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THE NIRENBERG PROBLEM IN
A DOMAIN WITH BOUNDARY

YanYan Li

Dedicated to L. Nirenberg with admiration

0. Introduction

There has been much work on the Nirenberg problem: which function K(x)
on Sn is the scalar curvature of a metric g on Sn pointwise conformal to the
standard metric g0? It is quite natural to ask the following question on the half
sphere Sn

−: which function K(x) on Sn
− is the scalar curvature of a metric g on Sn

−
which is pointwise conformal to the standard metric g0 with ∂Sn

− being minimal
with respect to g? For n = 2, this has been studied by J. Q. Liu and P. L. Li
in [LL]. In this note we study the higher dimensional cases along the lines of
[L1-2]. For much work on the Nirenberg problem see, for example, [L1-2] and
the references therein. See also some more recent work in [CL1], [HL], [Bi1-2],
[SZ], [B], [ChL] and [CL2].

For n ≥ 3, by writing g = u4/(n−2)g0, the problem is equivalent to solving
the following Neumann problem on Sn

− = {(x1, . . . , xn+1) ∈ Sn | xn+1 < 0}:

(0.1)

{
−∆g0u + c(n)R0u = c(n)Ku(n+2)/(n−2), u > 0, on Sn

−,

∂u/∂ν = 0 on ∂Sn
−,

where c(n) = (n − 2)/(4(n − 1)), R0 = n(n − 1), and ν denotes the unit outer
normal at points of ∂Sn

−.
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We introduce

A = {K ∈ C1(S3
−) | K > 0 on S3

−, ∇K 6= 0 on ∂S3
−},

K− =
{

q ∈ ∂S3
−

∣∣∣∣∇tanK(q) = 0,
∂K

∂ν
(q) > 0

}
,

MK = {u ∈ H1(S3
−)

∣∣ u satisfies (0.1)},

where ∇tanK(q) denotes the tangential derivatives of K at q ∈ ∂S3
−. Clearly A

is open and dense in C1(S3
−)+, which consists of positive functions in C1(S3

−).
We will introduce an integer-valued continuous function Index : A → Z, with an
explicit formula for K ∈ A∩C2(S3

−) with K|∂S3
−

being a Morse function. In fact,
for any such K, let i(P ) denote the Morse index of K|∂S3

−
at P ∈ K−. Then

(0.2) Index(K) = −1 +
∑

P∈K−
(−1)i(P ).

It is proved in Section 3 that Index can be extended from (0.2) as a continuous
function on A with respect to the C1(S3) topology.

Theorem 0.1. (a) For any K ∈ A, there exists some positive constant
C = C(K) such that for any Ki → K in C1(S3

−), and any ui ∈MKi
,

C−1 ≤ lim inf
i→∞

(min
S3
−

ui) ≤ lim sup
i→∞

(max
S3
−

ui) ≤ C.

Furthermore, for all 0 < α < 1, there exists R0 = R0(K, α) � 1 such that for
all R > R0,

(0.3) deg
(
u− 1

8

(
−∆g0 + 3

4

)−1(Ku5),OR, 0
)

= Index(K),

where OR = {u ∈ C2,α(S3
−) | 1/R < u < R on S3

−, ‖u‖C2,α(S3
−) < R}, and deg

denotes the Leray–Schauder degree.
(b) For any K ∈ C1(S3

−)+ \ A ≡ ∂A, there exist Ki → K in C1( S3
−) and

ui ∈MKi
such that

lim
i→∞

(max
S3
−

ui) = ∞, lim
i→∞

(min
S3
−

ui) = 0.

Corollary 0.1. For any K ∈ A with Index(K) 6= 0, (0.1) has at least one
solution.

Remark 0.1. For K ∈ A ∩ C2(S3
−), K|∂S3

−
being a Morse function, we can

use Theorem 3.1 to easily establish a strong Morse inequality as in [SZ], which
gives more general existence results than Corollary 0.1.

In deriving Theorem 0.1, we have obtained some detailed information on
blow up behavior of solutions which is of independent interest. See Proposition
2.4, Theorem 2.1 and Theorem 3.1.
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1. A Pokhozhaev type identity

For σ > 0 and x ∈ Rn, we set Rn
+ = {x = (x1, . . . , xn) ∈ Rn | xn > 0},

Bσ(x) = {x ∈ Rn | |x| < σ}, Bσ = Bσ(0), B+
σ (x) = Bσ(x) ∩ Rn

+, and B+
σ =

B+
σ (0).

The following is a Pokhozhaev type identity. The proof is standard by now
(see e.g. [L1]).

Lemma 1.1. Let p ≥ 1, σ > 0, n ≥ 3, B+
σ ⊂ Rn

+, and u ∈ C2(B+
σ )∩C1(B+

σ )
be a solution of {

−∆u = c(n)K(x)|u|p−1u, x ∈ B+
σ ,

∂u/∂xn = 0, x ∈ ∂B+
σ ∩ ∂Rn

+.

We have

c(n)
p + 1

∑
i

∫
B+

σ

xi
∂K

∂xi
|u|p+1 +

(
n

p + 1
− n− 2

2

)
c(n)

∫
B+

σ

K|u|p+1

− σc(n)
p + 1

∫
∂Bσ∩Rn

+

K|u|p+1 =
∫

∂Bσ∩Rn
+

B(σ, x, u,∇u),

where

B(σ, x, u,∇u) =
n− 2

2
u

∂u

∂ν
− σ

2
|∇u|2 + σ

(
∂u

∂ν

)2

with ν denoting the unit outer normal of ∂Bσ.

2. Analysis of blow ups

Let Ω ⊂ Rn (n ≥ 3) be a bounded domain containing the origin, Ω+ =
Ω∩Rn

+, τi ≥ 0 satisfy limi→∞ τi = 0, pi = n+2
n−2 −τi, and {Ki} ∈ L∞(Ω+) satisfy,

for some constant A1 > 0,

(2.1) 1/A1 ≤ Ki(x) ≤ A1 for all x ∈ Ω+.

Consider

(2.2)

{
−∆ui = c(n)Ki(x)upi , ui > 0, in Ω+,

∂ui/∂xn = 0 on ∂Ω+ ∩ ∂Rn
+.

Definition 2.1. A point y ∈ Ω ∩ Rn
+ is called a blow up point of {ui} if

there exists a sequence yi ∈ Ω+ tending to y such that ui(yi) →∞.
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Definition 2.2. A point y ∈ Ω ∩ Rn
+ is called an isolated blow up point of

{ui} if there exist 0 < r < dist(y, ∂Ω ∩ Rn
+), C > 0, and a sequence yi tending

to y such that yi is a local maximum of ui in Ω+, ui(yi) →∞ and

ui(y) ≤ C|y − yi|−2/(pi−1) for all y ∈ Br(yi) ∩ Ω+.

We point out that the {yi} in Definition 2.2 are uniquely determined for large
i provided {Ki} is bounded in Cα(Ω+) for some 0 < α < 1. Let yi → y be an
isolated blow up point of {ui}. We define

ui(r) =
1

|∂Br(yi) ∩ Ω+|

∫
∂Br(yi)∩Ω+

ui, r > 0,

and

wi(r) = r2/(pi−1)ui(r), r > 0.

Definition 2.3. y ∈ Ω ∩ Rn
+ is called an isolated simple blow up point of

{ui} if yi → y is an isolated blow up point such that, for some % > 0 (independent
of i),

(2.3) wi has precisely one critical point in (0, %),

for large i. In addition,

(2.4) yi ∈ Ω ∩ ∂Rn
+

for large i if y ∈ Ω ∩ ∂Rn
+.

If y ∈ Ω ∩ ∂Rn
+ in the above, we call it a boundary isolated simple blow up

point.

Lemma 2.1. Let {Ki} ∈ L∞(Ω+), {ui} satisfy (2.2) and yi → y ∈ Ω be an
isolated blow up point. Then for any 0 < r < 1

3r, we have the following Harnack
inequality:

sup
y∈B+

2r(yi)\B+
r/2(yi)

ui(y) ≤ C inf
y∈B+

2r(yi)\B+
r/2(yi)

ui(y),

where C is a positive constant depending only on n, C and supi ‖Ki‖L∞(B+
r

(yi))
.

Proof. Reflect ui evenly to Rn
−, and apply Lemma 2.1 of [L1].

Proposition 2.1. Suppose {Ki} ∈ C0,1(Ω ∩ Rn
+) satisfies (2.1) for some

A1 > 0, and

(2.5) ‖∇Ki‖L∞(Ω+) ≤ A2
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for some A2 > 0. Let {ui} satisfy (2.2), y ∈ Ω∩Rn
+ be an isolated blow up point

of {ui} and {yi} be the sequence of points as in Definition 2.2. Then for any
Ri →∞ and εi → 0+, after passing to a subsequence, we have either{

ri := Riui(yi)−(pi−1)/2 → 0 as i →∞, B2ri(yi) ⊂ Ω+,

‖ui(yi)−1ui(ui(yi)−(pi−1)/2 ·+yi)− (1 + ki| · |2)(2−n)/2‖C2(B2Ri
) ≤ εi,

or {
ri → 0 as i →∞, yi ∈ Ω ∩ ∂Rn

+,

‖ui(yi)−1ui(ui(yi)−(pi−1)/2 ·+yi)− (1 + ki| · |2)(2−n)/2‖
C2(B+

2Ri
)
≤ εi,

where ki = c(n)(n(n− 2))−1Ki(yi).

Proof. We will only prove this for y ∈ Ω∩∂Rn
+. Without loss of generality,

we take y = 0.
Writing yi = (yi1, yi2, yi3), we consider

wi(z) = ui(yi)−1ui(ui(yi)(1−pi)/2z + yi), z3 ≥ −ui(yi)(pi−1)/2yi3 ≡ −Ti.

It is easy to see that wi(0) = 1, z = 0 is a local maximum point of wi in z3 ≥ −Ti,
and wi satisfies{

−∆wi(z) = c(n)Ki(ui(yi)(1−Pi)/2z + yi)wi(z)pi , wi(z) > 0, z3 > −Ti,

∂wi/∂z3 = 0, z3 = −Ti.

After passing to a subsequence, there are three cases.

Case 1: Ti →∞.

Case 2: Ti → 0.

Case 3: Ti → T ∈ (0,∞).

It is not difficult to see that Case 1 and Case 2 lead to the conclusion of
Proposition 2.1. Case 3 cannot occur since if it occurred, the limit function w

of {wi} would satisfy
−∆w = w(n+2)/(n−2), w > 0, z3 > −T,

∂w/∂z3 = 0, z3 = −T < 0,

∇w(0) = 0.

Making an even extension across z3 = −T produces a positive solution of −∆w =
w(n+2)/(n−2) in Rn with two critical points, which violates the uniqueness result
of [CGS].
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Proposition 2.2. Suppose {Ki} ∈ C1(B+
2 ) satisfies (2.1) and (2.5) for

some constants A1, A2 > 0 with Ω = B2. Suppose also that ui satisfies (2.2)
with Ω = B2, and yi → y ∈ B+

1/4 is an isolated blow up point with, for some
positive constant A3,

(2.6) |y − yi|2/(pi−1)ui(y) ≤ A3 for all y ∈ B+
2 .

Then there exists some positive constant C = C(n, A1, A2, A3) such that, for i

large enough,

ui(y) ≥ C−1ui(yi)(1 + kiui(yi)pi−1|y − yi|2)(2−n)/2 for all y ∈ B+
1 (yi).

In particular, for i large enough, we have

ui(yi + e) ≥ C−1ui(yi)−1+(n−2)τi/2

for all e ∈ Rn with |e| = 1 and yi + e ∈ B+
2 .

Proof. Set ri = Riui(yi)−(pi−1)/2. It follows from Proposition 2.1 that

ui(y) ≥ C−1ui(yi)R2−n
i for all y ∈ ∂Bri

(yi) ∩B+
2 .

Set

ϕi(y) = C−1R2−n
i rn−2

i ui(yi)(|y − yi|2−n − (3/2)2−n),

y ∈ B3/2(yi) \Bri(yi) ∩B+
2 .

Clearly ϕi satisfies

∆ϕi(y) = 0 ≥ ∆ui(y), y ∈ B3/2(yi) \Bri
(yi) ∩B+

2 ,

ϕi(y) = 0 ≤ ui(y), y ∈ ∂B3/2(yi) ∩B+
2 ,

ϕi(y) ≤ ui(y), y ∈ ∂Bri
(yi) ∩B+

2 ,

∂ϕi

∂yn
(y) ≥ 0 =

∂ui

∂yn
(y), y ∈ ∂(B3/2(yi) \Bri(yi)) ∩ ∂Rn

+.

It follows from the maximum principle that

ui(y) ≥ ϕi(y) for all y ∈ (B3/2(yi) \Bri
(yi)) ∩ Rn

+.

Proposition 2.2 follows immediately from the above and Proposition 2.1.

Proposition 2.3. Suppose {Ki} ⊂ C0,1(B2 ∩Rn
+) satisfies (2.1), (2.5) with

Ω = B2 for some A1, A2 > 0. Suppose also that ui satisfies (2.2) with Ω = B2,
and yi → 0 is a boundary isolated simple blow up point with (2.3), (2.4) and (2.6)
for some positive constants % and A3. Then there exists some positive constant
C = C(n, A1, A2, A3, %) such that

ui(y) ≤ Cui(yi)−1|y − yi|2−n for all y ∈ B1(yi)+,

τi = O(ui(yi)−2/(n−2)+o(1)), ui(yi)τi = 1 + o(1),
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where % is the constant in Definition 2.3, and o(1) denotes some quantity tending
to 0 as i tends to ∞. Furthermore, for some harmonic function b(y) in B+

1 with
∂b/∂yn = 0 on ∂B+

1 ∩ ∂Rn
+, we have, after passing to a subsequence,

ui(yi)ui(y) → h(y) = a|y|2−n + b(y) in C2
loc(B

+
1 \ {0}),

where

a = lim
i→∞

k
(2−n)/2
i = c(n)(2−n)/2[n(n− 2)](n−2)/2( lim

i→∞
Ki(0))(2−n)/2.

Remark 2.1. When yi → y ∈ B+
2 is an interior isolated simple blow up

point, similar results have been given in Proposition 2.3 of [L1]. It is clear that
the hypothesis {Ki} ⊂ C1

loc(B2) there can be relaxed to {Ki} ⊂ C0,1
loc (B2), and

the same proof works.

Proof of Proposition 2.3. The assertion follows from Proposition 2.3
and Lemma 2.3 of [L1] after extending ui evenly to Rn

−.

Lemma 2.3. Under the hypotheses of Proposition 2.3, for any f ∈ L1(Sn−1
+ )

with
∫

Sn−1
+

f = 0, we have

∫
B+

ri
(yi)

f

(
y − yi

|y − yi|

)
|y − yi|sui(y)pi+1

=



ui(yi)−2s/(n−2)

{[
|Sn−1

+ |−1

∫
Sn−1
+

f

] ∫
Rn

+

|z|s(1 + ki|z|2)−ndz + o(1)
}

,

−n < s < n,

O

(∣∣∣∣ ∫
Sn−1
+

f

∣∣∣∣ui(yi)−2n/(n−2) log ui(yi)
)

+ o(ui(yi)−2n/(n−2) log ui(yi)),

s = n,

o(ui(yi)−2n/(n−2)), s > n,

and∫
B+

1 (yi)\B+
ri

(yi)

|y − yi|sui(y)pi+1

≤


o(ui(yi)−2s/(n−2)), −n < s < n,

O(ui(yi)−2n/(n−2) log ui(yi)), s = n,

O(ui(yi)−2n/(n−2)), s > n,

where ki = [n(n− 2)]−1c(n)Ki(yi).

Proof. This follows from Proposition 2.1, Proposition 2.3 and some ele-
mentary calculations.
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Lemma 2.4. Suppose {Ki} ∈ C0,1(B+
2 ) satisfies (2.1), (2.5) with Ω = B2,

n = 3, and some positive constants A1, A2. Suppose also that ui satisfies (2.2),
and yi → 0 is an isolated simple blow up point. Then

τi = O(ui(yi)−2).

If we further assume that {∇Ki} ∈ C0(B+
2 ) has a uniform modulus of continuity,

then

lim
i→∞

ui(yi)2
∫

B+
σ (yi)

(y − yi) · ∇Kiu
pi+1
i = 0.

Proof. It follows from Lemma 1.1 (with σ = 1), Proposition 2.3, Lemma
2.3 and some standard elliptic estimates that

τi ≤ C

∫
B+

1 (yi)

|y − yi|upi+1
i + C

∫
∂B1(yi)∩R3

+

(
upi+1

i + u2
i + |∇ui|2

)
≤ Cui(yi)−2.

Using the additional property of {∇Ki} and Lemma 2.3, we have∫
B+

σ (yi)

(y − yi) · ∇Kiu
pi+1
i

= ∇Ki(yi) ·
∫

B+
σ (yi)

(y − yi)u
pi+1
i

+ O

(∫
B+

σ (yi)

|y − yi| · |∇Ki(y)−∇Ki(yi)|upi+1
i

)
= o(ui(yi)−2).

Proposition 2.4. Suppose {Ki} ∈ C1(B+
2 ) satisfies (2.1) and (2.5) with

Ω = B2, n = 3, and some positive constants A1, A2. Suppose also that ui

satisfies (2.2), and yi → 0 is an isolated blow up point with (2.6) for some
positive constant A3. Then it is an isolated simple blow up point.

Proof. We first show that

(2.7) yi ∈ ∂B+
1 ∩ ∂R3

+ for i large enough.

Let yi = (yi1, yi2, yi3). Supposing the contrary of (2.7), we can assume, after
passing to a subsequence, that yi3 > 0 for all i and (using Proposition 2.1) that
for some Ri →∞, yi3ui(yi)(pi−1)/2 > Ri.

Consider

ξi(z) = y
2/(pi−1)
i3 ui(yi + yi3z), z ∈ B1/yi3 ∩ {z | z3 > −1}.



Nirenberg Problem in a Domain with Boundary 317

Clearly ξi satisfies
−∆ξi(z) = c(n)K̃i(z)ξi(z)pi , z ∈ B1/yi3 ∩ {z | z3 > −1}
∂ξi/∂z3 = 0, z ∈ {z | z3 = −1, |z| < 1/yi3},
|z|2/(pi−1)ξi(z) ≤ A3, z ∈ B1/yi3 ∩ {z | z3 > −1}
limi→∞ ξi(0) = ∞,

where K̃i(z) = Ki(yi + yi3z).
It follows from Proposition 3.1 of [L1] that z = 0 is an isolated simple blow up

point of {ξi}. Extend ξi to {z3 < −1} by setting ξi(z1, z2, z3) = ξi(z1, z2,−2−z3).
It follows from Proposition 2.3 of [L1] and the maximum principle that

ξi(0)ξi(z) → h(z) = a(|z|2−n + |z − (0, 0,−2)|2−n) + b in C2
loc(R3 \ {0}),

for some constants a > 0 and b ≥ 0. Applying Corollary 1.1 of [L1], for all
0 < σ < 1 we have∫

∂Bσ

B(σ, z, ξi,∇ξi) ≥
c(n)

pi + 1

∫
Bσ

z · ∇K̃iξ
pi+1
i + O(ξi(0)−pi−1).

Multiplying the above by ξi(0)2 and sending i to ∞, we obtain (using Lemma
2.4 of [L1]) ∫

∂Bσ

B(σ, z, h,∇h) ≥ 0, ∀0 < σ < 1.

However, a direct calculation contradicts the above (using b ≥ 0) for σ > 0 small.
This establishes (2.7).

It follows from Proposition 2.1 that r2/(pi−1)ui(r) has precisely one critical
point in the interval 0 < r < ri. Suppose it is not an isolated simple blow up
point and let µi be the second critical point of r2/(pi−1)ui(r). We know that

(2.8) µi ≥ ri, lim
i→∞

µi = 0.

Without loss of generality (using (2.7)), we assume that yi = 0. Set

ξi(y) = µ
2/(pi−1)
i ui(µiy), y ∈ B+

1/µi
.

It follows from (2.2) and (2.8) that ξi satisfies

(2.9)



−∆ξi(y) = c(n)K̃i(y)ξi(y)pi , y ∈ B+
1/µi

,

∂ξi

∂y3
(y) = 0, y ∈ ∂B+

1/µi
∩ ∂R3

+,

|y|2/(pi−1)ξi(y) ≤ A3, y ∈ B+
1/µi

,

lim
i→∞

ξi(0) = ∞,

r2/(pi−1)ξi(r) has precisely one critical point in 0 < r < 1,

d

dr
{r2/(pi−1)ξi(r)}|r=1 = 0,

where K̃i(y) = Ki(µiy) and ξi(r) = |∂B+
r ∩ R3

+|−1
∫

∂B+
r ∩R3

+
ξi.
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It follows that {0} is an isolated simple blow up point of {ξi}. Using Propo-
sition 2.3 and the maximum principle, for some constants a > 0 and b ≥ 0 we
have

(2.10) ξi(0)ξi(y) → h(y) = a|y|2−n + b in C2
loc(R3

+ \ {0}).

Using the last property in (2.9) and (2.10), we obtain b = a > 0. Applying
Lemma 1.1, for all 0 < σ < 1 we have∫

∂Bσ∩R3
+

B(σ, y, ξi,∇ξi) ≥
c(n)

pi + 1

∫
B+

σ

z · ∇K̃iξ
pi+1
i + O(ξi(0)−pi−1).

Multiplying the above by ξi(0)2 and sending i to ∞, we obtain (by Lemma 2.4)∫
∂Bσ∩R3

+

B(σ, y, h,∇h) ≥ 0, ∀0 < σ < 1.

However, a direct calculation contradicts the above (using b > 0) for σ > 0 small.

Proposition 2.5. For n = 3, let {Ki} be a convergent sequence of functions
in C1(B+

2 ). Suppose {ui} satisfies (2.2) and yi → 0 is a boundary isolated simple
blow up point. Then

|∇tanKi(yi)| = o(1).

If we further assume that Ki ∈ C1,1(B+
2 ) with ‖∂2Ki‖L∞(B+

2 ) uniformly bounded,
then

|∇tanKi(yi)| = O(ui(yi)−2).

Proof. Define a smooth cutoff function η ∈ C∞(R3
+) satisfying

η(x) = 1, x ∈ B+
1/4,

η(x) = 0, x ∈ R3
+ \B1/2.

By multiplying (2.2) by η∂ui/∂xj (1 ≤ j ≤ 2) and integrating by parts on B+
1 ,

it follows from Proposition 2.3 and some standard elliptic estimates that∣∣∣∣ ∫
B+

1

∂Ki

∂xj
upi+1

i

∣∣∣∣ ≤ Cui(yi)−2 + Cτi.

By a suitable Taylor expansion of ∂Ki/∂xj at yi, Proposition 2.5 follows from
Lemmas 2.3 and 2.4.

For 2 ≤ p ≤ 5, consider

(2.11)

{
−∆g0u + 3

4u = 1
8Kup, u > 0, on S3

−,

∂u/∂ν = 0 on ∂S3
−,

where ν denotes the unit outer normal at points of ∂S3
−.
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Theorem 2.1. Let {Ki} converge in C1(S3
−) norm to some positive func-

tion. Suppose {ui} satisfies (2.11) with K = Ki. Then after passing to a
subsequence, {ui} is either uniformly bounded in S3

−, or has precisely one blow
up point which is a boundary isolated simple blow up point. Moreover, if we let
qi → q denote the boundary isolated simple blow up point as in Definition 2.2,
then for some constant b1 > 0,

(2.12) ∇tanKi(qi) = o(1), τi = b1
∂Ki

∂ν
(qi)ui(qi)−2 + o(ui(qi)−2).

A consequence of Theorem 2.1 is the following a priori estimate on solutions
of (0.1).

Corollary 2.1. Let K ∈ C1(S3
−) be some positive function with no critical

point on ∂S3
−. Then for any solution u of (0.1) and any 0 < α < 1, we have

1/C ≤ min
S3
−

u ≤ max
S3
−

u ≤ C, ‖u‖C2,α(S3
−) ≤ C,

where C > 0 depends continuously on minS3
−

K > 0, ‖∇K‖L∞(S3
−), ‖∇K‖L∞(∂S3

−)

> 0, and 0 < α < 1.

Proposition 2.5. Suppose that K ∈ C0,1(S3
−) satisfies, for some positive

constants A1, A2,

(2.13) K(q) ≥ 1/A1 for all q ∈ S3
−, ‖∇K‖L∞(S3

−) ≤ A2.

Then for any 0 < ε < 1 and R > 1, there exist some positive constants C∗
0 =

C∗
0 (ε, R,A1, A2) and C∗

1 = C∗
1 (ε, R, , A1, A2) > 1 such that if u is a solution of

(2.11) with
max

S3
−

u > C∗
0 ,

then there exists 1 ≤ k = k(u) < ∞ and a set S(u) = {q1, . . . , qk} ⊂ S3
−

(qj = qj(u)) such that

(1) 0 ≤ τ ≡ 5− p < ε,

(2) q1, . . . , qk are local maxima of u and if, for each 1 ≤ j ≤ k, we let y be
some geodesic normal coordinates centered at qj, then
‖u(0)−1u(u(0)−(p−1)/2y)− δj(y)‖C2(B2R)

< ε,

BRu(qj)−(p−1)/2(qj) ⊂ S3
− if qj ∈ S3

−,

‖u(0)−1u(u(0)−(p−1)/2y)− δj(y)‖C2(B+
2R) < ε if qj ∈ ∂S3

−,

and {BRu(qj)−(p−1)/2(qj)}1≤j≤k are disjoint, where

δj(y) = (1 + kj |y|2)(2−n)/2 and kj = c(n)[n(n− 2)]−1K(qj),

(3) u(q) ≤ C∗
1{dist(q,S(u))}−2/(p−1) for all q ∈ S3

−.
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Proof. The proof follows from the uniqueness results of Caffarelli–Gidas–
Spruck, and some blow up argument. We omit the details. The argument is
similar to that in [Z], taking into account the proof of Proposition 2.1 here.

Proposition 2.6. Suppose that K ∈ C0,1(S3
−) satisfies (2.13) for some

positive constants A1, A2. Then for any ε > 0 and R > 1, there exists some
positive constant δ∗ = δ∗(ε, R,A1, A2) such that for any solution u of (2.11)
with maxS3

−
u > C∗

0 we have

|qj − ql| ≥ δ∗ for all 1 ≤ j 6= l ≤ k,

where qj = qj(u), ql = ql(u), and k = k(u) are defined in Proposition 2.5.

Proof. The proof is similar to the proof of Proposition 4.2 of [L1]. As always
we often pass to subsequences when necessary. Suppose the contrary: for some
constants A1, A2, ε > 0 and R > 1, there exists a sequence {Ki} ∈ C0,1(S3

−)
satisfying (2.13), and a sequence {ui} of solutions of (2.11) corresponding to
{Ki} satisfying

max
S3
−

ui > C∗
0 , min

1≤j 6=l≤k
|qj − ql| → 0+.

Without loss of generality,

|q1 − q2| = min
1≤j 6=l≤k

|qj − ql|, q1, q2 → q ∈ S3
−.

Using (2) of Proposition 2.5, we know that Rui(q1)−(pi−1)/2, Rui(q2)−(pi−1)/2 ≤
|q1− q2|. It follows that ui(q1), ui(q2) →∞. By making a suitable stereographic
projection to transform S3

− to R3
+, ui is transformed to vi which satisfies

(2.14)

{
−∆vi = 1

8KiH
τi
i vpi

i , vi > 0, in R3
+,

∂vi/∂y3 = 0 on ∂R3
+,

where Hi(y) = (2/(1 + |y|2))(n−2)/2. We can assume without loss of generality
that

(2.15)

vi(q) ≤ C∗
1 min

1≤j≤k
|q − qj |, ∀q ∈ R3

+,

q1, q2 are local maxima of vi,

σi ≡ |q1 − q2| = min
1≤j 6=l≤k

|qj − ql| → 0+, q1, q2 → q ∈ R3
+.

Notice that we have abused notation slightly by not distinguishing points in S3
−

from points in R3
+. Also we need to reselect points q1, q2 in order to satisfy (2.15)

since this property is not preserved by stereographic projection. With the help
of Proposition 2.1, this can be easily achieved by going to a subsequence.

Set
wi(y) = σ

2/(pi−1)
i vi(q1 + σiy), |y| < 2/σi, y3 ≥ Ti,
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where −σiTi is the third coordinate component of q1. It is clear that wi satisfies{
−∆wi(y) = 1

8K̃i(y)H̃i(y)τiwi(y)pi , |y| ≤ 2/σi, y3 ≥ Ti,

wi(y) > 0, |y| ≤ 2/σi, y3 ≥ Ti,

where K̃i(y) = Ki(σiy) and H̃i(y) = Hi(σiy).
The following properties can be deduced from properties of vi and Proposi-

tion 2.1: 
wi(0), wi(ỹi) ≥ 1/C, ∇wi(0) = ∇wi(ỹi) = 0,

|y|2/(pi−1)wi(y) ≤ C1, |y| ≤ 1/2, y3 ≥ Ti,

|y − ỹi|2/(pi−1)wi(y) ≤ C1, |y − ỹi| ≤ 1/2, y3 ≥ Ti,

where ỹi = (ỹi1, ỹi2, ỹi3) = (q2−q1)/σi. It is not difficult to see that wi(0), wi(ỹi)
→ ∞, since otherwise they both have to have finite limits and after passing to
the limit, lead to a positive solution of −∆w = w(n+2)/(n−2) in the upper half
plane with two critical points. This violates the uniqueness theorem of [CGS].
Therefore {0} and ỹi → ỹ are both isolated blow up points of {wi}, hence
isolated simple blow up points due to Proposition 3.1 of [L1] and Proposition
2.4. By multiplying the equation by wi(0), it follows from Proposition 2.3 and
the maximum principle (see the proof of Proposition 4.2 in [L1]) that there
exists a closed set S2 ⊂ R3

+ containing neither {0} nor {ỹ}, and some function
b∗ ∈ C∞(R3

+ \ S2) satisfying ∆b∗ = 0 and b∗ ≥ 0 on R3
+ \ S2 such that

lim
i→∞

wi(0)wi(y) = h∗(y) ≡ a1|y|2−n + a2|y − ỹ|2−n + b∗(y) in C2
loc(R3

+ \ S2),

where a1, a2 > 0 are some constants. In particular, for some constant b > 0,

h∗(y) = a1|y|2−n + b + O(|y|) for y close to 0.

Applying Lemma 1.1 (or Corollary 1.1 of [L1]) as in the proof of Proposition 2.4,
we reach a contradiction.

Proof of Theorem 2.1. Let {ui} satisfy maxS3
−

ui → ∞. After passing

to a subsequence, it follows from Propositions 2.6 and 2.4 that {ui} has finitely
many isolated simple blow up points, denoted as {q(1), . . . , q(k)}. Let q

(j)
i →

q(j) be the local maximum of ui as stated in Definition 2.2. We know from
Proposition 2.5, and Proposition 3.2 of [L1], that limi→∞ |∇Ki(q

(j)
i )| = 0 if q(j) ∈

S3
−, and limi→∞ |∇tanKi(q

(j)
i )| = 0 if q(j) ∈ ∂S3

−. It follows from Proposition 2.3
and some standard elliptic theory that

ui(q
(1)
i )ui → h ≡

k∑
j=1

aj(Gq(j) + Gq̂(j)) in C2
loc(S3

− \ {q(1), . . . , q(k)}),

where a1, . . . , ak > 0 are some constants, q̂(j) ∈ S3
+ denotes the symmetric point

of q(j), and Gq(j) denotes the Green function of −∆g0 + 3
4 at q(j).
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We first show that {q(1), . . . , q(k), q̂(1), . . . , q̂(k)} consists of precisely one
point. Suppose the contrary; it follows from the positivity of the Green function
that for some constants a, b > 0,

h(q) = aGq(1) + b + O(|q − q(1)|).

Applying the Pokhozhaev type identity as in the proof of Proposition 2.4, we
reach a contradiction. This shows that {ui} has precisely one boundary isolated
simple blow up point. By making a suitable stereographic projection to transform
S3
− to R3

+ and qi to 0, ui is transformed to vi which satisfies (2.14). Applying
Lemma 1.1, we obtain

(2.16)
∫

R3
+

y · ∇(KiH
τi
i )vpi

i +
τi

2

∫
R3

+

KiH
τi
i vpi+1

i = 0.

Using Lemma 2.4, Lemma 2.3 and Proposition 2.5, we have∫
R3

+

y · ∇(KiH
τi
i )vpi

i =
∂Ki

∂y3
(0)

∫
R3

+

y3v
pi

i + o(vi(0)−2).

Estimate (2.12) follows from the above, (2.16) and Lemma 2.3.

3. Proof of Theorem 0.1

We define H = {u ∈ H1(S3) | u(x1, x2, x3, x4) = u(x1, x2, x3,−x4)}, and
the inner product and norm by 〈u, v〉 =

∫
S3

(
∇u∇v + 3

4uv
)

and ‖u‖ =
√
〈u, u〉

respectively. For τ > 0 small, we set

Iτ (u) =
1
2
‖u‖2 − 1

8(6− τ)

∫
S3

K|u|6−τ .

For P ∈ S3 and t > 0, we define

δP,t(x) =
(

t

1 + t2−1
2 (1− cos d(P, x))

)1/2

, x ∈ S3,

where d(P, x) denotes the geodesic distance between P, x ∈ S3. It is well known
that δP,t satisfies

−∆g0δP,t + 3
4δP,t = 3

4δ5
P,t,

and

‖δP,t‖2 = 3
4 |S

3|,
∫

S3
δ6
P,t = |S3|.

For P ∈ K− and ε0 > 0 suitably small, let

Ωε0(P ) = {(α, t, P ) ∈ R+ × R+ × ∂S3
− | |α− (6/K(P ))1/4| < ε0,

|P − P | < ε0, t > 1/ε0}.
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It follows from [BC] that for any u ∈ H satisfying ‖u− α̃δ
eP,et‖ < ε0/2, for some

(α̃, t̃, P̃ ) ∈ Ωε0/2, we have a unique representation

u = αδP,t + v

with (α, t, P ) ∈ Ωε0 and

(3.1) 〈v, δP,t〉 =
〈

v,
∂δP,t

∂P (l)

〉
=

〈
v,

∂δP,t

∂t

〉
= 0.

We work in some orthonormal basis near P , and ∂/∂P (l) denotes the correspond-
ing derivatives. By uniqueness, we know that P ∈ ∂S3

−, and hence v ∈ H. We
denote the set of v ∈ H satisfying (3.1) by Et,P . It follows that in a small tubular
neighborhood (independent of τ) of {αδP,t | (α, t, P ) ∈ Ωε0/2} in H, (α, t, P, v)
is a good parametrization. In the new parameters, we write

Jτ (α, t, P, v) = Iτ (u) for u = αδP,t + v.

For a suitably large constant A and suitably small constants ε0, ν0, set

Στ (P ) = {(α, t, P, v) ∈ Ωε0/2 ×H | 1/A < tτ < A, v ∈ Et,P , ‖v‖ < ν0}.

Without confusion we use the same notation for

Στ (P ) = {u = αδP,t + v | (α, t, P, v) ∈ Στ (P )}.

Proposition 3.1. For K ∈ A ∩ C2(S3
−), assume that K|∂S3

−
is a Morse

function. Let 0 < α < 1. Then there exist some positive constants ε0, ν0 � 1
and A,R � 1, depending only on K and α, such that, when τ > 0 is sufficiently
small,

u ∈ OR ≡ {w ∈ C2,α(S3
−) | 1/R < w < R on S3

−, ‖w‖C2,α(S3
−) < R},

or u ∈ Στ (P ) for some P ∈ K−, for all u satisfying u ∈ H, u > 0 a.e., and
I ′τ (u) = 0.

Proof. This follows from Theorem 2.1, Proposition 2.3, and some standard
elliptic estimates.

Theorem 3.1. For K ∈ A∩C2(S3
−), assume that K|∂S3

−
is a Morse function.

Then for τ > 0 sufficiently small, and P ∈ K−, Iτ has a unique critical point in
Στ (P ), which is nondegenerate with Morse index 3− i(P ). It follows that

(3.2) degH1(I ′τ ,Στ (P ), 0) = (−1)3−i(P ).

Here i(P ) denotes the Morse index of K|∂S3
−

at P .
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Proposition 3.2. For τ > 0 small and (α, t, P, 0) ∈ Στ (P ) with P ∈ K−,
there exists a unique minimizer v = vτ (α, t, P ) ∈ Et,P of Jτ (α, t, P, v). Further-
more,

‖v‖ ≤ Cτ |log τ |, 〈∂vJτ (α, t, P, v), v〉 6= 0, ∀(α, t, P, v) ∈ Στ (P ), v 6= v,

and (τ, α, t, P ) 7→ vτ (α, t, P ) is a C2 map to H.

Proof. It follows from a direct calculation, using (3.1), that

Jτ (α, t, P, v) =
3|S3|α2

8
− α6−τ

8(6− τ)

∫
S3

Kδ6−τ
P,t + fτ (v) + Qτ (v, v) + O(‖v‖3),

where

fτ (v) = −α5−τ

8

∫
S3

Kδ5−τ
P,t v,

Qτ (ϕ, v) =
1
2
〈ϕ, v〉 − (5− τ)α4−τ

16

∫
S3

Kδ4−τ
P,t ϕv.

It is well known that for some δ0 > 0, Q0(v, v) ≥ δ0‖v‖2 for all v ∈ Et,P . It
follows, after some elementary calculations, that for τ > 0 small we have

Qτ (v, v) ≥ (δ0/2)‖v‖2, ∀(α, t, P, v) ∈ Στ (P ).

Using (3.1), the Sobolev embedding theorem and Lemma A in the Appendix, we
have

fτ (v) = − α5−τ

8

∫
S3

[K −K(P )]δ5
P,tv + O(‖δ5

P,t − δ5−τ
P,t ‖L6/5‖v‖)

= O(‖ | · −P |δ5
P,t‖L6/5 + ‖δ5

P,t − δ5−τ
P,t ‖L6/5)‖v‖

= O(τ |log τ |)‖v‖.

It follows that ‖fτ‖ = O(τ |log τ |). The existence, uniqueness and C2 dependence
of the minimizer v = vτ (α, t, P ) as stated in Proposition 3.2 follow from standard
functional analysis arguments.

Proof of Theorem 3.1. We will only prove (3.2). The full strength of
Theorem 3.1 can be proved by some further essentially elementary, even though
somewhat tedious, argument. Set β = α − (6/K(P ))1/4. It follows from (3.1)
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and Lemma A in the Appendix that

(3.3)
∂

∂α
Jτ (α, t, P, v)

=
3|S3|α

4
− 1

8
α5−τ

∫
S3

Kδ6−τ
P,t − (5− τ)α4−τ

8

∫
S3

Kδ5−τ
P,t v + O(‖v‖2)

=
3|S3|α

4
− 1

8
α5−τK(P )

∫
S3

δ6
P,t + O(‖ | · −P |δ6−τ

P,t ‖L1) + O(‖δ6
P,t − δ6−τ

P,t ‖L1)

+ O(‖ | · −P |δ5−τ
P,t ‖L6/5‖v‖) + O(‖δ5

P,t − δ5−τ
P,t ‖L6/5‖v‖) + O(‖v‖2)

= − 3|S3|β + O(τ |log τ |) + O(β2) + O(‖v‖2).

Similarly, noticing that several integrals vanish due to oddness with respect to
certain directions, e.g.,

∫
S3 δ5−τ

P,t
∂δP,t

∂P = 0, we have

(3.4)
∂

∂P
Jτ (α, t, P, v)

= − α6−τ

4

∫
S3
−

Kδ5−τ
P,t

∂δP,t

∂P
+ O(‖v‖)

= − α6−τ

4

∫
S3
−

[K −K(P )]δ5−τ
P,t

∂δP,t

∂P
+ O(‖v‖)

= − α6−τ

4

∫
S3
−

∇K(P ) · (· − P )δ5−τ
P,t

∂δP,t

∂P
+ O(1/t) + O(‖v‖)

= − ΓK(P )−3/2∇tanK(P ) + O(1/t) + O(|β|) + O(‖v‖).

Here and throughout the paper, Γ > 0 denotes various universal constants. Set

Σ̃τ = {u = αδP,t + v ∈ Στ | ‖v‖ < τ |log τ |3, |β| < τ |log τ |2}.

Using Proposition 3.1, Proposition 3.2 and (3.3), we know that I ′τ (u) 6= 0 for all
u ∈ Στ \ Σ̃τ . In the following, we only make calculations for u = αδP,t + v ∈ Σ̃τ .

A calculation yields

∂

∂t
Jτ (α, t, P, v) = − α

8

∫
S3

K|αδP,t + v|4−τ (αδP,t + v)
∂δP,t

∂t

= − α

8

∫
S3

K{(αδP,t)5−τ + (5− τ)(αδP,t)4−τv}∂δP,t

∂t

+ O

(
‖v‖2

∥∥∥∥∂δP,t

∂t

∥∥∥∥)
.
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Noticing that
∫

S3 δ4
P,tv

∂δP,t

∂t = 1
5

∂
∂t

∫
S3 δ5

P,tv = 0, we have∫
S3

Kδ4−τ
P,t v

∂δP,t

∂t

=
∫

S3
[K −K(P )]δ4−τ

P,t v
∂δP,t

∂t
+

∫
S3

K(P )[δ4−τ
P,t − δ4

P,t]v
∂δP,t

∂t

= O

(
‖ | · −P |δ4−τ

P,t ‖L3/2‖v‖
∥∥∥∥∂δP,t

∂t

∥∥∥∥)
+ O

(
‖δ4

P,t − δ4−τ
P,t ‖L3/2‖v‖

∥∥∥∥∂δP,t

∂t

∥∥∥∥)
= o(t−2).

It follows from the above and from 6
∫

S3 δ5
P,t

∂δP,t

∂t = ∂
∂t

∫
S3 δ6

P,t = 0 that

(3.5)
∂

∂t
Jτ (α, t, P, v)

= − α6−τ

4

∫
S3
−

Kδ5−τ
P,t

∂δP,t

∂t
+ o(t−2)

= − α6−τ

4

∫
S3
−

[K(P ) +∇K(P ) · (· − P )]δ5−τ
P,t

∂δP,t

∂t

+ O

(
‖ | · −P |2δ5−τ

P,t ‖L6/5

∥∥∥∥∂δP,t

∂t

∥∥∥∥)
+ o(t−2)

= −K(P )
α6−τ

4

∫
S3
−

δ5−τ
P,t

∂δP,t

∂t

+
α6−τ

4
∂K

∂ν
(P )

∫
S3
−

|(· − P )4|δ5−τ
P,t

∂δP,t

∂t
+ o(t−2)

= Γ
√

K(P )
τ

t
− ΓK(P )−3/2 ∂K

∂ν
(P )t−2 + O(|β|t−2) + o(t−2).

At u = αδP,t + v ∈ Σ̃τ ,

TuH = Et,P ⊕ span
{

δP,t,
∂δP,t

∂t
,
∂δP,t

∂P

}
.

We write I ′τ (u) ∈ TuH as

I ′τ (u) = ξ + η,

where ξ ∈ Et,P and η ∈ span{δP,t, ∂δP,t/∂t, ∂δP,t/∂P}. For all ϕ ∈ Et,P ,

〈ξ, ϕ〉 = I ′τ (u)ϕ = fτ (ϕ) + 2Qτ (ϕ, v) + 〈Vv(τ, α, t, P, v), ϕ〉,

where Vv is some function satisfying ‖Vv(τ, α, t, P, v)‖ ≤ C‖v‖2. Taking ϕ = v,
we get

‖ξ‖ ≥ δ0‖v‖ − ‖fτ‖ −O(‖v‖2) ≥ δ0

2
‖v‖ − ‖fτ‖.
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It follows from (3.3) that

〈η, δP,t〉 =
∂

∂α
Iτ (u) = −3|S3|β + Vα(τ, α, t, P, v),

where Vα satisfies |Vα(τ, α, t, P, v)| ≤ Cτ |log τ |. It follows from (3.5) that〈
η,

∂δP,t

∂t

〉
=

1
α

∂

∂t
Iτ (u) = ΓK(P )3/4 τ

t
−ΓK(P )−5/4 ∂K

∂ν
(P )t−2+Vt(τ, α, t, P, v),

where Vt satisfies |Vt(τ, α, t, P, v)| = o(t−2). It follows from (3.4) that〈
η,

∂δP,t

∂P

〉
=

1
α

∂

∂P
Iτ (u) = −ΓK(P )−5/4∇tanK(P ) + VP (τ, α, t, P, v),

where VP satisfies |VP (τ, α, t, P, v)| = C(τ + |β|+ ‖v‖) = o(1).
It is well known that I ′τ (u) = ξ +η is of the form id+compact in H. We first

define P (θ) as the geodesic trajectory on ∂S3
− with P (1) = P and P (0) = P .

Define
Xθ = ξθ + ηθ, 0 ≤ θ ≤ 1,

as follows. For all ϕ ∈ Et,P , 0 ≤ θ ≤ 1,

〈ξθ, ϕ〉 = θfτ (ϕ) + (1− θ)〈v, ϕ〉+ 2θQτ (ϕ, v) + θ〈Vv(τ, α, t, P, v), ϕ〉,
〈ηθ, δP,t〉 = −3|S3|β + θVα,〈

ηθ,
∂δP,t

∂t

〉
= ΓK(P (θ))3/4 τ

t
− ΓK(P (θ))−5/4 ∂K

∂ν
(P (θ))t−2 + θVt,〈

η,
∂δP,t

∂P

〉
= −ΓK(P (θ))−5/4∇tanK(P ) + tVP .

It is easy to see that Xθ is well defined in Σ̃τ . It follows from the Sobolev compact
embedding theorem, the explicit form of Vv, Vα, Vt, VP , A−1 < tτ < A, and the
estimates we have obtained that Xθ is of the form id + compact. Furthermore,
it is not difficult to see that Xθ (0 ≤ θ ≤ 1) is an admissible homotopy with
Xθ|∂eΣτ

6= 0. It follows that

degH1(X1, Σ̃τ , 0) = degH1(X0, Σ̃τ , 0).

It is easy to see that

degH1(X0, Σ̃τ , 0) = (−1)3−i(P ).

We have thus established (3.2).

Proof of Theorem 0.1 (and the justification of the definition of Index:
A → Z). Part (a) follows from Theorem 2.1. For K ∈ A ∩ C2(S3

−), K|∂S3
−

being a Morse function, (0.3) follows from Theorem 3.1 and properties of the
Leray–Schauder degree as in [L2]. Now the definition of Index can be justified
by the above and the homotopy invariance of the Leray–Schauder degree. For
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the same reason, (0.3) holds for all K ∈ A. Part (b) can be derived from (a) by
an argument similar to that in [L3].

Appendix

Lemma A. Let A > 1 be some positive constant, τ > 0, and 1/A < tτ < A.
Then

‖ | · −P |δ5
P,t‖L6/5(S3) ≤ C/t, ‖ | · −P |δ5−τ

P,t ‖L6/5(S3) ≤ C/t,∫
S3
| · −P |aδ6−τ

P,t =

{
Γt−τ/2 + o(1), a = 0,

Γt−a + o(t−a), 0 < a < 3,∫
S3
| · −P |aδ6

P,t = Γt−a + o(t−a), 0 < a < 3,∫
S3

δ6
P,t|1− δ−τ

P,t |
a ≤ C(a)(τ |log τ |)a, 0 ≤ a < 3,∥∥∥∥∂δP,t

∂t

∥∥∥∥ = Γ/t,

∫
S3

δ5−τ
P,t

∂δP,t

∂t
= −Γτ/t + o(τ/t),∫

S3
|(· − P )4|δ5−τ

P,t

∂δP,t

∂t
= −Γt−2 + o(t−2),∫

S3
| · −P |2δ5−τ

P,t

∣∣∣∣∂δP,t

∂P

∣∣∣∣ ≤ C/t,

where o(1) denotes some quantity which tends to 0 as t tends to infinity, and C

denotes some constant depending only on A. We also recall that Γ > 0 denotes
various universal constants.

Proof. This follows from straightforward calculations.
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