0, and the set T (t)B is attracted to AH+(σ0) in the topology Θ+ as t → ∞
for every bounded set B ⊂ K+

Σ . To define bounded sets in K+
Σ we use a Banach

space F+ ⊆ Θ+.

In Section 2 we prove the existence of a trajectory attractor for equation (1).
The structure of the trajectory attractor AH+(σ0) is described as well.

Section 3 deals with systems (1) for which the uniqueness for the Cauchy
problem holds. In this case, the trajectory attractor AH+(σ0) is more regular
and AH+(σ0) attracts bounded sets B from K+

Σ in a stronger topology Θs
+.

In Section 4 we study trajectory attractors for some class of ordinary dif-
ferential equations in finite-dimensional Euclidean space. The corresponding
Cauchy problem can have non-unique solution. This class includes the Galerkin
approximation system of order m for equation (1). We prove the theorem on the
existence and structure of trajectory attractors for such equations. In particular,
the Galerkin approximation system with symbol σ0m has a trajectory attractor
A(m)
H+(σ0m) in the space PmΘ+, where Pm is the orthogonal projection onto the

corresponding m-dimensional space.

In Section 1 we present the general scheme of construction of a trajectory
attractor for an abstract non-autonomous operator evolution equation.
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In Section 5 we study some perturbation problems for the trajectory at-
tractor of system (1). The translation semigroup {T (t)} acts also on the hull
H+(σ0): T (t)σ(s) = σ(t + s), t ≥ 0. Consider the attractor ω(H+(σ0)) of
the translation semigroup on H+(σ0): T (t)ω(H+(σ0)) = ω(H+(σ0)) for all
t ≥ 0. The following equality holds: AH+(σ0) = Aω(H+(σ0)) (see Section 2).
Now, assume for brevity that one perturbs the term g0 in the following way:
g(x, s) = g0(x, s) + a(x, s), where a( · , s) ⇁ 0 (s→∞) in a weak sense. (For ex-
ample, a(x, s) = A(x) sin(s2), A ∈ H). Then the trajectory attractor AH+(f0,g0)

does not change: AH+(f0,g0+a) = AH+(f0,g0). We also study the analogous per-
turbation of the non-linear term f0 in the corresponding space. Other pertur-
bation problems arise when the symbol σ0(s) depends on a small parameter ε,
i.e., for example, when the terms of equation (1) are: f0(v, s) + εf1(v, s) and
g0(x, s) + εg1(x, s). We describe the limit behaviour of the trajectory attractor
AH+(f0+εf1,g0+εg1) as ε → 0. Finally, dealing with the approximation problem,
we prove that the trajectory attractor A(m)

H+(σ0m) of the Galerkin approximation
system of order m converges as m → ∞ to the trajectory attractor AH+(σ0) of
the reaction-diffusion system (1) with the original symbol σ0(s).

1. Preliminaries

In this section, we describe the general scheme of constructing a trajectory
attractor for an abstract operator evolution equation. In the next sections, this
scheme will be applied to the study of reaction-diffusion systems. Consider a
non-autonomous equation of the type

(1.1) ∂tu = Aσ(t)(u), t ≥ 0.

For every s ∈ R+, we are given an operator Aσ(s)( · ) : E → E0, where E,E0

are Banach spaces. The function parameter σ(s), s ∈ R+, in (1.1) reflects the
dependence of the equation on time. The function σ is called the time symbol
(or symbol) of equation (1.1). The values of σ belong to some Banach space Ψ.

For example, in the reaction-diffusion system

∂tu = a∆u− f(u, t) + g(x, t), u|∂Ω = 0, t ≥ 0,

where x ∈ Ω b Rn, u = (u1, . . . , uN ), f = (f1, . . . , fN ), g = (g1, . . . , gN ), the
symbol is the pair σ(s) = (f(v, s), g(x, s)), s ≥ 0. The component g(x, s) is
viewed as a mapping from R+ into (L2(Ω))N , and f(v, s) as a mapping from
R+ into a specially selected function space M = {ψ(v) = (ψ1(v), . . . , ψN (v)),
v ∈ RN} ⊂ C(RN ; RN ). The norm of M takes into account the growth of f(v, s)
with respect to v (see (2.30) and (3.48)). In this case Ψ = M× (L2(Ω))N .

We assume that the symbol σ(s) of equation (1.1), as a function of s, belongs
to a topological space Ξ+ of functions ξ : R+ → Ψ. Usually, in applications, the
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topology in Ξ+ is a local convergence topology on every segment [t1, t2] ⊂ R+.
Consider the translation operator T (t) on Ξ+:

(1.2) T (t)ξ(s) = ξ(t+ s), s ∈ R+, t ≥ 0.

We assume that the mapping T (t) takes Ξ+ into itself for all t ≥ 0. Evidently,
{T (t) | t ≥ 0} forms a semigroup on Ξ+.

Now consider a family of equations (1.1) with various symbols σ belonging to
a set Σ ⊆ Ξ+. The set Σ is called the symbol space of the family. It is assumed
that Σ, together with any symbol σ ∈ Σ, contains all positive translations of
σ:σ(t+ · ) = T (t)σ( · ) ∈ Σ for any t ≥ 0, i.e.

(1.3) T (t)Σ ⊆ Σ ∀t ≥ 0.

We suppose that the symbol space Σ with the topology inherited from Ξ+ is
a metrizable space and the corresponding metric space is complete.

We shall study the family of equations (1.1) with symbols σ from the com-
plete metric space Σ ⊆ Ξ+. We assume that the translation semigroup {T (t)} is
continuous on Σ and it satisfies (1.3).

Let us describe the typical symbol space in particular problems. We are
given some fixed symbol σ0(s), s ≥ 0, consisting of all time-dependent terms of
the equation under consideration. Then one chooses an appropriate enveloping
topological space Ξ+ of functions on R+ such that σ0 ∈ Ξ+. Consider the closure
in Ξ+ of the set {T (t)σ0( · ) | t ≥ 0} = {σ0(t+ · ) | t ≥ 0}. This set is said to be
the hull of the function σ0 ∈ Ξ+ and it is denoted by

(1.4) H+(σ0) = [{T (t)σ0 | t ≥ 0}]Ξ+ .

Here [ · ]Ξ+ means the closure in Ξ+. Evidently, T (t)H+(σ0) ⊆ H+(σ0) for all
t ≥ 0.

Definition 1.1. The function σ0 ∈ Ξ+ is translation-compact (tr.-c.) in Ξ+

if the hull H+(σ0) is compact in Ξ+.

In applications, we consider the symbol spaces Σ = H+(σ0), where σ0(s) is
a tr.-c. function in an appropriate topological space Ξ+.

The aim of this article is to study solutions u(s) of equation (1.1) which
are defined for all s ∈ R+. We assume that u(s) ∈ E for any s ≥ 0. In all
applications below, we shall strictly clarify the meaning of the expression: “a
function u is a solution of (1.1)”. To each symbol σ ∈ Σ, we assign a set K+

σ

of solutions of equation (1.1). The set K+
σ is said to be a trajectory space of

equation (1.1) with the symbol σ. We shall study the family {K+
σ | σ ∈ Σ} of

trajectory spaces corresponding to equations (1.1) with symbols σ ∈ Σ. In this
section we shall emphasize the properties of K+

σ needed to construct a general
theory of trajectory attractors.
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As before, T (t) means the translation operator acting now on the trajectory
spaces K+

σ : T (t)u(s) = u(t+ s), t ≥ 0.

Definition 1.2. The family {K+
σ | σ ∈ Σ} of trajectory spaces is transla-

tion-coordinated (tr.-coord.) if for all σ ∈ Σ and all u ∈ K+
σ ,

(1.5) T (t)u ∈ K+
T (t)σ ∀t ≥ 0.

Definition 1.3. The set K+
Σ =

⋃
σ∈ΣK+

σ is called the united trajectory space
of the family {K+

σ | σ ∈ Σ}.

Proposition 1.1. If the family {K+
σ | σ ∈ Σ} is tr.-coord. then the trans-

lation semigroup {T (t)} takes K+
Σ to itself:

(1.6) T (t)K+
Σ ⊆ K+

Σ ∀t ≥ 0.

The proof is evident.

Definition 1.4. A compact set A b X is said to be a global attractor of a
semigroup {S(t)} acting on a complete metric space X if

(i) A attracts every set B, bounded in X: distX(S(t)B,A) → 0 (t→∞);
(ii) A is strictly invariant with respect to {S(t)}: S(t)A = A for all t ≥ 0.

In the case X = Σ and {S(t)} = {T (t)} we have

Proposition 1.2. Every continuous translation semigroup {T (t)} acting on
a compact metric space Σ has a global attractor A which coincides with the ω-
limit set of Σ:

(1.7) A = ω(Σ) =
⋂
t≥0

[ ⋃
h≥t

T (h)Σ
]
Σ

, ω(Σ) ⊆ Σ.

The set A is strictly invariant with respect to {T (t)}: T (t)A = A for t ≥ 0.

This statement follows from well-known theorems from the theory of attrac-
tors of semigroups acting in metric spaces (see, for example, [1], [10], [15]).

To describe the limit behaviour of the translation semigroup {T (t)} acting on
the united trajectory space K+

Σ we need a more general notion of global attractor,
a trajectory attractor AΣ of the translation semigroup. Let K+

Σ ⊆ F+ ⊆ Θ+,
where Θ+ is a Hausdorff topological space and F+ is a Banach space. We
use F+ to define bounded sets in K+

Σ . Let the translation semigroup {T (t)} be
continuous with respect to the topology of Θ+. The set AΣ attracts every set
T (t)B as t→∞ in the topological space Θ+, where B ⊂ K+

Σ and B is bounded
in the Banach space F+.
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Definition 1.5. A set P ⊆ Θ+ is said to be a uniformly (with respect to
σ ∈ Σ) attracting set for the family {Kσ | σ ∈ Σ} in the topology Θ+ if for every
bounded set B in F+ and B ⊆ K+

Σ , the set P attracts T (t)B as t → ∞ in the
topology Θ+, i.e. for every neighbourhood O(P ) in Θ+ there exists t1 ≥ 0 such
that T (t)B ⊆ O(P ) for all t ≥ t1.

Definition 1.6. A compact set AΣ b Θ+ is said to be a uniform (with
respect to σ ∈ Σ) trajectory attractor of the translation semigroup {T (t)} on K+

Σ

in the topology Θ+ if

(i) AΣ is a minimal compact uniformly attracting set of {Kσ | σ ∈ Σ},
i.e. AΣ is contained in every compact uniformly attracting set P of
{Kσ | σ ∈ Σ},

(ii) T (t)AΣ = AΣ for all t ≥ 0.

Notice that a trajectory attractor AΣ is contained in K+
Σ and it depends on

the symbol space Σ.

Definition 1.7. The family {Kσ | σ ∈ Σ} is said to be (Θ+,Σ)-closed if
the graph set

⋃
σ∈ΣKσ ×{σ} is closed in the topological space Θ+×Σ with the

usual product topology.

Proposition 1.3. Let Σ be a compact metric space and {Kσ | σ ∈ Σ} be
(Θ+,Σ)-closed. Then the set KΣ =

⋃
σ∈ΣKσ is closed in Θ+.

Proof. The reasoning is standard. Let u /∈ KΣ =
⋃

σ∈ΣKσ. Then (u, σ) /∈⋃
σ′∈ΣKσ′ × {σ′} for all σ ∈ Σ. By the assumption, the set ∪σ′∈ΣKσ′ × {σ′} is

closed in Θ+ × Σ, so there is a neighbourhood Wσ × Oσ in Θ+ × Σ such that
Wσ×Oσ∩(

⋃
σ′∈ΣKσ′×{σ′}) = ∅, u ∈ Wσ, σ ∈ Oσ, where Wσ and Oσ are open

sets in Θ+ and Σ respectively. The family {Oσ | σ ∈ Σ} forms an open covering
of Σ. Since Σ is compact, there is a finite subcovering {Oσi | i = 1, . . . , N}. Put
W(u) =

⋂N
i=1Wσi

. Evidently, W(u) ∩ KΣ = ∅. Hence, for every u /∈ KΣ there is
a neighbourhood W(u) with W(u) ∩ KΣ = ∅, i.e. KΣ is closed in Θ+. �

Together with the family {K+
σ | σ ∈ Σ} of trajectory spaces we shall consider

a more slender family {K+
σ | σ ∈ ω(Σ)} (see (1.7)), which corresponds to the

strictly invariant symbol space ω(Σ) ⊆ Σ. Now we have the following result
about trajectory attractors of families of equations (1.1).

Theorem 1.1. Let Σ be a compact metric space and suppose that a contin-
uous translation semigroup {T (t) | t ≥ 0} acts on Σ: T (t)Σ ⊆ Σ. Assume the
family {K+

σ | σ ∈ Σ} corresponding to equation (1.1) is tr.-coord. and (Θ+,Σ)-
closed, and {T (t)} is continuous in Θ+. Let there exist a uniformly (with respect
to σ ∈ Σ) attracting set P for {K+

σ | σ ∈ Σ} in Θ+ such that P is compact in
Θ+ and bounded in F+. Then the translation semigroup {T (t) | t ≥ 0} acting on
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K+
Σ has a uniform (with respect to σ ∈ Σ) trajectory attractor AΣ in the topology

Θ+, in particular AΣ ⊆ K+
Σ ∩ P, and

(1.8) T (t)AΣ = AΣ ∀t ≥ 0.

Moreover,
AΣ = Aω(Σ),

where Aω(Σ) is the uniform (with respect to σ ∈ ω(Σ)) trajectory attractor of the
family {K+

σ | σ ∈ ω(Σ)}, Aω(Σ) ⊆ K+
ω(Σ). The set AΣ = Aω(Σ) is compact in Θ+

and bounded in F+.

The proof of Theorem 1.1 is given in [3] (see also [8]).

Remark 1.1. The introduced notion of a trajectory attractor depends on the
selected trajectory space {K+

σ | σ ∈ Σ}. Therefore, generally speaking, different
trajectory attractors correspond to different families {K+

σ | σ ∈ Σ} of trajectory
spaces of equation (1.1).

Theorem 1.1 shows that to construct the trajectory attractor one needs a
uniformly attracting set P , compact in Θ+ and bounded in F+. Usually, in
applications, a large ball BR = {‖f‖F+ ≤ R} in F+ (R � 1) serves as such
an attracting set (or even an absorbing set). Attraction to BR follows from the
inequality

(1.9) ‖T (t)u‖F+ ≤ C(‖u‖F+)e−γt +R0 ∀t ≥ 0

for all u ∈ K+
Σ , where C(R) depends on R, and γ,R0 do not depend on u. Usually,

inequality (1.9) follows from a priori estimates for a solution of equation (1.1).
If, in addition, a ball BR in F+ is compact in Θ+ then B2R0 is the required
compact uniformly attracting set.

Corollary. If u ∈ AΣ then u is tr.-c. in Θ+.

Indeed, using (1.8), we get T (t)u ∈ AΣ for any t ≥ 0, that is, the set
(T (t)u | t ≥ 0 is compact in Θ+, i.e. u is tr.-c. in Θ+ (see Definition 1.1). �

Now, we shall describe the structure of the trajectory attractors from The-
orem 1.1 in terms of the complete trajectories of equation (1.1), i.e. solutions
defined on the whole time axis. Let Σ be a compact symbol space, Σ b Ξ+,
and suppose that the semigroup {T (t)} is continuous on Σ. Consider any sym-
bol σ ∈ ω(Σ). The invariance property (1.7) implies that there is a symbol
σ1 ∈ ω(Σ) such that T (1)σ1 = σ. Consider the function σ̂(s) = σ1(s+ 1) defined
for s ≥ −1. Obviously, σ̂(s) ≡ σ(s) for s ≥ 0, hence, σ̂ is a prolongation of σ
on the semiaxis [−1,∞[. Next, there is σ2 ∈ ω(Σ) such that T (1)σ2 = σ1 and
T (2)σ2 = σ. Put σ̂(s) = σ2(s + 2) for s ≥ −2. Evidently, the function σ̂ is well
defined, since σ2(s+2) = σ1(s+1) for s ≥ −1. Continuing this process, we define
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σ̂(s) = σn(s+ n) for s ∈ [−n,∞[, where σn ∈ ω(Σ) and n ∈ N. We have defined
a function σ̂ on R which is a prolongation of the initial symbol σ defined on
R+. Moreover, σ̂ has the following property: Π+σ̂t ∈ ω(Σ) for all t ∈ R, where
σ̂t(s) = σ̂(t+s). Here Π+ = Π0,∞ is the restriction operator to the semiaxis R+.

Definition 1.8. A function ζ(s), s ∈ R, is said to be a complete symbol in
ω(Σ) if Π+ζt( · ) = Π+ζ(t+ · ) ∈ ω(Σ) for all t ∈ R.

As shown above, for every symbol σ ∈ ω(Σ) there exists at least one complete
symbol ζ = σ̂ which is the prolongation of σ for negative s. Notice at once that,
in general, this prolongation need not be unique.

Now consider some complete symbol ζ(s), s ∈ R, in ω(Σ). It is easily seen that
to ζ there corresponds the family of operators Aζ(t)( · ) : E → E0, Aζ(t)( · ) ≡
AΠ+ζt

( · ), t ∈ R. Consider the corresponding evolution equation on the whole
axis:

(1.10) ∂tu = Aζ(t)(u), t ∈ R.

Definition 1.9. A function u(s), s ∈ R, is said to be a complete trajectory
of equation (1.10) with complete symbol ζ(s), s ∈ R, (with respect to the family
{K+

σ | σ ∈ Σ}) if

Π+ut ∈ K+
Π+ζt

, i.e. Π+u(t+ · ) ∈ K+
Π+ζ(t+ · ) ∀t ∈ R.

Definition 1.10. The kernel Kζ of equation (1.10) in the space F+ with
complete symbol ζ(s), s ∈ R, in ω(Σ) is the union of all complete trajectories
u(s), s ∈ R, of equation (1.10) (with respect to the family {K+

σ | σ ∈ Σ}) that
are bounded in F+:

(1.11) ‖Π+u(t+ · )‖F+ ≤ Cu ∀t ∈ R.

Denote by Z = Z(Σ) the set of all complete symbols in ω(Σ), Z = {ζ(s), s ∈
R | Π+ζt ∈ ω(Σ) ∀t ∈ R}. Evidently, Π+Z(Σ) = ω(Σ). Let KZ(Σ) denote the
union of all kernels Kζ of all complete symbols ζ ∈ Z(Σ) : KZ(Σ) =

⋃
ζ∈Z(Σ)Kζ .

Theorem 1.2. Let the conditions of Theorem 1.1 be valid. Then

(1.12) AΣ = Aω(Σ) = Π+

( ⋃
ζ∈Z(Σ)

Kζ

)
= Π+KZ(Σ),

the set Π+KZ(Σ) is compact in Θ+ and bounded in F+. If the family {K+
σ | σ ∈ Σ}

satisfies the condition: for some ball BR in F+ the set BR∩K+
σ 6= ∅ for all σ ∈ Σ,

then Kζ 6= ∅ for all ζ ∈ Z(Σ).

The proof of Theorem 1.2 is given in [3] and it uses the invariance property
(1.8) of the trajectory attractor AΣ.
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2. Trajectory attractors of reaction-diffusion systems

In this section we study the reaction-diffusion system

(2.13) ∂tu = a∆u− f(u, t) + g(x, t), u|∂Ω = 0, x ∈ Ω b Rn, t ≥ 0.

(Similarly one can study a problem with the Neumann boundary conditions.)
In system (2.13), u = (u1, . . . , uN ) is an unknown vector-function, g = g(x, s) =
(g1, . . . , gN ) are external forces, and f = f(v, s) = (f1, . . . , fN ) are interaction
functions. The real N ×N matrix a has a positive symmetric part 1

2 (a+ a∗) ≥
βI, β > 0. Set H = (L2(Ω))N and V = (H1

0 (Ω))N . The norms in these spaces
are |v|2 =

∫
Ω

∑N
i=1 |vi(x)|2 dx and ‖v‖2 =

∫
Ω

∑N
i=1 |∇vi(x)|2 dx respectively. Let

also V ′ = (H−1(Ω))N . We suppose that g ∈ Lloc
2 (R+;V ′) and g is translation-

bounded in Lloc
2 (R+;V ′):

(2.14) ‖g‖2a = sup
t≥0

∫ t+1

t

‖g(s)‖2V ′ ds <∞.

We also suppose that f ∈ C(RN × R+; RN ) and

γ|v|p − C1 ≤ (f(v, s), v), p ≥ 2, γ > 0,(2.15)

|f(v, s)| ≤ C2(|v|p−1 + 1) ∀v ∈ RN , s ∈ R+.(2.16)

Let q be the conjugate exponent for p, 1/p+ 1/q = 1, 1 < q ≤ 2. Let u(x, · ) ∈
Lp(t1, t2; (Lp(Ω))N ), [t1, t2] ⊆ R+. It follows from (2.16) that f(u(x, · ), · ) ∈
Lq(t1, t2; (Lq(Ω))N ) and

(2.17) ‖f(u(x, · ), · )‖q
Lq(t1,t2;(Lq(Ω))N )

≤ C3(‖u(x, · )‖p
Lp(t1,t2;(Lp(Ω))N )

+t2−t1),

where C3 = C3(p, |Ω|, C2). At the same time, if u(x, · ) ∈ L2(t1, t2;V ) then
∆u(x, · ) + g(x, · ) ∈ L2(t1, t2;V ′). The Sobolev embedding theorem implies, by
passing to the conjugate spaces, that Lq(Ω) ⊂ H−r(Ω), where r ≥ n(1/q −
1/2). If, in addition, r ≥ 1, then the right-hand side of (2.13) belongs to
Lq(t1, t2; (H−r(Ω))N ). Put r ≡ max{1, n(1/q − 1/2)} for p ≥ 2. Let X =
(H−r(Ω))N . We conclude that if u(x, · ) ∈ Lp(t1, t2; (Lp(Ω))N ) ∩ L2(t1, t2;V )
then equation (2.13) can be considered in the distribution sense of the space
D′(t1, t2;X) and ∂tu ∈ Lq(t1, t2; (H−r(Ω))N ).

Definition 2.1. A function u(x, s), x ∈ Ω, s ≥ 0, is said to be a weak
solution of equation (2.13) if u ∈ Lp(t1, t2; (Lp(Ω))N )∩L2(t1, t2;V ) and u satisfies
equation (2.13) in the distribution sense of the space D′(t1, t2;X), where X =
(H−r(Ω))N and r ≡ max{1, n(1/q − 1/2)}.
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Lemma 2.1 (Lions–Magenes [12]). Let X and Y be Banach spaces such that
Y ⊂ X with a continuous injection. If f ∈ C([t1, t2];X) and f ∈ L∞([t1, t2];Y )
then f is weakly continuous on [t1, t2] with values in Y, i.e. for every ψ ∈ Y ∗ the
function 〈ψ, f( · )〉 ∈ C([t1, t2]).

If u is a weak solution of (2.13) then, evidently, u ∈ C([t1, t2];X) for X =
(H−r(Ω))N . If, in addition, u ∈ L∞(t1, t2;H) then, by Lemma 2.1 we have
u ∈ Cw([t1, t2];H). Therefore, the initial-value problem

(2.18) u|t=t1 = u0

for equation (2.13) is meaningful when u0 ∈ H. Let us formulate the weak
solution existence theorem.

Theorem 2.1. Let g ∈ L2(t1, t2;V ′), let f satisfy conditions (2.15), (2.16),
and u0 ∈ H. Then there exists a weak solution u of equation (2.13) satisfying
u ∈ Lp(t1, t2; (Lp(Ω))N ) ∩ L2(t1, t2;V ) ∩ L∞(t1, t2;H) and u(t1) = u0.

Proof. We implement the Galerkin approximation method, with a com-
plete system {wj} of functions in V ∩ (Lp(Ω))N . We outline the main points
of the method. Let um(x, s) =

∑m
i=1 aj,m(s)wj(x) be a solution of the ordinary

differential system

(2.19)
dum

dt
= Pma∆um − Pmf(um, t) + Pmg(t), um(t1) = Pmu0,

where Pm is the orthogonal projection in H onto Hm = [w1, . . . , wm]. Evidently,
Pmu0 → u0 (m → ∞) strongly in H and Pmg ⇁ g (m → ∞) weakly in
L2(t1, t2;V ′). Equation (2.19) implies that
(2.20)

1
2
d

dt
|um(t)|2 + (a∇um(t),∇um(t)) + (f(um(t), t), um(t)) = 〈g(t), um(t)〉.

Using condition (2.15) and integrating in s from τ to t, we obtain

(2.21) |um(t)|2 − |um(τ)|2 + β

∫ t

τ

‖um(s)‖2 ds+ 2γ
∫ t

τ

‖um(s)‖p
Lp
ds

≤ 1
β

∫ t

τ

‖g(s)‖2V ′ ds+ 2(t− τ)C2,

for all t, τ ∈ [t1, t2], t ≥ τ, where ‖v‖p
Lp

= ‖v‖p
(Lp(Ω))N . It follows from (2.21)

that the sequence {um} remains in a bounded subset of L2(t1, t2;V ) ∩Lp(t1, t2;
(Lp(Ω))N )∩L∞(t1, t2;H), since |um(t1)|2 is bounded. By (2.17), {f(um( · ), · )}
is bounded in Lq(t1, t2; (Lq(Ω))N ). So, by refining, we may assume that there
exists a function u ∈ L2(t1, t2;V ) ∩ Lp(t1, t2; (Lp(Ω))N ) ∩ L∞(t1, t2;H) such
that um ⇁ u (m → ∞) weakly in L2(t1, t2;V ), weakly in Lp(t1, t2; (Lp(Ω))N ),
and ∗-weakly in L∞(t1, t2;H). In particular, ∆um ⇁ ∆u (m → ∞) weakly in
L2(t1, t2;V ′), ∂tum ⇁ ∂tu (m→∞) weakly in Lq(t1, t2;X) and f(um( · ), · ) ⇁
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w (m → ∞) weakly in Lq(t1, t2; (Lq(Ω))N ) for some w ∈ Lq(t1, t2; (Lq(Ω))N ).
Passing to the limit in equation (2.19) we obtain the equality

∂tu = a∆u− w + g

in the distribution sense of the space D′(t1, t2;X). Notice that um → u (m→∞)
in Cw([t1, t2];H), so that u(t1) = u0.

To prove that u is a weak solution of (2.13) we have to check that f(u(s), s) =
w(s). From (2.19) it follows that {∂tum} is bounded in Lq(t1, t2;X). Due to the
compactness theorem (see [9], [11]), we extract a subsequence of {um} (which
we label the same) strongly convergent to u in L2(t1, t2;H) and um(x, s) →
u(x, s) (m → ∞) for almost all (x, s) ∈ Ω × [t1, t2]. Therefore f(um(x, s), s) →
f(u(x, s), s) (m→∞) for almost all (x, s) ∈ Ω×[t1, t2], since f is continuous. On
the other hand, the sequence {f(um(x, · ), · )} is bounded in Lq(t1, t2;Lq(Ω)).
From the Lions lemma (see [11, Chapter 1, Lemma 1.3]), we conclude that
f(um(x, · ), · ) ⇁ f(u(x, · ), · ) (m → ∞) weakly in Lq(t1, t2;Lq(Ω)), hence,
f(u(s), s) = w(s). �

Remark 2.1. It is easily seen that conditions (2.15) and (2.16) do not ensure
the uniqueness for the Cauchy problem (2.13), (2.18).

Proposition 2.1. Let u ∈ Lp(t1, t2; (Lp(Ω))N ) ∩ L2(t1, t2;V ) be a weak
solution of (2.13). Then

(i) u ∈ C([t1, t2];H);
(ii) the function |u( · )|2 is absolutely continuous on [t1, t2], and

(2.22)
1
2
d

dt
|u(t)|2 + (a∇u(t),∇u(t)) + (f(u(t), t), u(t)) = 〈g(t), u(t)〉,

for almost all t ∈ [t1, t2].

This proposition follows directly from

Lemma 2.2. Let H be a Hilbert space and let V, E, X be Banach spaces
with V ⊆ H ⊆ V ′ ⊆ X and E ⊆ H ⊆ E′ ⊆ X, V ′ and E′ being the duals of V
and E respectively. Here H ′ is identified with H. Assume that u ∈ L2(t1, t2;V )∩
Lp(t1, t2;E) (p > 1) and the distribution ∂tu from D′(t1, t2;X) is representable
as ∂tu(s) = w(s) + h(s), where w ∈ L2(t1, t2;V ′) and h ∈ Lq(t1, t2;E′) (1/p +
1/q = 1). Then

(i) u ∈ C([t1, t2];H);
(ii) the function |u( · )|2 is absolutely continuous on [t1, t2], and

(2.23)
d

dt
|u(t)|2 = 2〈∂tu(t), u(t)〉 = 2〈w(t), u(t)〉+ 2〈h(t), u(t)〉

for almost all t ∈ [t1, t2].
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This statement is a generalization of the known interpolation result. (See
[12] and [16, Chapter 3, Lemma 1.2], where the author considered the case
V = E, p = 2, V being a Hilbert space.) The proof uses the regularization
technique.

To prove Proposition 2.1 we use Lemma 2.2 for E = (Lp(Ω))N . If u ∈
Lp(t1, t2; (Lp(Ω))N )∩L2(t1, t2;V ) then, by equation (2.13), ∂tu = w+ h, where
w(s) = a∆u(s) + g(s) and h(s) = f(u(s), s). Evidently, w ∈ L2(t1, t2;V ′) and
h ∈ Lq(t1, t2;E′) (see (2.17)). So u ∈ Cw([t1, t2];H) and |u( · )| is continuous on
[t1, t2], consequently, u ∈ C([t1, t2];H).

Corollary 2.1. Let u ∈ Lloc
p (R+; (Lp(Ω))N )∩Lloc

2 (R+;V ) be a weak solu-
tion of (2.13). Then for all t ≥ 0,

(2.24) |u(t)|2 ≤ |u(0)|2e−αt +R2
1, R2

1 =
2C1

α
+

1
β(1− e−α)

‖g‖2a, α = βλ1,

(2.25) β

∫ t+1

t

‖u(s)‖2 ds+ 2γ
∫ t+1

t

‖u(s)‖p
Lp
ds ≤ |u(t)|2 +R2

2,

R2
2 = 2C1 +

1
β
‖g‖2a,

(2.26) β

∫ t

0

‖u(s)‖2eαs ds ≤ (1 + αt)|u(0)|2 + 2R2
1e

αt.

Proof. Every weak solution u satisfies (2.22). Using condition (2.15) and
the Bouniakovsky–Schwarz inequality, we get

(2.27)
d

dt
|u(t)|2 + β‖u(t)‖2 + 2γ‖u(t)‖p

Lp
≤ 2C1 +

1
β
‖g(t)‖2V ′ .

In particular,

d

dt
|u(t)|2 + α|u(t)|2 ≤ 2C1 +

1
β
‖g(t)‖2V ′ ,

and hence

d

dt
(|u(t)|2 exp(αt)) ≤ 2C1 exp(αt) +

1
β
‖g(t)‖2V ′ exp(αt).

Integrating from 0 to t, we get

|u(t)|2eαt − |u(0)|2 ≤ 2C1

α
(eαt − 1) +

1
β

∫ t

0

‖g(s)‖2V ′eαs ds.
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Estimating the last integral,∫ t

0

‖g(s)‖2V ′eαsds ≤
∫ t

t−1

‖g(s)‖2V ′eαs ds+
∫ t−1

t−2

‖g(s)‖2V ′eαs ds+ . . .(2.28)

≤ eαt

∫ t

t−1

‖g(s)‖2V ′ ds+ eα(t−1)

∫ t−1

t−2

‖g(s)‖2V ′ ds

+ eα(t−2)

∫ t−2

t−3

‖g(s)‖2V ′ ds+ . . .

≤ ‖g‖2aeαt(1 + e−α + e−2α + . . . )

= ‖g‖2aeαt(1− e−α)−1,

we get

|u(t)|2eαt − |u(0)|2 ≤ 2C1

α
eαt +

1
β
‖g‖2aeαt(1− e−α)−1 = R2

1e
αt

and (2.24) is proved. Inequality (2.25) follows directly from (2.27) by integrating
over [t, t+ 1].

Let us check inequality (2.26). We shall use this inequality in the next section.
Multiplying (2.24) by αeαt and integrating, we obtain

(2.29) α

∫ t

0

|u(s)|2eαs ds ≤ αt|u(0)|2 +R2
1e

αt.

Inequality (2.27) implies that

d

dt
(|u(t)|2 exp(αt)) + β‖u(t)‖2 exp(αt)

≤ 2C1 exp(αt) +
1
β
‖g(t)‖2V ′ exp(αt) + α|u(t)|2 exp(αt).

Therefore, using the above reasoning and (2.29), we get

|u(t)|2eαt + β

∫ t

0

‖u(s)‖2eαs ds ≤ |u(0)|2 +R2
1e

αt + αt|u(0)|2 +R2
1e

αt

= (1 + αt)|u(0)|2 + 2R2
1e

αt.

The proof is complete. �

The pair σ(s) = (f(v, s), g(x, s)) is the symbol of equation (2.13). With
each symbol σ satisfying (2.14)–(2.16), we associate the trajectory space K+

σ .

By definition, K+
σ is the union of all weak solutions u ∈ Lloc

p (R+; (Lp(Ω))N ) ∩
Lloc

2 (R+;V ) of equation (2.13).

Corollary 2.2.

(i) For every u0 ∈ H there exists u ∈ K+
σ such that u(0) = u0.

(ii) u ∈ Lloc
p (R+; (Lp(Ω))N ) ∩ Lloc

2 (R+;V ) ∩ Lloc
∞ (R+;H) for all u ∈ K+

σ .
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According to the general scheme of Section 1, we introduce spaces Θ+ and
F+. Put

F loc
+ = Lloc

∞ (R+;H) ∩ Lloc
2 (R+;V ) ∩ Lloc

p (R+; (Lp(Ω))N )

∩ {v | ∂tv ∈ Lloc
q (R+;X)},

X = (H−r(Ω))N , r = max{1, n(1/2− 1/p)}.

Denote by Θ+ the space F loc
+ with the following convergence topology: a se-

quence {vm} ⊂ F loc
+ converges to v ∈ F loc

+ as m→∞ in Θ+ if vm ⇁ v (m→∞)
∗-weakly in L∞(t1, t2;H), weakly in L2(t1, t2;V ), weakly in Lp(t1, t2; (Lp(Ω))N ),
and ∂tvm ⇁ ∂tv (m→∞) weakly in Lq(t1, t2;X) for all [t1, t2] ⊆ R+. It is easy
to prove that Θ+ is a Hausdorff space with a countable base. The translation
semigroup {T (t)} is continuous on Θ+.

Now, define F+ by putting

F+ = {v ∈ F loc
+ | ‖v‖F+ <∞},

where

‖v‖F+ = sup
t≥0

{‖T (t)v‖L∞(0,1;H) + ‖T (t)v‖L2(0,1;V )

+ ‖T (t)v‖Lp(0,1;(Lp(Ω))N ) + ‖T (t)∂tv‖Lq(0,1;X)}.

Evidently, F+ is a Banach space and F+ ⊂ Θ+.

To describe a symbol space Σ suppose we are given a fixed symbol σ0(s) =
(f0(v, s), g0(x, s)).

The function g0 is translation-bounded in Lloc
2 (R+;V ′) (see (2.14)). There-

fore, it is tr.-c. in the space Lloc
2,w(R+;V ′) with the following local weak conver-

gence topology: hm → h (m→∞) in Lloc
2,w(R+;V ′) if hm ⇁ h (m→∞) weakly

in L2(t1, t2;V ′) for all [t1, t2] ⊆ R+. The hull H+(g0) (see (1.14)) is a compact
set in Lloc

2,w(R+;V ′).
The function f0 satisfies (2.15) and (2.16). Consider the space M1 = {ψ ∈

C(RN ; RN ) | |ψ(v)| ≤ C2(|v|p−1 +1) ∀v ∈ RN} endowed with the following local
uniform convergence topology: ψ(m) → ψ (m→∞) in M1 if

max
|v|≤R

|ψ(m)(v)− ψ(v)| → 0 (m→∞)

for each R > 0. This topology is generated by the norm

(2.30) ‖ψ‖M1 =
∞∑

m=1

1
mp+1

max
|v|≤m

|ψ(v)|.

M1 is a Banach space. Consider the space C(R+;M1) of continuous functions
with values in M1. We assume that f0 is a tr.-c. function in C(R+;M1). By
(2.16), f0 is bounded in every semicylinder Q+(R) = {(v, s) | |v| ≤ R, s ≥ 0}.
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By [3], f0 is tr.-c. in C(R+;M1) if and only if for each R > 0 it is bounded and
uniformly continuous in each Q+(R), i.e.

(2.31) |f0(v1, s1)− f0(v2, s2)| ≤ α1(|v1 − v2|+ |s1 − s2|, R)

∀(v1, s1), (v2, s2) ∈ Q+(R); α1(s,R) → 0+ (s→ 0+).

The hull H+(f0) is a compact set in C(R+;M1). Evidently, the symbol σ0(s) =
(f0(v, s), g0(x, s)) is a tr.-c. function in Ξ+ = C(R+,M1)× Lloc

2,w(R+;V ′).
Now define the symbol space Σ of equation (2.13) to be H+(σ0), where

H+(σ0) is the hull of the function σ0 in Ξ+. It can be shown that the space
H+(σ0) is metrizable. Therefore, Σ = H+(σ0) is a compact metric space. The
translation semigroup {T (t)} acts continuously on Σ.

Proposition 2.2. For all symbols σ(s) = (f(v, s), g(x, s)) ∈ Σ = H+(σ0),

(i) ‖g‖2a = supt≥0

∫ t+1

t
‖g(s)‖2V ′ ds ≤ ‖g0‖2a;

(ii) f(v, s) satisfies conditions (2.15), (2.16), and (2.31) with the same con-
stants and with the same function α1(s,R).

The proof is straightforward.
To each symbol σ ∈ H+(σ0) there corresponds the trajectory space K+

σ .

Evidently, the family {K+
σ | σ ∈ Σ} is tr.-coord. Define K+

Σ =
⋃

σ∈ΣK+
σ .

Let ω(Σ) be the global attractor of the semigroup {T (t)} on Σ = H+(σ0)
(see Proposition 1.2). Let Z(σ0) := Z(Σ) be the set of all complete symbols in
Σ, i.e. the set of functions ξ ∈ Ξ = C(R,M1)× Lloc

2,w(R;V ′) such that ζt ∈ ω(Σ)
for any t ∈ R, where ζt(s) = Π+ζ(s + t), s ≥ 0. To each complete symbol
ζ(s) = (h(v, s), r(x, s)) ∈ Z(σ0) there corresponds, by Definition 1.9, the kernel
Kζ of equation (2.13). Kζ consists of all weak solutions u(s), s ∈ R, of the
equation

∂tu = ∆u− h(u, t) + r(x, t), t ∈ R,

that are bounded in the space F with the norm

‖v‖F = sup
t∈R

{‖T (t)v‖L∞(0,1;H) + ‖T (t)v‖L2(0,1;V )

+ ‖T (t)v‖Lp(0,1;(Lp(Ω))N ) + ‖T (t)∂tv‖Lq(0,1;X)}.

Here T (t) is the translation operator for t ∈ R. Let us formulate the main theorem
on trajectory attractors of equation (2.13).

Theorem 2.2. Let σ0(s) = (f0(v, s), g0(x, s)), s ∈ R+, where g0 is transla-
tion-bounded in Lloc

2 (R+;V ′) and f0 satisfies conditions (2.14)–(2.16) and (2.31).
Let Σ = H+(σ0) be the symbol space of equation (2.13). Then the translation
semigroup {T (t)} acting on K+

Σ =
⋃

σ∈ΣK+
σ has a uniform (with respect to

σ ∈ H+(σ0)) trajectory attractor AH+(σ0) (in the topology Θ+; bounded sets are
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taken in the Banach space F+). The set AH+(σ0) is bounded in F+, compact in
Θ+, and

AH+(σ0) = Aω(H+(σ0)) = Π+

( ⋃
ζ∈Z(σ0)

Kζ

)
= Π+KZ(σ0).

The kernel Kζ is not empty for any ζ ∈ Z(σ0). The set KZ(σ0) is bounded in F .

Notice that the following embedding is continuous: Θ+ ⊂ Lloc
2 (R+;H1−δ),

0 < δ ≤ 1, so we get

Corollary 2.3. For each set B ⊂ K+
Σ bounded in F+,

distL2(0,R;H1−δ)(Π0,RT (t)B,Π0,RKZ(σ0)) → 0 (t→∞)

for all R, where Π0,R is the restriction operator to the segment [0, R].

Proof of Theorem 2.2. To apply Theorems 1.1 and 1.2 to the family
{K+

σ | σ ∈ Σ} of trajectory spaces, we have to prove Propositions 2.3 and
2.4 below. By (2.32), the translation semigroup {T (t)}, acting on K+

Σ , has a
uniformly (with respect to σ ∈ Σ) absorbing set P = BR = {v ∈ F+ | ‖v‖F+ ≤
R} for the family {K+

g | g ∈ H+(g0)} whenever R > R0. The ball BR is compact
in Θ+ and bounded in F+. This completes the proof. �

Proposition 2.3. If σ0 satisfies conditions (2.14)–(2.16) and (2.31) then

(i) K+
σ ⊆ F+ for all σ ∈ H+(σ0);

(ii) for all u ∈ K+
σ ,

(2.32) ‖T (t)u‖2F+
≤ C4|u(0)|2 exp(−αt) +R2

0 ∀t ≥ 0,

where α = βλ1, C4 depends on a, γ, C3, and R0 depends on α, C1,

and ‖g0‖2a.

Proof. (i) follows from Corollary 2.2 and (2.32). It follows from (2.24) that

(2.33) ‖T (t)u‖2L∞(R+;H) ≤ |u(0)|2 exp(−αt) +R2
01 ∀t ≥ 0,

where R2
01 = 2C1/α+ ‖g0‖2a/(β(1− e−α)). Using (2.25) and (2.33), we obtain

(2.34) β‖T (t)u‖2L2(0,1;V ) + 2γ‖T (t)u‖p
Lp(0,1;(Lp(Ω))N )

≤ |u(0)|2 exp(−αt) +R2
02,
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where R2
02 = R2

01 + 2C1 + β−1‖g0‖2a. Taking into account (2.17), from equation
(2.13) we get( ∫ t+1

t

|∂tu(s)|qX ds

)1/q

≤
( ∫ t+1

t

|a∆u(s)|qX ds

)1/q

+
( ∫ t+1

t

|f(u(s), s)|qX ds

)1/q

+
( ∫ t+1

t

|g(s)|qX ds

)1/q

≤ C5

( ∫ t+1

t

‖u(s)‖2 ds
)1/2

+
(
C3

∫ t+1

t

‖u(s)‖p
Lp
ds+ 1

)1/q

+
( ∫ t+1

t

|g(s)|2V ′ ds
)1/2

≤ C5(β−1|u(0)|2e−αt + β−1R2
02)

1/2

+ (C3(2γ)−1|u(0)|2e−αt + C3(2γ)−1R2
02 + 1)1/q

≤ C6|u(0)|2e−αt +R2
3,

since 1 < q ≤ 2. Thus,

(2.35) ‖T (t)∂tu‖Lq(R+;X) ≤ C6|u(0)|2e−αt +R2
3.

Finally, inequalities (2.33)–(2.35) imply (2.32). �

Proposition 2.4. The family {K+
σ | σ ∈ Σ} of trajectory spaces is (Θ+,Σ)-

closed.

Proof. Let σm(s) = (fm(v, s), gm(x, s)) ∈ Σ, um ∈ K+
σm
, and um → u

(m → ∞) in Θ+, fm → f (m → ∞) in C(R+;M1), and gm → g (m → ∞) in
Lloc

2,w(R+;V ′). The functions um satisfy the equations

(2.36) ∂tum = a∆um − fm(um, t) + gm.

Fix any interval [t1, t2] ⊆ R+. Passing to a subsequence, we may assume that
um → u (m → ∞) strongly in L2(t1, t2;H), um(x, s) → u(x, s) (m → ∞) for
almost all (x, s) ∈ Ω × [t1, t2], and fm(um( · ), · ) ⇁ w (m → ∞) weakly in
Lq(t1, t2;Lq(Ω)) (see the proof of Theorem 2.1). Passing to the limit in equation
(2.36) we find that

(2.37) ∂tu = a∆u− w + g.

It remains to show that w(s) = f(u(x, s), s). To do this, similarly to the proof
of Theorem 2.1, we have to check that fm(um(x, s), s) → f(u(x, s), s) (m→∞)
for almost all (x, s) ∈ Ω × [t1, t2]. Let (x, s) be a point such that um(x, s) →
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u(x, s) (m→∞) in RN . The set {um(x, s)} is bounded in RN , i.e. |um(x, s)| ≤ R

for all m ∈ N and for some R. But

|fm(um(x, s), s)− f(u(x, s), s)|
≤ max
|v|≤R

|fm(v, s)− f(v, s)|+ α1(|um(x, s)− u(x, s)|, R) → 0 (m→∞)

(see (2.31)). Hence, fm(um(x, s), s) → f(u(x, s), s) (m → ∞) for almost all
(x, s) ∈ Ω× [t1, t2]. Therefore u ∈ Kt1,t2

σ for all [t1, t2] ⊆ R+, so that u ∈ K+
σ . �

3. Reaction-diffusion systems with uniqueness.
More regular trajectory attractors

In this section we study the reaction-diffusion systems for which the Cauchy
problem (2.13), (2.18) has a unique solution under some regularity conditions.
The results of Section 1 are also applicable in this case. The trajectory attractor
AΣ has a more regular structure and it attracts bounded sets in a stronger
topology Θs

+ than Θ+ described in Section 2.
Consider once more the system (2.13). Now, we assume that the function g

is translation-bounded in Lloc
2 (R+;H):

(3.38) |g|2a = sup
t≥0

∫ t+1

t

|g(s)|2 ds <∞.

For the vector-function f , we suppose, besides (2.15) and (2.16), that f ′vj ∈
C(RN × R+; RN ) for j = 1, . . . , N and

−C7|w|2 ≤ (fv(v, s)w,w);(3.39)

|fv(v, s)| ≤ C8(|v|p−2 + 1) ∀v, w ∈ RN , s ∈ R+.(3.40)

Theorem 3.1. Let g ∈ L2(t1, t2;V ′) and f satisfy conditions (2.15), (2.16),
and (3.39). Then a weak solution u ∈ Lp(t1, t2; (Lp(Ω))N ) ∩ L2(t1, t2;V ) of the
Cauchy problem (2.13), (2.18) is unique.

Proof. We follow the proof from [1] where the autonomous case of system
(2.13) was studied. Suppose there are two weak solutions u1, u2 ∈ Lp(t1, t2;
(Lp(Ω))N ) ∩ L2(t1, t2;V ) such that u1(t1) = u2(t1) = u0. The difference w(s) =
u1(s)− u2(s) satisfies

∂tw = a∆w − (f(u1, t)− f(u2, t)), w(t1) = 0.

Since w ∈ Lp(t1, t2; (Lp(Ω))N ) ∩ L2(t1, t2;V ) and ∂tw ∈ Lq(t1, t2; (Lq(Ω))N ) +
L2(t1, t2;V ′), Lemma 2.2 is applicable and we have

1
2
d

dt
|w(t)|2 + (a∇w(t),∇w(t)) = −(f(u1, t)− f(u2, t), w(t))
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for almost all t ∈ [t1, t2], and the function |w( · )|2 is absolutely continuous on
[t1, t2]. From (3.39) it follows that (f(v1, t)−f(v2, t), v1−v2) ≥ −C7|v1−v2|2 for
all v1, v2 ∈ RN and t ≥ 0. Consequently, −(f(u1, t)− f(u2, t), w(t)) ≤ C7|w(t)|2

and, hence,

d

dt
|w(t)|2 ≤ 2C7|w(t)|2, d

dt
(|w(t)|2 exp(−C7t)) ≤ 0,

because (a∇w(t),∇w(t)) ≥ 0. Finally, we get |w(t)|2 ≤ exp(C7t)|w(0)|2 = 0,
and so w(t) = u1(t)− u2(t) ≡ 0 for all t ∈ [t1, t2]. �

Proposition 3.1. Suppose that g ∈ Lloc
2 (R+;H) satisfies (3.38) and f sat-

isfies (2.15), (2.16), and (3.39). Then for every weak solution u ∈ Lloc
p (R+;

(Lp(Ω))N ) ∩ Lloc
2 (R+;V ) of (2.13) the following inequalities hold for t > 0:

‖u(t)‖2 ≤ (t−1 + 1 + t)C9|u(0)|2e−αt + (t−1 + 1)R2
4,(3.41) ∫ t+1

t

|∆u(s)|2 ds ≤ (t−1 + 1 + t)C10|u(0)|2e−αt + (t−1 + 1)R2
5.(3.42)

Proof. It is sufficient to prove (3.41) and (3.42) for every solution um = u of
the Galerkin approximation system (2.19), since the corresponding exact solution
is unique and we can pass to the limit as m → ∞ in the resulting inequality.
So, we multiply (2.19) by −∆um(s) and integrate over x ∈ Ω. After standard
transformations we get

(3.43)
1
2
d

dt
‖u(t)‖2 + β|∆u(t)|2 ≤ (f(u(t), t),∆u(t))− (g(t),∆u(t)).

Here we omit the index m for brevity.
Without loss of generality, we may assume that f(0, t) = 0 for all t ≥ 0.

Otherwise we can replace f(v, s) and g(x, s) by f̃(v, s) = f(v, s) − f(0, s) and
g̃(v, s) = g(v, s) − f(0, s) respectively. The functions f̃ and g̃ satisfy the same
conditions with modified constants Ci, because |f(0, s)| ≤ C2 for all s ≥ 0
(see (2.16)). Using this assumption, we can integrate by parts in the term
(f(u(t), t),∆u(t)) since f(u(t), t)|∂Ω = 0:

(f(u, t),∆u) =
n∑

k=1

N∑
i=1

∫
Ω

f i(u, t)
∂2ui

∂x2
k

dx(3.44)

=
n∑

k=1

N∑
i=1

N∑
j=1

−
∫

Ω

∂f i(u, t)
∂uj

∂uj

∂xk

∂ui

∂xk
dx

=
n∑

k=1

−
∫

Ω

(
fv(u, t)

∂u

∂xk
,
∂u

∂xk

)
dx

≤ C7

n∑
k=1

∣∣∣∣ ∂u∂xk

∣∣∣∣2 = C7‖u‖2.
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We have used condition (3.39). For the second term −(g(t),∆u(t)) we have

−(g(t),∆u(t)) ≤ β

2
|∆u(t)|2 +

1
2β
|g(t)|2.

Therefore, by (3.43) and (3.44), we obtain

(3.45)
d

dt
‖u(t)‖2 + β|∆u(t)|2 ≤ 2C7‖u(t)‖2 + β−1|g(t)|2

and
d

dt
‖u(t)‖2 + α‖u(t)‖2 ≤ 2C7‖u(t)‖2 + β−1|g(t)|2.

Multiplying by teαt, we get

(3.46)
d

dt
(t‖u(t)‖2eαt) ≤ (2C7t+ 1)‖u(t)‖2eαt + β−1t|g(t)|2eαt.

Integrating from 0 to t, we obtain

t‖u(t)‖2eαt ≤ (2C7t+ 1)
∫ t

0

‖u(s)‖2eαs ds+ β−1t

∫ t

0

|g(s)|2eαs ds.

Now, using estimates (2.26) and (2.28), we have

t‖u(t)‖2eαt ≤ (2C7t+ 1)β−1[(1 + αt)|u(0)|2 + 2R2
1e

αt](3.47)

+ β−1t|g|2a(1− e−α)−1eαt

≤ (1 + t+ t2)C9|u(0)|2 + (1 + t)R2
4e

αt.

Therefore, estimate (3.41) is proved.
Finally, integrating (3.45) over [t, t+ 1], we deduce

β

∫ t+1

t

|∆u(s)|2 ds ≤ ‖u(t)‖2 + 2C7

∫ t+1

t

‖u(s)‖2 ds+ β−1

∫ t+1

t

|g(s)|2 ds.

Combining (2.25), (2.24), and (3.47) we get

β

∫ t+1

t

|∆u(s)|2 ds ≤ β((t−1 + 1 + t)C9|u(0)|2e−αt + (t−1 + 1)R2
4)

+ 2C7β
−1(|u(0)|2e−αt +R2

1 +R2
2) + β−1|g|2a

≤ (t−1 + 1 + t)C10|u(0)|2e−αt + (t−1 + 1)R2
5.

Thus, estimate (3.42) is valid. �

In this section we assume that the symbol σ(s) = (f(v, s), g(s)) of equation
(2.13) satisfies more regularity conditions: (2.15), (2.16) and (3.38)–(3.40). As
before, K+

σ denotes the set of all weak solutions u ∈ Lloc
2 (R+;V ) ∩ Lloc

p (R+;
(Lp(Ω))N ) of equation (2.13).

Let H2 = (H2(Ω))N . It is well known that the norm in H2 on the subspace
H2 ∩ V is equivalent to the norm ‖u‖2 = |∆u|.
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Corollary 3.1. If the symbol σ(s) = (f(v, s), g(s)) satisfies the above con-
ditions of regularity then T (t)u ∈ Lloc

∞ (R+;V ) ∩ Lloc
2 (R+;H2) and T (t)∂tu ∈

Lloc
q (R+; (Lq(Ω))N ) for all u ∈ K+

σ when t > 0.

Indeed, by Proposition 3.1, T (t)u ∈ Lloc
∞ (R+;V ) ∩ Lloc

2 (R+;H2), i.e.
T (t)(a∆u + g) ∈ Lloc

2 (R+; (L2(Ω))N ) for t > 0. By (2.17), f(u, s) ∈ Lloc
q (R+;

(Lq(Ω))N ). Hence, T (t)∂tu ∈ Lloc
q (R+; (Lq(Ω))N ) for t > 0.

Therefore we can study the translation semigroup {T (t)} acting on K+
Σ

in a space with a stronger topology. Denote by Θs
+ the space Lloc

∞ (R+;V ) ∩
Lloc

2 (R+;H2)∩Lloc
p (R+; (Lp(Ω))N )∩{v | ∂tv ∈ Lloc

q (R+; (Lq(Ω))N )} with the fol-
lowing convergence topology: a sequence {vm} converges to v in Θs

+ as m→∞
if vm ⇁ v (m → ∞) ∗-weakly in L∞(t1, t2;V ), weakly in L2(t1, t2;H2), weakly
in Lp(t1, t2; (Lp(Ω))N ), and ∂tvm ⇁ ∂tv (m→∞) weakly in Lq(t1, t2; (Lq(Ω))N )
for every [t1, t2] ⊆ R+. It is easy to prove that Θs

+ is a Hausdorff space with a
countable base. We also define Fs

+ by setting

Fs
+ = {v ∈ Θs

+ | ‖v‖Fs
+
<∞},

where

‖v‖Fs
+

= sup
t≥0

{‖T (t)v‖L∞(0,1;V ) + ‖T (t)v‖L2(0,1;H2)

+ ‖T (t)v‖Lp(0,1;(Lp(Ω))N ) + ‖T (t)∂tv‖Lq(0,1;(Lq(Ω))N )}.

Evidently, Fs
+ is a Banach space.

As before, we are given a fixed symbol σ0(s) = (f0(v, s), g0(x, s)).
The function g0 is translation-bounded in Lloc

2 (R+;H) (see (3.38)). There-
fore, it is tr.-c. in Lloc

2,w(R+;H).
The function f0 satisfies (2.15), (2.16), (3.39), and (3.40). Consider the space

M2 = {ψ ∈ C1(RN ; RN ) | |ψ(v)| ≤ C2(|v|p−1 +1), |ψv(v)| ≤ C8(|v|p−2 +1) ∀v ∈
RN} endowed with the following local uniform convergence topology: ψ(m) → ψ

(m→∞) in M2 if

max
|v|≤R

(|ψ(m)(v)− ψ(v)|+ |ψ(m)
v (v)− ψv(v)|) → 0 (m→∞)

for each R > 0. This topology is generated by the norm

(3.48) ‖ψ‖M2 =
∞∑

m=1

(
1

mp+1
max
|v|≤m

|ψ(v)|+ 1
mp

max
|v|≤m

|ψv(v)|
)
.

Thus M2 is a Banach space. Consider the space C(R+;M2) of continuous func-
tions with values in M2. We assume that f0 is a tr.-c. function in C(R+;M2).
By (3.40), the function f0v is bounded in each semicylinder Q+(R) = {(v, s) |
|v| ≤ R, s ≥ 0}. By [3], f0 is tr.-c. in C(R+;M2) if and only if for any R > 0
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the functions f0 and f0v are bounded and uniformly continuous in each Q+(R),
i.e.

(3.49) |f0(v1, s1)− f0(v2, s2)|+ |f0v(v1, s1)− f0v(v2, s2)|
≤ α2(|v1 − v2|+ |s1 − s2|, R)

∀(v1, s1), (v2, s2) ∈ Q+(R); α2(s,R) → 0+ (s→ 0+).

Evidently, the symbol σ0(s) = (f0(v, s), g0(x, s)) is a tr.-c. function in Ξs
+ =

C(R+,M2)× Lloc
2,w(R+;H).

Now define the symbol space Σ of equation (2.13) to be H+(σ0), the hull of
σ0 in Ξs

+. It is easily shown that the hull of a function in Ξs
+ coincides with its

hull in Ξ+ = C(R+;M1) × Lloc
2,w(R+;V ′). Moreover, the topology on H+(σ0) is

the same in Ξ+ and in Ξs
+.

Proposition 3.2. For all symbols σ(s) = (f(v, s), g(x, s)) ∈ Σ = H+(σ0),

(i) |g|2a = supt≥0

∫ t+1

t
|g(s)|2 ds ≤ |g0|2a;

(ii) f satisfies conditions (3.39), (3.40), and (3.49) with the same constants
and with the same function α2(s,R).

Now consider the family {K+
σ | σ ∈ Σ} of trajectory spaces corresponding to

equation (2.13). Thanks to Proposition 3.1, the translation semigroup {T (t)},
acting on K+

Σ , has a uniformly (with respect to σ ∈ Σ) absorbing set P ′ = BR =
{v ∈ Fs

+ | ‖v( · )‖Fs
+
≤ R} for the family {K+

σ | σ ∈ H+(σ0)}, whenever R � 1.
The ball BR is compact in Θs

+ and bounded in Fs
+. Hence we can formulate the

following result.

Theorem 3.2. Let the function σ0(s) = (f0(v, s), g0(x, s)) satisfy conditions
(2.15), (2.16), (3.38)–(3.40), and (3.49). Then the trajectory attractor AΣ of the
family of equations (2.13) for σ ∈ Σ = H+(σ0) from Theorem 2.2 is also a
uniform (with respect to σ ∈ H+(σ0)) trajectory attractor in the topology Θs

+.

The set AΣ is compact in Θs
+ and bounded in Fs

+.

The following embedding is continuous: Θs
+ ⊂ Lloc

2 (R+;H2−δ), 0 < δ ≤ 2,
so we get

Corollary 3.2. For every set B ⊂ K+
Σ bounded in F+,

distL2(0,R;H2−δ)(Π0,RT (t)B,Π0,RKZ(σ0)) → 0 (t→∞)

for all R > 0.

4. Trajectory attractors for ordinary differential equations

In this section, we briefly describe how the methods of Section 1 can be
applied to the study of non-autonomous ordinary differential equations. We do
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not suppose the unique solvability of the corresponding Cauchy problem. As
an example of such equations, we consider the Galerkin approximation system
(2.19) of order m for the reaction-diffusion system (2.13). It contains M = mN

ordinary differential equations. This is why we shall study the following type of
ordinary differential equations in RM :

(4.50)
dy

dt
= −F (y, t) + ϕ(t), t ≥ 0.

Here y = (y1, . . . , yM ), F = (F 1, . . . , FM ), ϕ = (ϕ1, . . . , ϕM ). We assume that
ϕ ∈ Lloc

2 (R+; RM ) and F ∈ C(RM × R+; RM ). Suppose also that

(4.51) (F (z, s), z) =
M∑
i=1

F i(z, s)zi ≥ δ|z|2 − C ∀z ∈ RM , s ≥ 0,

where δ > 0. The pair σ(s) = (F (z, s), ϕ(s)) is the symbol of equation (4.50).
We are looking for solutions y of (4.50) such that y ∈ H1,loc(R+; RM ) = {z | z′ ∈
Lloc

2 (R+; RM )}. It is classical that for any y0 ∈ RM equation (4.50) has a solution
y ∈ H1,loc(R+; RM ) such that y(0) = y0. (Condition (4.51) provides prolongation
of every local solution y ∈ H1([0, t0[; RM ) on the whole R+.) Evidently, this
solution need not be unique (we do not suppose any Lipschitz conditions for F
with respect to z).

Denote by K+
σ the set of all solutions y ∈ H1,loc(R+; RM ) of (4.50). We shall

study the trajectory attractor of the translation semigroup {T (t)} acting on the
union K+

Σ of trajectory spaces, where the symbol space Σ is described below.
Let σ0 = (F0, ϕ0) ∈ C(RM×R+; RM )×Lloc

2 (R+; RM ) be some initial symbol.
Assume that ϕ0 is tr.-c. in Lloc

2,w(R+; RM ), i.e.

(4.52) |ϕ0|2a = sup
t≥0

∫ t+1

t

|ϕ0(s)|2RM ds <∞.

Suppose also that F0 satisfies (4.51) and it is tr.-c. in C(R+;M0), i.e. F0 is
bounded and uniformly continuous on every semicylinder Q+(R) = {(z, s) |
|z|RM ≤ R, s ≥ 0}:

(4.53)
|F0(z, s)| ≤ C1(R) ∀(z, s) ∈ Q+(R);

|F0(z1, s1)− F0(z2, s2)| ≤ α0(|z1 − z2|+ |s1 − s2|, R)

∀(z1, s1), (z2, s2) ∈ Q+(R); α0(s,R) → 0+ (s→ 0+).

Here M0 = C(RM ; RM ) is endowed with the following local uniform conver-
gence topology: Ψ(m) → Ψ (m → ∞) in M0 if max|v|≤R |Ψ(m)(v) − Ψ(v)| → 0
(m→∞) for all R > 0.

Evidently σ0 = (F0, ϕ0) is tr.-c. in Ξ+ = C(R+;M0)× Lloc
2,w(R+; RM ). Put,

as usual, Σ = H+(σ0) = [{σ0( · + h) | h ≥ 0}]Ξ+ . The space Σ is metrizable and
compact in Ξ+.
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Proposition 4.1. For all symbols σ(s) = (F (z, s), ϕ(s)) ∈ Σ = H+(σ0),

(i) |ϕ|2a = supt≥0

∫ t+1

t
|ϕ(s)|2 ds ≤ |ϕ0|2a;

(ii) F satisfies conditions (4.51) and (4.53).

Consider the family {K+
σ | σ ∈ Σ} of trajectory spaces corresponding to

equation (4.50). Evidently, this family is tr.-coord. Define K+
Σ =

⋃
σ∈ΣK+

σ .

As an enveloping space Θ+, we consider the space H1,loc
w (R+; RM ) with the

local weak convergence topology: zm → z (m→∞) in Θ+ if zm ⇁ z (m→∞)
weakly in H1([t1, t2]; RM ) for every [t1, t2] ⊂ R+. Let also

F+ = {z ∈ H1,loc(R+; RM ) | ‖z‖F+ = sup
t≥0

(|T (t)z|L2(0,1) + |T (t)z′|L2(0,1)) <∞}.

Proposition 4.2. If σ0 satisfies the above conditions then

(i) K+
σ ⊂ F+ for all σ ∈ H+(σ0);

(ii) for every y ∈ K+
σ ,

|y(t)|2 ≤ |y(0)|2e−δt +R2
1, R2

1 =
2C
δ

+
1

δ(1− e−δ)
|g0|2a;( ∫ t+1

t

|y′(s)|2 ds
)1/2

≤ C1((|y(0)|2e−δt +R2
1)

1/2) + |g0|a ∀t ≥ 0.

Consequently,

‖T (t)y( · )‖F+ ≤ C2(|y(0)|2e−δt) +R0 ∀t ≥ 0.

Proposition 4.3. The family {K+
σ | σ ∈ Σ} of trajectory spaces is (Θ+,Σ)-

closed.

We omit the proofs of Propositions 4.2 and 4.3 as they are similar to the
proofs of Propositions 2.3 and 2.4.

Let ω(Σ) be the global attractor of the semigroup {T (t)} on Σ = H+(σ0). Let
Z(σ0) := Z(Σ) be the set of all complete symbols in Σ, i.e. the set of functions
ζ ∈ Ξ = C(R;M0) × Lloc

2,w(R; RM ) such that ζt ∈ ω(Σ) for all t ∈ R, where
ζt(s) = Π+ζ(s + t), s ≥ 0. To any complete symbol ζ(s) = (H(z, s),Φ(s)) ∈
Z(σ0), there corresponds, by Definition 1.10, the kernel Kζ of equation (2.13).
It consists of all solutions y(s), s ∈ R, of the equation

dy

dt
= −H(y, t) + Φ(t), t ∈ R,

that are bounded in the space F with the norm

‖z‖F = sup
t∈R

(|T (t)z|L2(0,1;RM ) + |T (t)z′|L2(0,1;RM )).

Let us formulate the main theorem on the trajectory attractor of equation (4.50).
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Theorem 4.1. Let σ0(s) = (F0(z, s), ϕ0(s)), s ∈ R+, where ϕ0 is transla-
tion-bounded in Lloc

2 (R+; RM ) and satisfies (4.51), and F0 satisfies (4.53). Then
the translation semigroup {T (t)} acting on K+

Σ =
⋃

σ∈ΣK+
σ has a uniform (with

respect to σ ∈ H+(σ0)) trajectory attractor AH+(σ0) (in the topology Θ+; bounded
sets are taken in the Banach space F+). The set AH+(σ0) is bounded in F+,
compact in Θ+, and

AH+(σ0) = Aω(H+(σ0)) = Π+

( ⋃
ζ∈Z(σ0)

Kζ

)
= Π+KZ(σ0).

The kernel Kζ is not empty for any ζ ∈ Z(σ0). The set KZ(σ0) is bounded in F .

Notice that the following embedding is continuous: Θ+ ⊂ C(R+; RM ), so we
get

Corollary 4.1. For every set B ⊂ K+
Σ bounded in F+,

distC(0,R;RM )(Π0,RT (t)B,Π0,RKZ(σ0)) → 0 (t→∞),

for all R > 0.

Theorem 4.1 follows directly from Propositions 4.1–4.3 (see Theorems 1.1
and 1.3).

Remark 4.1. The Galerkin approximation system (2.19) of m equations
satisfies all the conditions of Theorem 4.1.

Remark 4.2. Consider a more regular case: ϕ ≡ 0, Σ = H+(F0). Then ev-
ery solution y of equation (4.50) belongs to C1(R+; RM ), i.e. K+

σ ⊂ C1(R+; RM ).
Consider the topological space Θs

+ = C1(R+; RM ) with the local uniform con-
vergence topology: zm → z (m → ∞) in Θs

+ if maxs∈[t1,t2]{|zm(s) − z(s)| +
|z′m(s)− z′(s)|} → 0 (m→∞) for every segment [t1, t2] ⊂ R+. It can be proved
that for every set B ⊂ K+

Σ bounded in F+,

distC1(0,R;RM )(Π0,RT (t)B,Π0,RKZ(F0)) → 0 (t→∞),

and the set Π+KZ(F0) is compact in Θs
+ = C1(R+; RM ) and bounded in Fs

+.

The norm in Fs
+ is ‖z‖Fs

+
= supt≥0 |T (t)z|C1(0,1;RM ).

5. Some applications to the perturbation theory
of trajectory attractors

Below we study some perturbation and approximation problems for trajec-
tory attractors of reaction-diffusion systems considered in Sections 2 and 3. We
prove that trajectory attractors are stable with respect to small perturbations
of symbols of equations. In some cases, it is shown that perturbations do not
affect the trajectory attractors. We investigate the convergence of the trajectory
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attractors of Galerkin approximation systems to the trajectory attractor of the
original reaction-diffusion system.

1. Consider system (2.13) with a perturbed external force g0 +g1 and with a
perturbed interaction function f0 + f1. We assume that both g0 and g1 are tr.-c.
in Lloc

2,w(R+;V ′), i.e. inequalities (2.14) hold. The functions f0 and f1 satisfy
conditions (2.15), (2.16), and they are tr.-c. in C(R+;M1), i.e. conditions (2.31)
are valid. Moreover, we suppose that

T (h)g1(x, s) = g1(x, s+ h) → 0 (h→∞) in Lloc
2,w(R+;V ′);(5.54)

T (h)f1(v, s) = f1(v, s+ h) → 0 (h→∞) in C(R+;M1).(5.55)

(See Section 2.) Put σ0 = (f0, g0), σ1 = (f1, g1).

Theorem 5.1. Under the above conditions, the trajectory attractor
AH+(σ0+σ1) of the perturbed reaction-diffusion system (2.13) coincides with the
trajectory attractor AH+(σ0) of the unperturbed system:

(5.56) AH+(σ0+σ1) = AH+(σ0).

The proof follows from formula (1.12) because ω(H+(σ0 +σ1)) = ω(H+(σ0))
by (5.54) and (5.55):

AH+(σ0+σ1) = Aω(H+(σ0+σ1)) = Aω(H+(σ0)) = AH+(σ0).

As an example, consider the disturbing external force g1(x, t) = G sin t2,
where G(x) ∈ H. Evidently, G(x) sin(t+h)2 ⇁ 0 (h→∞) weakly in Lloc

2,w(t1, t2;
H) for every [t1, t2] ⊆ R+ and (5.54) holds. Let also f1(v, s) = α(s)F1(v), where
α(s) → 0 (s→∞) and F1(v) satisfies conditions (2.15) and (2.16).

2. Consider system (2.13) with a symbol σ0(s, ε) = (f0(v, s) + εf1(v, s),
g0(x, s) + εg1(x, s)), where fi and gi (i = 1, 2) satisfy (2.14)–(2.16) and (2.31).
To construct the trajectory attractor for (2.13) with symbol σ0(s, ε), we
study the family of equations (2.13) with symbols σ(s, ε) = σ(ε) ∈ Σ(ε) =
H+(σ0)+εH+(σ1), where σ0(s) = (f0(v, s), g0(x, s)), σ1(s) = (f1(v, s), g1(x, s)).
The hulls H+(σi) are taken in the space Ξ+ = C(R+;M1)× Lloc

2,w(R+;V ′). Ac-
cording to Theorem 2.2, the translation semigroup {T (t)}, acting on the united
trajectory space K+(ε) = K+

Σ(ε) =
⋃

σ(ε)∈Σ(ε)K
+
σ(ε), has the trajectory attrac-

tor AΣ(ε) in the topology Θ+ which was described in Section 2. The following
statement generalizes Theorem 2.2.

Theorem 5.2. Assume that the symbol σ0(s, ε) = (f0(v, s) + εf1(v, s),
g0(x, s) + εg1(x, s)) satisfies the above conditions. Then the semigroup {S(t) |
t ≥ 0} acting on

⋃
|ε|≤ε0

K+(ε)× {ε} by the formula

S(t)(uσ(ε)(s), ε) = (uσ(ε)(s+ t), ε),
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where uσ(ε)(s) ∈ K+
σ(ε), has a global attractor A with the following properties:

(i) A is compact in Θ+ × {|ε| ≤ ε0};
(ii) A =

⋃
|ε|≤ε0

AΣ(ε) × {ε}, where AΣ(ε) is the trajectory attractor of the
family of equations (2.13) with symbols σ ∈ Σ(ε);

(iii) the trajectory attractors AΣ(ε) converge to the trajectory attractor AΣ(0)

= AH+(σ0) as ε→ 0 in the topology Θ+. In particular,

distL2(0,R;H1−δ)(Π0,RAΣ(ε),Π0,RAH+(σ0)) → 0 (ε→ 0) ∀R > 0, 0 < δ ≤ 1.

The proof is similar to one given in [1].
Using the results of Section 3 one can formulate the analog of Theorem

5.2 when the initial symbol σ0(s, ε) = (f0(v, s) + εf1(v, s), g0(x, s) + εg1(x, s))
satisfies more regularity conditions: (2.15), (2.16), (3.38)–(3.40), (3.49), and the
corresponding Cauchy problem is uniquely solvable. In this case, everywhere
in Theorem 5.2, one can replace the topological space Θ+ by a space Θs

+ with
a stronger topology. One can also combine these statements in the following
way. Suppose that a regular symbol σ0(s) = (f0(v, s), g0(x, s)) is perturbed by a
non-regular one σ1(s) = (f1(v, s), g1(x, s)). Then the AΣ(ε) converge to AH+(σ0)

in Θ+, and AH+(σ0) is compact in Θs
+ and it has a more regular structure.

3. Now fix some symbol σ0(s) = (f0(v, s), g0(x, s)) that satisfies the gen-
eral conditions (2.14)–(2.16), (2.31), and consider the corresponding trajectory
attractor AH+(σ0) in Θ+. Suppose we are given some complete system {wj}
of functions in V ∩ (Lp(Ω))N . Let Pm be the orthogonal projection from H

onto the space Hm = [w1, . . . , wm]. Consider the Galerkin approximation sys-
tem (2.19) of order m. It follows easily that this system of ordinary differential
equations satisfies conditions (4.51)–(4.53). Therefore, the results of Section 4
apply and the Galerkin system has a trajectory attractor A(m) in the space
Lloc
∞,w∗(R+;H)∩Lloc

2,w(R+;V )∩Lloc
p,w(R+; (Lp(Ω))N )∩{v | ∂tv ∈ Lloc

q,w(R+;X)} =
Θ+, X = (H−r(Ω))N .

Theorem 5.3. The trajectory attractors A(m) of the Galerkin approximation
system (2.19) converge as m → ∞ (in Θ+) to the trajectory attractor AH+(σ0)

of the system (2.13). In particular,

distL2(0,R;H1−δ)(Π0,RA(m),Π0,RAH+(σ0)) → 0 (ε→ 0) ∀R > 0, 0 < δ ≤ 1.

The proof is standard.

References

[1] A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Nauka, Moscow,
1989 (Russian); English transl., North-Holland, 1992.



76 V. V. Chepyzhov — M. I. Vishik

[2] V. V. Chepyzhov and M. I. Vishik, Attractors of non-autonomous dynamical systems

and their dimension, J. Math. Pures Appl. 73 (1994), 279–333.

[3] , Evolution equations and their trajectory attractors, J. Math. Pures Appl. (to

appear).

[4] , Non-autonomous evolutionary equations with translation-compact symbols and

their attractors, C. R. Acad. Sci. Paris Sér. I 321 (1995), 153–158.

[5] , Attractors of a non-autonomous 3D Navier–Stokes system, Uspekhi Mat. Nauk

50 (1995), no. 4, 151. (Russian)

[6] , Attractors of non-autonomous evolutionary equations of mathematical physics

with translation-compact symbols, Uspekhi Mat. Nauk 50 (1995), no. 4, 146–147. (Rus-
sian)

[7] , Attractors of non-autonomous evolution equations with translation-compact

symbols, Oper. Theory: Adv. Appl., vol. 78, Birkhäuser, 1995, pp. 49–60.
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[9] Yu. A. Dubinskĭı, Weak convergence in non-linear elliptic and parabolic equations,

Mat. Sb. 67 (1965), 609–642. (Russian)

[10] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys Monographs,

vol. 25, Amer. Math. Soc., Providence, R.I., 1988.
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