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THE NIRENBERG PROBLEM IN
A DOMAIN WITH BOUNDARY

YANYAN L1

Dedicated to L. Nirenberg with admiration

0. Introduction

There has been much work on the Nirenberg problem: which function K (x)
on S™ is the scalar curvature of a metric g on S™ pointwise conformal to the
standard metric go? It is quite natural to ask the following question on the half
sphere S™: which function K (x) on S” is the scalar curvature of a metric g on S™
which is pointwise conformal to the standard metric go with dS™ being minimal
with respect to g7 For n = 2, this has been studied by J. Q. Liu and P. L. Li
in [LL]. In this note we study the higher dimensional cases along the lines of
[L1-2]. For much work on the Nirenberg problem see, for example, [L1-2] and
the references therein. See also some more recent work in [CL1], [HL], [Bil-2],
[SZ], [B], [ChL] and [CL2].

For n > 3, by writing ¢ = u*/ ("2 g4, the problem is equivalent to solving

the following Neumann problem on S” = {(z1,...,Zp41) € S" | Zp41 < 0}:
0.1) —Agou+ c(n)Rou = c(n)Ku+2/(n=2) " 4 >0, onS",
‘ Ou/ov =0 on OS™,

where ¢(n) = (n —2)/(4(n — 1)), Ry = n(n — 1), and v denotes the unit outer
normal at points of 9S™ .
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We introduce

A={KeCYS*)|K>0o0n S*, VK #0 on dS* },
K™ = {q € 0S? ‘ VianK(q) =0, %—Ij(q) > 0},

Mg ={ue H'(S?) | u satisfies (0.1)},

where V., K (q) denotes the tangential derivatives of K at ¢ € 9S?. Clearly A
is open and dense in C*(S3 )", which consists of positive functions in C(S? ).
We will introduce an integer-valued continuous function Index : A — Z, with an
explicit formula for K € ANC2(S? ) with K lass being a Morse function. In fact,
for any such K, let i(P) denote the Morse index of K|yg: at P € K~. Then

(0.2) Index(K) = —1+ > (=1)'®.

Pek—
It is proved in Section 3 that Index can be extended from (0.2) as a continuous
function on A with respect to the C1(S?) topology.

THEOREM 0.1. (a) For any K € A, there exists some positive constant
C = C(K) such that for any K; — K in C1(S?), and any u; € Mg,,

C~! <liminf(minwu;) < limsup(maxu;) < C.

i—oo g3 i—co S
Furthermore, for all 0 < «a < 1, there exists Ry = Ro(K,«) > 1 such that for
aoll R > Ry,
(0.3) deg (u—5(=Ag +3)

where Op = {u e C**(S*) | 1I/R<u < R on S?, ull 2oy < R}, and deg
denotes the Leray—Schauder degree.

(b) For any K € CY(S3)* \ A = A, there exist K; — K in C'( S?) and
u; € Mg, such that

Y(KuP), Og,0) = Index(K),

lim (maxw;) = oo,  lim (minwu;) = 0.
11— 00 S?L 71— 00 SS,

COROLLARY 0.1. For any K € A with Index(K) # 0, (0.1) has at least one

solution.

REMARK 0.1. For K € ANC2(S3), K|ss3 being a Morse function, we can
use Theorem 3.1 to easily establish a strong Morse inequality as in [SZ], which
gives more general existence results than Corollary 0.1.

In deriving Theorem 0.1, we have obtained some detailed information on
blow up behavior of solutions which is of independent interest. See Proposition
2.4, Theorem 2.1 and Theorem 3.1.
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1. A Pokhozhaev type identity

For 0 > 0 and 7 € R", we set R} = {z = (21,...,2,) € R" | 2, > 0},
B, (%) = {x € R" | |z| < 0}, B, = B;(0), Bf () = B,(%) NRY}, and Bf =
BZ(0).

The following is a Pokhozhaev type identity. The proof is standard by now
(see e.g. [L1]).

LEMMA 1.1. Let p>1,0>0,n>3, Bf CR}, and u € CQ(Bj)ﬂCl(Fﬁ)
be a solution of

{ —Au = c(n)K(x)|[ulP~tu, xe€ B},

ou/0z,, =0, xr € OB NORY.
We have
c(n oK n n—2
S [ gt (= et [t
_ oc(n) / K|u|P*! :/ B(o,z,u, Vu),
p+1 Jop,rrn 9B, NR™
where

2 ov ov

with v denoting the unit outer normal of 0B, .

2
B(o,z,u,Vu) = n- QU@ - %|Vu|2 +a<au)

2. Analysis of blow ups

Let Q € R" (n > 3) be a bounded domain containing the origin, Ot =
QNRY, 7 > 0 satisfy lim; oo 73 = 0, p; = Z—fg —7;, and {K;} € L>(Q7) satisfy,
for some constant A; > 0,

(2.1) 1/A; < Kij(z) < A; forallz € QF.

Consider
(2.9) { —Au; = ¢(n)K;(z)uPi, w; >0, inQF,

Ou;/0xy, =0 on 90T N IRY.

DEFINITION 2.1. A point ¥ € QNR7Y is called a blow up point of {u;} if
there exists a sequence y; € QF tending to 7 such that u;(y;) — oo.
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DEFINITION 2.2. A point 7 € QN M is called an isolated blow up point of
{u;} if there exist 0 < 7 < dist(y,0Q NR7), z> 0, and a sequence y; tending
to 7 such that y; is a local maximum of w; in QF, u;(y;) — oo and

ui(y) < Cly —ui| ==Y for all y € Br(y;) N Q.

We point out that the {y;} in Definition 2.2 are uniquely determined for large
i provided {K;} is bounded in C*(QT) for some 0 < o < 1. Let y; — ¥ be an
isolated blow up point of {u;}. We define

1
B 0B, (y;) N Q| OBy (y:)NQT

ui(r) ui, >0,

and
wi(r) = r2® Ny (r), > 0.

DEFINITION 2.3. 5§ € QN M is called an isolated simple blow up point of
{u;} if y; — 7 is an isolated blow up point such that, for some g > 0 (independent
of 7),

(2.3) w,; has precisely one critical point in (0, ),
for large 4. In addition,

(2.4) yi € QN ORY

for large ¢ if 7 € QN ORY.

If 7 € QN ORY in the above, we call it a boundary isolated simple blow up
point.

LEMMA 2.1. Let {K;} € L>®(Q"), {u;} satisfy (2.2) and y; — 7 € Q be an
isolated blow up point. Then for any 0 <1 < %?, we have the following Harnack
inequality:

sup ui(y) < C inf ui(y),
veBS, (u)\B; 5 (1) yEBF, (y)\ B, (vi)

where C'is a positive constant depending only on n, C and sup, 1Kl oo (B2 (1))
PROOF. Reflect u; evenly to R™, and apply Lemma 2.1 of [L1].

PROPOSITION 2.1. Suppose {K;} € C**(QNRY) satisfies (2.1) for some
Ay >0, and

(2.5) |‘VK7;||LOO(Q+) < Ay
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for some Ay > 0. Let {u;} satisfy (2.2), y € QNRY be an isolated blow up point
of {u;} and {y;} be the sequence of points as in Definition 2.2. Then for any
R; — oo and ¢; — 07, after passing to a subsequence, we have either

Ty = Riui(yi)’(”i’l)/2 —0 asi— o0, Bay,(y;) CQT,
o) ) ) = (1l ) 2 ) < 2

or

s (i)~ e (i ()~ P02 ) = (L K| - [2) /2]

ri—0 asi—o0, y; € QNIRY,
€i,

C2(Bip) =
where k; = c(n)(n(n —2)) 1 K;(y;).

Proor. We will only prove this for 7 € QNOR! . Without loss of generality,
we take 7 = 0.
Writing y; = (yi1, ¥i2, ¥i3), We consider

wi(2) = wilys) " us(wi(y) TP 22 ), s > —u(y) P Py = T

It is easy to see that w;(0) = 1, z = 0 is a local maximum point of w; in z3 > —T;,

and w; satisfies
—Aw;(z) = e(n)K;(ui (y;) 22 + y)w; ()P, wi(2) >0, 23 > =T,
{ Ow;/0z3 =0, z3 = —1T;.
After passing to a subsequence, there are three cases.
CASE 1: T; — oc.
CaAse 2: T; — 0.
CAsE 3: T; —» T € (0,00).

It is not difficult to see that Case 1 and Case 2 lead to the conclusion of
Proposition 2.1. Case 3 cannot occur since if it occurred, the limit function w

of {w;} would satisfy

—Aw = w"t2D/(=2) 4y >0, 23 > T,

Ow/0z3 =0, z=-T <0,
Vw(0) = 0.
Making an even extension across zz3 = —1 produces a positive solution of —Aw =

w(+2)/(n=2) in R™ with two critical points, which violates the uniqueness result
of [CCS].
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PROPOSITION 2.2. Suppose {K;} € 01(37;) satisfies (2.1) and (2.5) for
some constants A1, Ay > 0 with Q = Bs. Suppose also that u; satisfies (2.2)
with Q@ = By, and y; — 7§ € Bif/4 is an isolated blow up point with, for some
positive constant As,

(2.6) ly — yil P Vuy(y) < As for ally € B

Then there exists some positive constant C = C(n, Ay, As, Ag) such that, for i

large enough,

wi(y) > O ui(ya) (1 + kyui(y)? Ny — wil )72 for all y € B (y).
In particular, for i large enough, we have

ui(y; + ) > C ™l (y;) AT/

for all e € R™ with |le| =1 and y; + e € By .

PROOF. Set r; = Ryu;(y;)~®~1/2. Tt follows from Proposition 2.1 that

ui(y) > C ' (y))RZ™ for all y € OB, (y;) N By
Set
wily) = O R ua(ya)(ly — il ™" — (3/2)*7),
y € Baa(yi) \ By, (y:) N By .

Clearly ; satisfies
Api(y) = 0= Auily), y € Bya(yi) \ By, (yi) N By,

ei(y) =0 < ui(y), y € 0B32(y;) N BY,
5(,01 aui n
Oy (y) >0= 5, (1), ye€d(Bs(yi)\ Br,(y:)) NORY.

It follows from the maximum principle that

ui(y) = @i(y) for all y € (Bz)a(yi) \ Br, (yi)) NRY.
Proposition 2.2 follows immediately from the above and Proposition 2.1.

PROPOSITION 2.3. Suppose {K;} C C%*(ByNRY) satisfies (2.1), (2.5) with
O = By for some Ay, As > 0. Suppose also that u; satisfies (2.2) with Q@ = B,
and y; — 0 is a boundary isolated simple blow up point with (2.3), (2.4) and (2.6)
for some positive constants o and As. Then there exists some positive constant

C =C(n, A1, Ay, As, 0) such that

ui(y) < Cui(y) Ny — wil>™  for ally € By(yi)™,
75 = O(uy(ys) ">/ 20W) ()™ = 14 0(1),



NIRENBERG PROBLEM IN A DOMAIN WITH BOUNDARY 315

where g is the constant in Definition 2.3, and o(1) denotes some quantity tending
to 0 as i tends to co. Furthermore, for some harmonic function b(y) in Bfr with
Ob/dy, =0 on OB N OR"}, we have, after passing to a subsequence,

wi(yi)ui(y) — hy) = aly|* ™™ +b(y) in C2 (B \ {0}),
where

a = Jim K2/ = ()G~ 2 — 2))272 T K(0)) ¢,

11— 00 71— 00

REMARK 2.1. When y; — 7 € B; is an interior isolated simple blow up
point, similar results have been given in Proposition 2.3 of [L1]. It is clear that
the hypothesis {K;} C CL_(B2) there can be relaxed to {K;} C C)}(By), and
the same proof works.

PrOOF OF PrROPOSITION 2.3. The assertion follows from Proposition 2.3
and Lemma 2.3 of [L1] after extending u,; evenly to R™.

LEMMA 2.3. Under the hypotheses of Proposition 2.3, for any f € Ll(Si_l)
with fsn—1 f =0, we have
+

Y—Yi s ;
/ f( , )|y—yi| ui )P
Bl (yi) ly — il

w2 gyt [ ] [ ) o),
ST R™
—n<s<n,
- O(’/ Flui(ys) 2/ n=2) logui(yz‘)> + o(ui(y:) 2 "2 log us (17)),
S
s=n,
o(u; () 2/ (n=2), 5> n,
and
/ ly — yil P (y)P
B (y)\ B, (v:)
o(ui(y;) 2/ (=2)), —n<s<n,
<q O Ui(yi)_2"/(n_2) logu;(y:)), s=n,

<4 O
(

S

ui(yi)izn/(nim)a s>,
where k; = [n(n — 2)] " te(n)K;(y;)-

Proor. This follows from Proposition 2.1, Proposition 2.3 and some ele-
mentary calculations.
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LEMMA 2.4. Suppose {K;} € 00,1(37;) satisfies (2.1), (2.5) with Q = B,
n = 3, and some positive constants Ay, As. Suppose also that u; satisfies (2.2),
and y; — 0 is an isolated simple blow up point. Then

7i = O(ui(yi) 7?).

If we further assume that {VK;} € C° (Big') has a uniform modulus of continuity,
then

11— 00

lim () / (y— i) - VE b+ = 0.
B;—(yi)

ProoF. It follows from Lemma 1.1 (with o = 1), Proposition 2.3, Lemma
2.3 and some standard elliptic estimates that

. <C ly — yi|u? T+ O (uﬁ”Jrl +uf + | Vu|?) < Cuyly;) >
B (y:) 9B (y:)NRY.

Using the additional property of {VK;} and Lemma 2.3, we have
/ (y—yi) - VEul"™
B (yi)

— VK () - / (y — g+

BF (y:)
. 0( [ el VK@) - vm<yi>|u€i“)
Bj(yi)

= o(ui(y:) ™).

PROPOSITION 2.4. Suppose {K;} € Cl(?;) satisfies (2.1) and (2.5) with
Q = By, n = 3, and some positive constants A1, As. Suppose also that u;
satisfies (2.2), and y; — 0 is an isolated blow up point with (2.6) for some
positive constant Az. Then it is an isolated simple blow up point.

PrOOF. We first show that
(2.7) y; € OB NORY  for i large enough.

Let y; = (yi1, Yi2, ¥i3). Supposing the contrary of (2.7), we can assume, after
passing to a subsequence, that y;3 > 0 for all ¢ and (using Proposition 2.1) that
for some R; — oo, yigui(yi)(p'i_l)/2 > R;.

Consider

i(z) = y?:s/(piil)ui(yi +vizz), 2z € By, N{z]23>—1}.



NIRENBERG PROBLEM IN A DOMAIN WITH BOUNDARY 317

Clearly &; satisfies
—A&(z) = c(n)f{i(z)&(z)pi, 2 € Byjy,, N{z ] 23 > —1}
0¢; /023 =0, z€{z|z3=-1, |2| <1/yis},
|2|2/(Pi=1g(2) < As, 2 € Byjy,, N{z ] 23 > -1}
lim; o0 £(0) = o0,

where K;(z) = Ki(y; + yi32).

It follows from Proposition 3.1 of [L1] that z = 0 is an isolated simple blow up
point of {&;}. Extend ; to {z3 < —1} by setting &; (21, 22, 23) = & (21, 22, —2—23).
It follows from Proposition 2.3 of [L1] and the maximum principle that

§i(0)&i(2) — h(z) = a(|*7" + |2 = (0,0,=2)*7") + b in CR(R*\ {0}),

for some constants @ > 0 and b > 0. Applying Corollary 1.1 of [L1], for all
0 < o <1 we have

R c(n) o il Ly —pi—1
[, pong e = S0 [ LRG0,

Multiplying the above by &;(0)? and sending i to oo, we obtain (using Lemma
2.4 of [L1])

B(o,z,h,Vh) >0, V0<o<l.
OB,

However, a direct calculation contradicts the above (using b > 0) for o > 0 small.
This establishes (2.7).

It follows from Proposition 2.1 that 72/(Pi=D7,(r) has precisely one critical
point in the interval 0 < r < r;. Suppose it is not an isolated simple blow up
point and let j; be the second critical point of 7%/ (®i—17;(r). We know that

Without loss of generality (using (2.7)), we assume that y; = 0. Set

&) =o' " Vuipy), e B,
It follows from (2.2) and (2.8) that &, satisfies
—A&(y) = M Ki(y)&w)™, y € B,

98
Dy, W) =0 y € aBf;, NORY,
Y2/ e, (y) < As, v EB,

(2.9)
lim &(0) = oo,

r2/Pi=D¢ (r) has precisely one critical point in 0 < r < 1,
d _

o P TIE = = 0,

where K;(y) = K;(uy) and &;(r) = [0Bf NRY |71 faBiji &
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It follows that {0} is an isolated simple blow up point of {¢;}. Using Propo-
sition 2.3 and the maximum principle, for some constants ¢ > 0 and b > 0 we
have

(2.10) &(0)&i(y) — h(y) = aly " +b in CR (R \ {0}).

Using the last property in (2.9) and (2.10), we obtain b = a > 0. Applying
Lemma 1.1, for all 0 < ¢ < 1 we have

/ Blo,y,&i, V&) 2 e / 2 VR +0(&(0) 7771,
8B“HR§r Di + 1 B;r

Multiplying the above by &;(0)? and sending i to co, we obtain (by Lemma 2.4)

/ B(o,y,h,Vh) >0, V0<o<l.
9B, NRY.

However, a direct calculation contradicts the above (using b > 0) for o > 0 small.

PROPOSITION 2.5. For n =3, let {K;} be a convergent sequence of functions
in Cl(?;). Suppose {u;} satisfies (2.2) and y; — 0 is a boundary isolated simple
blow up point. Then

| VianFi (yi)] = o(1).
If we further assume that K; € CYY(BS) with H82Kl-||Lm(B;) uniformly bounded,
then
| Vean Ki(ys)] = O(ui(yi) ).

PROOF. Define a smooth cutoff function n € C*° (@i) satisfying
U(x) =1, z¢€ 37347
n(x) =0, 556@1\31/2-

By multiplying (2.2) by ndu;/0z; (1 < j < 2) and integrating by parts on Bj",
it follows from Proposition 2.3 and some standard elliptic estimates that
IK; u}?i+1

< Cui(y;)) 2+ CT;.
e ui(y:)” =+ CT

By a suitable Taylor expansion of 0K;/0x; at y;, Proposition 2.5 follows from
Lemmas 2.3 and 2.4.

For 2 < p < 5, consider

(2.11) {—Agou—kiu:é[{u”, u>0, onS$S?,

Ou/ov =0 on 0S3? ,

where v denotes the unit outer normal at points of 9S3 .
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THEOREM 2.1. Let {K;} converge in C*(S3) norm to some positive func-
tion. Suppose {u;} satisfies (2.11) with K = K;. Then after passing to a
subsequence, {u;} is either uniformly bounded in gi, or has precisely one blow
up point which is a boundary isolated simple blow up point. Moreover, if we let
q; — q denote the boundary isolated simple blow up point as in Definition 2.2,

then for some constant by > 0,
OK; 2 —2
(2.12) VianKi(a:) = o(1), 7 = b1—-=(ai)uila:) " + o(ui(g:) ™).
A consequence of Theorem 2.1 is the following a priori estimate on solutions
of (0.1).

COROLLARY 2.1. Let K € C*(S3) be some positive function with no critical
point on 8S®. Then for any solution u of (0.1) and any 0 < o < 1, we have

1/C <minu <maxu < C, ||ul|gz.agsy < C,
S3 S3 -

where C' > 0 depends continuously on ming; K > 0, [|[VK||pec (g3 y, [VE| Lo (052 )
>0, and 0 < a<1.

PROPOSITION 2.5. Suppose that K € Co’l(gi) satisfies, for some positive
constants Ay, As,

(2.13) K(q) > 1/A1 forallgeS?, VK| g < Ao

Then for any 0 < ¢ < 1 and R > 1, there exist some positive constants Cg =
Ci(e,R, A1, As) and Cf = Cf(e,R,, A1, A2) > 1 such that if u is a solution of
(2.11) with

maxu > Cj,
s

then there exists 1 < k = k(u) < oo and a set S(u) = {q1,...,q} C S
(g = q;j(u)) such that
() o<rt=5-p<e,
(2) q1,...,qk are local maxima of u and if, for each 1 < j <k, we let y be
some geodesic normal coordinates centered at q;, then

[[u(0) = u(u(0)~P=D/2y) — §;(y)llo2 (B, <&
BRu(qj)f(pfl)/Z (Qj) C S?L Zf q; € Sg,,
[|(0) = tu(u(0)=P=1/2y) — SiWllcapyy <€ ifa; € os? ,
and {Bry(q,)-»-1/2(¢5) }1<j<k are disjoint, where
5i(y) = (L4 kjly|H)E™/2 and  kj = c(n)[n(n — 2)] " K(q;),

(3) u(q) < Ci{dist(q,S(u))}~/®=Y for all ¢ € S*.
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PRrROOF. The proof follows from the uniqueness results of Caffarelli-Gidas—
Spruck, and some blow up argument. We omit the details. The argument is
similar to that in [Z], taking into account the proof of Proposition 2.1 here.

PROPOSITION 2.6. Suppose that K € CO(S®) satisfies (2.13) for some
positive constants Ay, As. Then for any € > 0 and R > 1, there exists some
positive constant 0* = §*(e, R, A1, Aa) such that for any solution u of (2.11)

with maxg; u > C§ we have
lg; —aq| > 6" foralll <j#1<k,
where q; = ¢;(u), ¢ = qi(u), and k = k(u) are defined in Proposition 2.5.

PROOF. The proof is similar to the proof of Proposition 4.2 of [L1]. As always
we often pass to subsequences when necessary. Suppose the contrary: for some
constants A;, As,e > 0 and R > 1, there exists a sequence {K;} € C%(S?)
satisfying (2.13), and a sequence {u;} of solutions of (2.11) corresponding to
{K;} satisfying

max u; > Cf,

: +
min —q| — 0.
i | Jnin lgj — ail

Without loss of generality,

il — i o — - B
lg1 — g 1;;,1;1;19\61] al, @,¢2—q€S.

Using (2) of Proposition 2.5, we know that Rui(ql)—(m—l)/Q,Rui(qz)—(pi—l)ﬂ <
lg1 — ga|. Tt follows that w;(q1), u;(g2) — oco. By making a suitable stereographic
projection to transform S? to Ri, u; is transformed to v; which satisfies

—Av; = K HT WP, v >0, inRY,
(2.14) \
Ov;/0ys =0 on ORY,

where H;(y) = (2/(1 + |y|?))®~2)/2. We can assume without loss of generality
that

vi(q) < Cf min, lg—qj|, Vqe€RY,

(2.15) q1, ¢ are local maxima of v;,
oi = |q1 — g2 Kg?gqug @l —0", qi,q2 = FERS.

Notice that we have abused notation slightly by not distinguishing points in S
from points in R%. Also we need to reselect points g1, g2 in order to satisfy (2.15)
since this property is not preserved by stereographic projection. With the help
of Proposition 2.1, this can be easily achieved by going to a subsequence.

Set

wi(y) = o/ P V(g + ouy), |yl <2/0i, ys > T,
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where —o;T; is the third coordinate component of ¢;. It is clear that w; satisfies

—Aw;i(y) = LK (y) Hi(y) " wi(y)P, |yl < 2/04, y3 > T,
w;(y) >0, ly| <2/0i, y3 > T5,

where K;(y) = Ki(oy) and H;(y) = Hi(o:y).
The following properties can be deduced from properties of v; and Proposi-

tion 2.1:

w;(0), w; (y;) > 1/C, Vw;(0) = Vw;(g;) =0,

[y >/ P~ Dy (y) < Cn, lyl <1/2, y3 > T,

ly =Gl P wi(y) < Cry =Tl <1/2, 3 > T,
where y; = (¥i1, Yi2, Yis) = (g2—q1) /0. It is not difficult to see that w;(0), w;(¥;)
— 00, since otherwise they both have to have finite limits and after passing to
the limit, lead to a positive solution of —Aw = w(®*t2)/("=2) in the upper half
plane with two critical points. This violates the uniqueness theorem of [CGS].
Therefore {0} and y; — ¥ are both isolated blow up points of {w;}, hence
isolated simple blow up points due to Proposition 3.1 of [L1] and Proposition
2.4. By multiplying the equation by w;(0), it follows from Proposition 2.3 and
the maximum principle (see the proof of Proposition 4.2 in [L1]) that there
exists a closed set So C R3 containing neither {0} nor {7}, and some function
b* € C* (@_ \ S2) satisfying Ab* =0 and b* > 0 on R3 \ S, such that

Jim w; (0)wi(y) = h*(y) = ar|y* ™" + azly = §°7" +6*(y) i CR(RY\ Sa),
where aq,as > 0 are some constants. In particular, for some constant b > 0,
h*(y) = a1]|y|*”™ + b+ O(Jy|) for y close to 0.
Applying Lemma 1.1 (or Corollary 1.1 of [L1]) as in the proof of Proposition 2.4,
we reach a contradiction.

PROOF OF THEOREM 2.1. Let {u;} satisfy maxg uw; — oo. After passing

to a subsequence, it follows from Propositions 2.6 and 2.4 that {u;} has finitely
many isolated simple blow up points, denoted as {g"),...,g®}. Let qgj )
7Y% be the local maximum of u; as stated in Definition 2.2. We know from
Proposition 2.5, and Proposition 3.2 of [L1], that lim;_, |VKi(q§j))| =0ifg? e
S, and lim;_ o |VtanKi(q§j))\ =0ifg e 8S3. It follows from Proposition 2.3
and some standard elliptic theory that

k
Uz(Qz(l))ul —h= Z aj(Gq(j) + th(j)) in C’IQOC(S?i \ {q(l)a o 7q(k)})7
j=1

where a1, ...,a; > 0 are some constants, §) € gi denotes the symmetric point
of g9, and G4 denotes the Green function of —A,, + % at gi).
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We first show that {g*),...,g®, g™, ... g™} consists of precisely one
point. Suppose the contrary; it follows from the positivity of the Green function
that for some constants a,b > 0,

h(q) = aGgoy + b+ O(lg — g™")).

Applying the Pokhozhaev type identity as in the proof of Proposition 2.4, we
reach a contradiction. This shows that {u;} has precisely one boundary isolated
simple blow up point. By making a suitable stereographic projection to transform
S% to R3 and ¢; to 0, u; is transformed to v; which satisfies (2.14). Applying
Lemma 1.1, we obtain
(2.16) / y - VEH D + 2 [ KHT P =0,

R3 R3

+ +

Using Lemma 2.4, Lemma 2.3 and Proposition 2.5, we have
0K;

CV(KGHT ol =
/]R y- V( ) 95

3
+

) [ st + ofwi(0) ).
]R3
i1
Estimate (2.12) follows from the above, (2.16) and Lemma 2.3.

3. Proof of Theorem 0.1

We define H = {u € HY(S?) | w(x1, 72, 23,24) = u(z1, 72,73, —74)}, and
the inner product and norm by (u,v) = [o (VuVv + 2uv) and |jul| = \/(u,u)
respectively. For 7 > 0 small, we set

1 1
IT _ = 2_ - K 6—7'.

For P € S? and t > 0, we define

; 1/2
1) xr) = 2 ! GSS’
P,t( ) <1+t21(1—COSd(P7x))>

where d(P, x) denotes the geodesic distance between P,z € S3. Tt is well known
that dp; satisfies

—AgyOps + 20py = 303,
and
Iomal? = 318°% [ 0%, =189
3
For P € K~ and & > 0 suitably small, let
Q.,(P) = {(a,t,P) e Ry xRy x 3S* ||a — (6/K(P))**| < &,
|P— P| <eq, t >1/e0}.
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It follows from [BC] that for any u € H satisfying ||u — adp ;|| < £0/2, for some

(&,?, ]3) € €., /2, we have a unique representation
u=adp; +v

with (a,t, P) € Q, and

B dops \ dops \
(3.1) (v,0py) = <v, 8P(l)> = <v, y > =0.

We work in some orthonormal basis near P, and 8/0P") denotes the correspond-

ing derivatives. By uniqueness, we know that P € 9S3 , and hence v € H. We
denote the set of v € H satisfying (3.1) by Ey p. It follows that in a small tubular
neighborhood (independent of 7) of {adp; | (a,t, P) € Q. 2} in H, (a,t, P,v)
is a good parametrization. In the new parameters, we write

Jr(a,t, P,v) = I.(u) for u=adp;+v.
For a suitably large constant A and suitably small constants e, vq, set
S, (P) ={(o,t,P,v) € Qoo x H | 1/A<tT < A, v € Eyp, |[v] <o}
Without confusion we use the same notation for
Y, (P)={u=adp; +v| (a,t,P,v) € X, (P)}.

PROPOSITION 3.1. For K € AN C%(S?), assume that Klpgs is a Morse
function. Let 0 < o < 1. Then there exist some positive constants €g, vy < 1
and A, R> 1, depending only on K and «, such that, when 7 > 0 is sufficiently
small,

ueOp={weC*B)|1/R<w<RonS*, lwllc2.asy < R},

or u € X.(P) for some P € K, for all u satisfying w € H, u > 0 a.e., and
I (u) = 0.

Proor. This follows from Theorem 2.1, Proposition 2.3, and some standard
elliptic estimates.

THEOREM 3.1. For K € ANC?(S?), assume that K|ass is a Morse function.
Then for T > 0 sufficiently small, and P € K—, I, has a unique critical point in

%, (P), which is nondegenerate with Morse index 3 — i(P). It follows that

(3:2) degp (11,57 (P),0) = (=1)*7*").

Here i(P) denotes the Morse index of K|as: at P.
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PROPOSITION 3.2. For 7 > 0 small and (a,t, P,0) € ¥, (P) with P € K,
there exists a unique minimizer © = v, (o, t, P) € Ey p of Jr(a,t, P,v). Further-

more,
||| < CrllogT|, (duJr(a,t, P,v),v) #0, Y(a,t,P,v) € X (P),v+#7,
and (1,a,t, P) — o, (a,t, P) is a C? map to H.
PRrROOF. It follows from a direct calculation, using (3.1), that

B 3|S3‘C¥2 a6—7’ 6r 3
It Po) = S - A /S3Kap,t Lo (0) + Qr(,0) + O(Ju]]?),

where

T

frlw) = - / Ko%,T,
8 s3 ’

1 5—T1)atT _
QT(@av) = 5<(p,1}> - % /S3 K(S;g,t pu.

It is well known that for some 8y > 0, Qo(v,v) > &ol|v||? for all v € E; p. It
follows, after some elementary calculations, that for 7 > 0 small we have

Q-(v,v) > (60/2)||v]|?, V(,t,P,v) € £,.(P).

Using (3.1), the Sobolev embedding theorem and Lemma A in the Appendix, we

have
a7 5 5 5—7
£r0) = = S [ K = K (P80 + O(15h, = 8557 ool
= O(Il |- =PI6B 4l pors + 165, — 65, | Loss) [l
= O(r[log 7)][v]|.

It follows that || f.|| = O(r|log 7|). The existence, uniqueness and C? dependence
of the minimizer 7 = v, (o, t, P) as stated in Proposition 3.2 follow from standard

functional analysis arguments.

PROOF OF THEOREM 3.1. We will only prove (3.2). The full strength of
Theorem 3.1 can be proved by some further essentially elementary, even though
somewhat tedious, argument. Set 8 = a — (6/K(P))'/%. Tt follows from (3.1)
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and Lemma A in the Appendix that

0
(B3)  galrlat,Bo)
3 1 _ 4—7
315 m?;;_w/ K6%v+ O(v]?)
4 g s3 ' 8 ’ ’
3§304 1 —T !
_ '4| ~ g0 TK(P /6Pt+o<||| —PIop l1s) + 0105, = 0l )

+O(I |- =Plop Nl possllvl) + O3, — 55, llessllvll) + O(llv]|*)
= = 3|S°|B + O(rflog 7]) + O(6) + O(|[v]]*)-

Similarly, noticing that several integrals vanish due to oddness with respect to

. : . 5—7 9dp,t
certain directions, e.g., fs3 5Pt 55 = 0, we have

7]
85
2+ O(ll)

B 046 5 TaéPt
- /SJK K (P35 + 0ol

ab=7 _,00
=~ [, VE(P)- (= P)ap, 2+ 0(1/t) + O(|jv])

5

= —TK(P)"*?Viun K(P) + O(1/t) + O(]) + O(|[v])).
Here and throughout the paper, I" > 0 denotes various universal constants. Set
S, ={u=adp, +ve, ||| <rllogr], 18] < 7llog7|?}.

Using Proposition 3.1, Proposition 3.2 and (3.3), we know that I (u) # 0 for all
u € X\ X;. In the following, we only make calculations for u = adp; +v € 3.

A calculation yields

5 N a5
Gttt Py = =5 [ Kladn +01' (adps +0) 25
o o)
=-3 / K{(adps) "+ (56— 7)(adpy)* v} ;’t
5| 06p+
+o( 1o %2 ).
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Noticing that [g, 6% v Pex _ 10 Jss 03,0 =0, we have

/ Koy, 65”
85pt adPt

— /SS [K—K(P)]éjij[v 5 +/§a K(P)[0p," — 6p v o

_T 0dp, r 0dp+
=011 =Pt vl %5 ) + 0 (1ob = 857wl %
=o(t™?).

It follows from the above and from 6 [, 63, Blex — 8 |, 0%, = 0 that
(3.5) QJ (a,t, P,v)
. 8t T Y )

04677- adpt
— _ K 5—T1 ) —2
4 /S3 5P,t ot + O(t )

a7 85pt

- /SS_[K(PHVK(PH PYoET

00
“)(n | PO oo || 220 )*ow)
ot
ab-7 00p ¢
— —_K(P 5—1 )
P [

o7 9K 5 785pt _9
T (P) [ 16— PUIsE ot o)

=TI\/K(P) % - FK(P)*3/2%—I5(P)15’2 +O(|Bt™2) + o(t2).

At u=oadps+v € ET,

ad o)
T.H=FEp® span{ép’t7 Bt Bt }

ot ' oP
We write I (u) € T, H as
I(u) =&+,
where £ € E; p and n € span{dp,ddp/0t,00p/OP}. For all p € Ey p,

(&) = I (u)p = fr(p) +2Q-(¢,v) + (Vo (1, a,t, P,v), @),

where V,, is some function satisfying ||V, (7, o, t, P,v)| < C|lv||*. Taking ¢ = v,
we get

5
Il = dollvll = 1f-1l = O(llv]1*) = 5O||v|| = I£I-
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It follows from (3.3) that

0
(n,0p0) = 5-Ir(u) = =3[S°|B + Va(r, . t, Pv),

where V,, satisfies |V, (7, a, t, P,v)| < C7llog7|. Tt follows from (3.5) that

oK
A (P24 Vi(1, at, Pyv),
1%

Pope\ L0 8/a7 _
<n, = >_ I (w) = DK(P)"/ ' 2T K (P)

where V; satisfies |V;(7, a, t, P,v)| = o(t=2). Tt follows from (3.4) that

B 10
<n’ a;t> = —oplr(w) = —TK(P) "V K(P) + Vp(7,a,t, P,v),

where Vp satisfies |Vp(7, a, t, P,v)| = C(7 + |B] + ||v]]) = o(1).

It is well known that I’ (u) = £ +n is of the form id + compact in H. We first
define P(f) as the geodesic trajectory on dS® with P(1) = P and P(0) = P.
Define

Xg=8 +mng, 0<0<1,
as follows. For all p € £, p, 0 <6 <1,

(o, 0) = 0f-(p) + (1 = 0){v, ) +20Q+(0,v) + OV, (T, a0, L, P,v), ),
(19, 0pe) = —3[S?|B + OV,

<770’ Drea\ _ r(po)L - TR (P(9)) 512K

-2
g t (PO + Vi,

<n, a§§t> = TK(P) Vi (P) + V.
It is easy to see that Xy is well defined in 5. It follows from the Sobolev compact
embedding theorem, the explicit form of V,,, V,, V;, Vp, A™! < tr < A, and the
estimates we have obtained that Xy is of the form id 4+ compact. Furthermore,
it is not difficult to see that Xy (0 < # < 1) is an admissible homotopy with
Xolpz # 0. It follows that

degH1 ()(17 i-,—, O) = degH1 (Xo, ET, 0)
It is easy to see that
deg 1 (Xo, 5y, 0) = (—1)374P),

We have thus established (3.2).

PrOOF OF THEOREM 0.1 (and the justification of the definition of Index:
A — 7). Part (a) follows from Theorem 2.1. For K € AN C(S?), Klpgs
being a Morse function, (0.3) follows from Theorem 3.1 and properties of the
Leray—Schauder degree as in [L2]. Now the definition of Index can be justified
by the above and the homotopy invariance of the Leray—Schauder degree. For
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the same reason, (0.3) holds for all K € A. Part (b) can be derived from (a) by
an argument similar to that in [L3].

Appendix

LEMMA A. Let A > 1 be some positive constant, 7 > 0, and 1/A < tT < A.
Then

- =Plok el oreqesy < Cfts N |- =PIE orngen) < O/,

/ | P|a§6*'r T2 4 o(1), a=0,
58 N B R o(t™), 0<a<3,

/ |- =P|%%, =Tt " +o(t™), 0<a<s3,
S3

/ 59,411 — 657% < Cla)(rllog 7)*, 0<a<3,
%

=T/t / Ly T‘%Pt = —Tr/t + o(r/t),

/ (-~ PYalsE, T“Pt——rr%o(f?),
S3

ot
0dp

2¢5—T1
f1--rro| 5

where o(1) denotes some quantity which tends to 0 as t tends to infinity, and C

<C/t,

denotes some constant depending only on A. We also recall that T' > 0 denotes
various universal constants.

PRrOOF. This follows from straightforward calculations.
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