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MINKOWSKI PROBLEMS FOR COMPLETE
NONCOMPACT CONVEX HYPERSURFACES

Kai-Seng Chou — Xu-Jia Wang

Dedicated to Professor L. Nirenberg on the occasion of his 70th birthday

We present some sufficient conditions on the existence of a complete non-
compact convex hypersurface whose Gauss curvature is equal to a prescribed
function on the unit sphere. By the Legendre transform this problem is reduced
to the solvability of the Monge–Ampère equation subject to certain boundary
conditions.

Introduction

Let X be a compact, strictly convex C2-hypersurface in the (n+1)-dimension-
al Euclidean space Rn+1. The Gauss map of X maps the hypersurface one-to-one
and onto the unit n-sphere Sn. One may parametrize X by the inverse of the
Gauss map. Consequently, the Gauss curvature can be regarded as a function
on Sn. The classical Minkowski problem asks conversely when a positive function
K on Sn is the Gauss curvature of a compact convex hypersurface. It turns out
that a necessary and sufficient condition is

(1)
∫

Sn

xi

K(x)
dx = 0, i = 1, . . . , n + 1.

Furthermore, convex hypersurfaces with the same K (as functions of the outer
normal) are identical up to translations. For a detailed discussion on this problem
one may consult, for instance, [CY] and [P1].
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The same problem makes perfectly sense for complete, noncompact, convex
hypersurfaces. Now the spherical image of such a hypersurface is an open convex
subset of Sn contained in some hemisphere. We may ask: Given an open convex
proper subset D of Sn and a positive function K in D, when can we find a
complete convex hypersurface with spherical image D and Gauss curvature K?
And when is it unique? In this paper we give some sufficient conditions for
this to hold. Roughly speaking, the integrability condition (1) which ensures
the closedness of X will be replaced by a certain decay condition on K at the
boundary of D.

To proceed further we need to write down an equation for our problem. More
precisely, let X be a complete, noncompact, strictly convex C2-hypersurface in
Rn+1 and let D be its spherical image. By suitably rotating axes we may assume
D satisfies one and exactly one of the following conditions:

(I) D is strictly contained in Sn
− = {x ∈ Sn : xn+1 < 0},

(II) D = Sn
−,

(III) D is a proper subset of Sn
− and it is not strictly contained in any hemi-

sphere.

We shall say X is of type I, II, or III according to whether (I), (II), or (III)
holds. Notice that by our choice of coordinates, X is the graph of a convex
function over a convex domain in the (x1, . . . , xn)-space.

The support function of X is defined by

H(x) = sup
p∈X

〈p, x〉, x ∈ D,

where 〈·, ·〉 is the inner product in Rn+1. It is well known that X can be recovered
from H and

det(∇ijH + δijH) = 1/K on D

(∇ is the covariant differentiation on Sn). If we extend H to be a 1-homogeneous
function over the cone {λx : x ∈ D, λ > 0}, then for Ω = {λx : x ∈ D,λ > 0} ∩
{x : xn+1 = −1} and u(x1, . . . , xn) = H(x1, . . . , xn,−1), this equation becomes

(2) det∇2u(x) = (1 + |x|2)−(n+2)/2K−1

(
x,−1√
1 + |x|2

)
, x ∈ Ω.

Whenever a convex solution of (2) is given, it determines X in the following way
(see [CY] or [P1]): Let Ω∗ = ∇u(Ω) and

u∗(ξ) = sup{〈ξ, x〉 − u(x) : x ∈ Ω}, ξ ∈ Ω∗.

Then X is the graph {(ξ, u∗(ξ)) : ξ ∈ Ω∗}, and its Gauss curvature is equal to K.
Thus to solve the Minkowski problem we must solve (2). However, when is X

complete?
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When D is strictly contained in Sn
−, Ω is a bounded convex domain in Rn.

It is clear that X is complete if and only if Ω∗ = Rn. We pose the following
Minkowski problem for type I hypersurfaces: For given D and K, solve (2)
subject to

|∇u(x)| → ∞ as x → ∂Ω,(3)

u(x) = φ(x), x ∈ ∂Ω,(4)

where φ is prescribed. Our first result is

Theorem A. Let D be a uniformly convex C2-domain strictly contained in
Sn
−, K a positive function in Cα(D), α ∈ (0, 1), and φ ∈ C2(∂D). Suppose there

exist two positive functions h and g defined in (0, r0], r0 > 0, satisfying

(a)
∫ r0

0
h(t) dt = ∞,

(b)
∫ r0

0
(
∫ r0

s
g(t) dt)1/n ds < ∞,

so that
h(dist(x, ∂D)) ≤ K−1(x) ≤ g(dist(x, ∂D))

near ∂D. Then the Minkowski problem (2)–(4) has a unique solution in C2,α(D)
∩ C(D).

The Minkowski problem for type I hypersurfaces was first studied by Pogo-
relov [P3]. He proved that if (i) K(x)/dist(x, ∂D) is bounded above and (ii)
K(x)/dist(x, ∂D)n+1−γ , γ > 0, is bounded below, then the Minkowski problem
has a unique solution. One can easily check that his result is contained in
Theorem A.

Next we consider type II hypersurfaces. By integrating (2) we find that

(5) |Ω∗| =
∫

D

|xn+1|
K(x)

dσ.

We distinguish two cases: |Ω∗| < ∞ and |Ω∗| = ∞. The first case is easier. Since
now Ω is the entire space, it is not appropriate to prescribe the boundary value.
Instead we prescribe Ω∗.

Theorem B. Let K be a positive function in Cα
loc(S

n
−) and Ω∗ a bounded

uniformly convex C2,α-domain in Rn satisfying (5). Then there exists a convex
hypersurface X, which is a graph over Ω∗, admitting K as its Gauss curvature.
X is unique up to translation along the xn+1-axis. Furthermore, X is complete
if

(6) K(x) ≤ Cxn+1, −1 < xn+1 < 0.

Theorems A and B are nearly optimal when one restricts to spherically sym-
metric hypersurfaces. However, when it comes to type II hypersurfaces satisfying
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|Ω∗| = ∞, our result is less general. In [CW] we show that the equation

det∇2u(x) = f(x), 0 < C0 ≤ f ≤ C1, x ∈ Rn,

has infinitely many solutions subjecting to the normalization condition u(0) =
∇u(0) = 0. From this one deduces

Theorem C. Let K be a positive function in Cα
loc(S

n
−) satisfying

0 < C0 ≤ K(x)x−n−2
n+1 ≤ C1, x ∈ Sn

−.

Then there are infinitely many type II hypersurfaces whose Gauss curvature func-
tions are equal to K.

Recently we have generalized this theorem by relaxing the condition on K

to 0 < C0 ≤ K(x)x−n−γ
n+1 ≤ C1 for γ > 0. The proof will be published elsewhere.

1. Type I hypersurfaces

In this section we prove Theorem A. First we point out that it suffices to
produce a generalized solution u of (2) in C(Ω) satisfying (3) and (4). Its unique-
ness follows from the comparison principle. Moreover, by [C1] and (3), u must
be strictly convex and hence belongs to C2,α(Ω) according to [C2].

To simplify notation write

R(x) = (1 + |x|2)−(n+2)/2K−1

(
x,−1√
1 + |x|2

)
, x ∈ Ω,

and assume the boundary value φ belongs to C2(Ω) and is convex. Let Ω(r) =
{x ∈ Ω : dist(x, ∂Ω) > r). For r0 > 0 small depending on the geometry of Ω,
Ω(r) is still uniformly convex for r ∈ (0, 2r0). For x ∈ Ωr0 , x can be represented
uniquely by xb + dn(xb), where xb ∈ ∂Ω, d = dist(x, ∂D), and n(xb) is the unit
inner normal at xb. For a function f defined near ∂Ω we write f(x) = f(xb, d).
The proof of Theorem A relies on the following two lemmas.

Lemma 1. Suppose there exists a positive function g satisfying (b) of Theo-
rem A such that R(xb, d) ≤ g(d). Then (2) admits a unique generalized solution
u in C(Ω) and u = φ on ∂Ω.

Proof. For x = xb + dn(xb) in Ω\Ωr0 we define

v(x) = %(d) = −
∫ d

0

(∫ r0

s

g(t) dt

)1/n

ds.

We claim

(7) det∇2v(x) =
n−1∏
i=1

ki(xb)
1− ki(xb)d

(−%′(d))n−1%′′(d)
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in Ω\Ωr0 , where ki(xb) (i = 1, . . . , n − 1) are the principal curvatures of ∂Ω
at xb.

To prove (7) we first observe that the Monge–Ampère operator is invariant
under a rigid motion. So we can assume xb is the origin, the positive xn-axis lies
in the inner normal direction, and moreover, the xi-axes (i = 1, . . . , n − 1) are
the principal directions of ∂Ω at the origin. For the function v(x) = %(d),

∂2v

∂xi∂xj
= %′′

∂d

∂xi

∂d

∂xj
+ %′

∂2d

∂xi∂xj
.

By a direct computation,

∂d

∂xi
= 0, i = 1, . . . , n− 1,

∂d

∂xn
= 1,

∂2d

∂xi∂xj
=

−ki(0)
1− ki(0)d

δij , 1 ≤ i, j ≤ n− 1,
∂2d

∂xi∂xn
= 0, i = 1, . . . , n,

at x = (0, . . . , 0, d). Hence (7) follows.
Now observe that v(x) = const on ∂Ωr for r ∈ [0, r0]. We can extend v to

Ωr0 so that det∇2v = ε > 0 in Ωr0 . For ε small, v is uniformly convex in Ω. Let
w(x) = φ(x) + Av(x). For A large enough we have

det∇2w(x) ≥ An det∇2v(x) ≥ g

in Ω. This means that w is a subsolution of (2) and (4).
Denote Φ by the set of all subsolutions of (2) and (4), and let u(x) =

sup{ũ(x) : ũ ∈ Φ}. One can easily verify that u is a generalized solution of
(2). Since w ∈ Φ we conclude that u = φ on ∂Ω. �

Lemma 2. Suppose that there exists a positive h satisfying (a) of Theorem A
such that h(d) ≤ R(xb, d). Then the solution produced by Lemma 1 satisfies (3).

Proof. For any boundary point x0 we shall assume x0 is the origin and
the positive xn-axis is in the inner normal direction. Since φ ∈ C2(Ω) and
Ω is uniformly convex, by adding a linear function to φ we may also assume
φ(x0) = maxΩ u = 0. To prove |∇u(x)| → ∞ as x → x0, we introduce a function
v(x) as in the proof of Lemma 1 by

v(x) = %(d) = −
∫ d

0

(∫ r0

s

h(t) dt

)1/n

ds, x ∈ Ω\Ωr0 .

Then |∇v(x)| → ∞ as x → ∂Ω. Extend v(x) to Ωr0 as in the proof of Lemma 1
and then modify v(x) to get a uniformly convex function ṽ(x) ∈ C2(Ω) so that
ṽ(x) = v(x) in Ω\Ωr0/2. Then for ε > 0 small enough, we have det∇2(εv) ≤ f(x)
and εv = 0 ≥ u on ∂Ω. By the comparison principle, εv(x) ≥ u(x) in Ω. Hence
|∇u(x)| → ∞ as x → x0. �
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We remark that the same line of proof yields a similar result for type III
hypersurfaces. To formulate it we observe that for a type III hypersurface, Ω is
of the form ω × Rm, where ω is a bounded convex domain in Rn−m. Near ∂ω

we may write x̃ = (x1, . . . , xn−m) = x̃b + dn(x̃b) as before. Then we have

Theorem D. Let Ω = ω × Rm, where ω is a uniformly convex C2-domain
in Rn−m. Suppose that φ can be extended to Ω so that {∇2φ(x)} ≥ δ0 I for
some positive constant δ0, where I is the identity matrix. Suppose moreover
there exist two positive functions h and g satisfying

(a)
∫ r0

0
h(t) dt = ∞,

(b)
∫ r0

0
(
∫ r0

s
g(t) dt)1/(n−m) ds < ∞,

such that

h(dist(x̃, ∂ω)) ≤ f(x) ≤ g(dist(x̃, ∂ω)), x̃ = x̃b + dn(x̃b),

near ∂Ω. Then there exists a unique solution u of (2)–(4) in C(Ω) ∩ C2,α(Ω).

2. An auxiliary proposition

Proposition. Let Ω and Ω∗ be two bounded convex domains in Rn. Sup-
pose f(x) and g(p) are two positively pinched functions which satisfy

(8)
∫

Ω

f(x) dx =
∫

Ω∗
g(p) dp < ∞.

Then there exists a solution, unique up to an additive constant, to the problem

g(∇u) det∇2u = f(x) in Ω,(9)

∇u maps Ω bijectively onto Ω∗.(10)

Proof. In the following proof we shall assume additionally that Ω is a uni-
formly convex C2-domain. This extra condition can be removed by an approxi-
mation argument.

Let fε(x, u) = eεuf(x), where ε > 0 is a positive constant. We consider the
approximation problem

(9)ε g(∇u) det∇2u = fε(x, u) in Ω.

For any ε > 0, let Ψε be the set of all subsolutions u of (9)ε so that

(11) Nu(Ω) ⊂ Ω∗,

where Nu(Ω) is the normal image of u over Ω. It is easy to see that Ψε is not
empty. For any u ∈ Ψε, we have

|Ω∗| ≥ |Nu(Ω)| ≥
∫

Ω

eεuf(x) dx,
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which, together with (8), implies infΩ u(x) ≤ 0. From (11) it follows that u(x) ≤
C∗diam(Ω), where C∗ = sup{|x| : x ∈ Ω∗}. Let uε(x) = sup{u(x) : u ∈ Ψε}.
One easily verifies that uε is a generalized solution of (9)ε. Since Ω∗ is convex,
by (11) we have Nuε

(Ω) ⊂ Ω∗. Extend uε to Rn by

uε(x) = sup{〈ξ, x− y〉+ u(y) : y ∈ Ω, ξ ∈ Nu(y)}

so that Nuε
is well defined on ∂Ω. We claim that Nuε

(Ω) = Ω∗. Indeed, suppose
there exists x0 ∈ ∂Ω so that there is a point p0 ∈ Nuε(x0) which lies in the
interior of Ω∗. We will construct a subsolution u ∈ Ψε so that u(x0) > uε(x0),
which contradicts the definition of uε(x).

Without loss of generality we may suppose x0 is the origin and Ω is contained
in {xn > 0}. Let

f0 = sup{f(x)eεu/g(p) : x ∈ Ω, u ≤ C∗diam(Ω), p ∈ Ω∗},

and let `(x) = uε(0) + p0 · x be a supporting hyperplane of uε(x) at the origin.
Let

w(x) = `(x)− 1
2
f0M

n−1δ2 + f0M
n−1(xn − δ)2 +

1
M

n−1∑
i=1

x2
i ,

where δ > 0 and M > 1 are respectively small and large constants to be specified
below. Then det∇2w = 2nf0 in Ω. In Ω ∩ {xn < δ} we have

|∇w −∇`| ≤ 2δf0M
n−1 +

2
M

∑
|xi| ≤ C(δ1/2 + δMn−1).

For δMn−1 small enough, we have ∇w(x) ⊂ Ω∗ for x ∈ Ω ∩ {xn < δ}. On
{xn = δ} ∩ Ω we have

w(x) ≤ `(x)− 1
2
f0M

n−1δ2 +
Cδ

M
,

where C depends on the lower bound of the principal curvatures of ∂Ω. Let M

be large enough so that Mnδ > 2C/f0. We obtain

(12) w(x) < `(x) ≤ uε(x) on {xn = δ} ∩ Ω.

On the other hand,

w(0) = `(0) +
1
2
f0M

n−1δ2 > uε(0).

Let ω be the component of {x ∈ Ω : w(x) > u(x)} containing the origin. By (12)
we have ω ⊂ {xn < δ} ∩ Ω. Set

u(x) =

{
w(x) if x ∈ ω,

uε(x) else.
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Then u(x) is a subsolution of (9)ε with u(0) > uε(0) so that Nu(Ω) ⊂ Ω∗.
However, this is impossible by the definition of uε. We have proved that (9)ε,
(10) admits a solution uε. Integrating (9)ε over Ω gives∫

Ω∗
g(p) dp =

∫
Ω

eεuf(x) dx.

By virtue of (8), we have inf uε ≤ 0 and supuε ≥ 0. Hence there exists a
subsequence of uε which converges uniformly to some function u0 in Ω. And
u0 is a generalized solution of (9) with Nu0(Ω) ⊂ Ω∗. We claim Nu0(Ω) ⊃ Ω∗.
Indeed, let Ω∗

1 = Ω∗\Nu0(Ω). By the definition of a generalized solution we have∫
Ω

f(x) dx =
∫

Ω∗\Ω∗1
g(p) dp,

which by (8) implies Ω∗
1 = ∅. Thus u0 is a generalized solution of (9), (10).

If the graph of u0 contains a line segment, the endpoints of the segment lie
on the boundary of the graph according to [C1]. In this case the normal image
of u0 cannot be a convex domain. Hence u0 must be strictly convex. By [C3], it
follows that u0 ∈ C1+α(Ω) and so ∇u0 maps Ω bijectively onto Ω∗.

To show uniqueness suppose there are two solutions u1 and u2 so that u1 = u2

at some point and Ω1 = {x ∈ Ω : u1(x) > u2(x)} is nonempty. By adding a
constant we may suppose the measure of Nu1(Ω1)\Nu2(Ω1) is positive. On the
other hand, by the definition of generalized solution,∫

Nu1 (Ω1)

g(p) dp =
∫

Ω1

f(x) dx =
∫

Nu2 (Ω1)

g(p) dp.

This is impossible. �

It was Pogorelov [P3] who first proved the existence of a generalized solution
for the above problem. His proof is based on the approximation by polyhedra.
A more recent alternate proof was provided by Caffarelli [C4]. Here we have
presented an elementary proof. The advantage of our proof is that it can also
be used to treat the existence of solutions to the oblique derivative problem for
the Monge–Ampère equations in all dimensions. Let us consider

det∇2u = f(x) in Ω,(13)

∇βu = lim
t→0

u(x + βt)− u(x)
t

= φ(x, u) on ∂Ω,(14)

where Ω is a uniformly convex domain in Rn, β, φ and f are continuous functions
of their arguments with φ nonincreasing in u, f ≥ C0 > 0, and

(H1) β(x) · ν(x) ≥ β0 > 0 on ∂Ω, where ν is the unit outer normal to ∂Ω,
(H2) lim|u|→+∞ sign(u)φ(x, u) = −∞ uniformly for x ∈ ∂Ω.
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We say a convex function u is a generalized solution (subsolution, resp.) of
(13), (14) if

det∇2u = (≥, resp.) f(x)

in Alexandrov’s sense, and

∇βu(x) = (≤, resp.) φ(x, u) on ∂Ω.

Let Φ be the set of all subsolutions to the problem (13), (14). Let u(x) =
sup{w(x) : w ∈ Φ}. Following the proof above one sees that u is a generalized
solution of (13), (14). Note that for a Lipschitz convex function, (14) is well
defined.

It is worthwhile to point out that even when f , φ, β and ∂Ω are C∞ smooth,
solutions of (13), (14) may fail to be C2 (see [U2]).

3. Type II hypersurfaces over bounded domains

In this section we prove Theorem B.

Lemma 3. Suppose that R is locally bounded and Ω∗ is a convex domain
satisfying

(15) |Ω∗| =
∫

Rn

R(x) dx < ∞.

Then there exists a unique solution u, up to an additive constant, of

(16) det∇2u(x) = R(x), x ∈ Rn,

so that ∇u maps Rn bijectively onto Ω∗.

Proof. Let Ω∗
δ = {x ∈ Ω∗ : dist(x, ∂Ω∗) > δ}. For k ≥ 1, let Ωk = B2k(0)

and δk > 0 be so that |Ω∗
δk
| =

∫
Ωk

R(x) dx. By the above proposition there exists
a solution uk to the problem{

det∇2u = R(x) in Ωk,

∇u maps Ωk onto Ω∗
δk

.

Since the Lipschitz constant of uk depends only on Ω∗, there exists a subsequence
of wk = uk−uk(0) which converges to a function u0 in Rn. Obviously u0 satisfies
(16) and Nu0(x) ⊂ Ω∗ for any x ∈ Rn. By (8) we have Nu0(Rn) = Ω∗. As before
by [C1, C3], u0 is strictly convex and belongs to C1+α

loc (Rn). Similar to the proof
of the proposition above we have the uniqueness. �

Notice that when K ∈ Cα
loc(S

n
−), the hypersurface X determined by u is in

C2,α ([C2]). It is a graph over Ω∗ and |∇u∗(x)| → ∞ as x → ∂Ω∗. But X may
be bounded (such hypersurfaces have been studied by Urbas [U1]). To guarantee
completeness we need (6), which is equivalent to

(17) R(x) ≥ C(1 + |x|2)−(n+1)/2.
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Lemma 4. Suppose that R(x) ∈ Cα
loc(S

n
−) satisfies (15) and (17) and Ω∗ is

a uniformly convex C2-domain. Then the hypersurface obtained by Lemma 3 is
complete.

Proof. For a convex function u we define

S0
h,x0

(u) = {x : u(x) < h + u(x0) +∇u(x0) · (x− x0)},

and Sh,x0(u) = ∂S0
h,x0

(u). The subscript x0 will be omitted if u attains its
minimum at x0.

We may suppose u(0) = 0 and ∇u(0) = 0. To prove Lemma 4 it suffices to
show that for any x 6= 0,

tx · ∇u(tx)− u(tx) →∞ as t →∞.

We argue by contradiction. Suppose

(18) m = inf
x∈Sn−1

lim
t→∞

{tx · ∇u(tx)− u(tx)} < ∞.

Let G be the graph of u. Let Φ̃ be the cone consisting of the rays {λx : λ ≥ 0}
which are contained in the convex body bounded by G. Let Φ be the boundary
of Φ̃. Then Φ can be represented as the graph of a convex affine function φ over
Rn. By definition, we have

S0
h(φ) ⊂ S0

h(u), Sλh(φ) = λSh(φ),

and for any h > 0, S0
h(φ) is a uniformly convex domain with C2-boundary.

Since u is convex and∇u(x) is bounded, it is easy to see that (18) is equivalent
to

(19) m̃ = lim
h→∞

dist(Sh(φ), Sh(u)) < ∞.

For any h > 0, let xh ∈ Sh(u) and yh ∈ Sh(φ) so that

dist(xh, yh) = dist(Sh(u), Sh(φ)).

We may suppose xh/|xh| → x0 as h →∞. Then yh/|yh| → x0 too. Suppose for
simplicity that xh/|xh| = (1, 0, . . . , 0). Let `h(x) be the tangent hyperplane of
G at xh, and let

Dε,h = {x ∈ Rn : u(x) < `h(x) + ε},

where ε > 0 is chosen as the largest number so that Dε,h ⊂ Rn∩{h/2 < x1 < 2h}.
By (19) we have ε → 0 as h →∞. Let wε,h(x) = u(x)− `h(x)− ε. We have
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det∇2wε,h = R(x) in Dε,h, wε,h = 0 on ∂Dε,h

and inf wε,h = −ε.
Let F be the minimum ellipsoid in Dε,h so that 1

n (F − x̃) ⊂ Dε,h− x̃ ⊂ F − x̃,
where x̃ is the center of F . Let T = A(x − x̃) be an affine transformation with
detA = 1 so that T (F ) = Bδ(0) for some δ > 0. By the invariance of the Monge–
Ampère operator under affine transformations and the comparison principle it
follows that

εn ≥ C inf{R(x) : x ∈ Dε,h} · |Dε,h|2.

Let Eε,h = Dε,h ∩ {x1 = h}. By the choice of ε and the convexity of Dε,h we
have

|Dε,h| ≥ CHn−1(Eε,h)h,

where Hn−1 denotes the (n− 1)-dimensional Hausdorff measure. We claim that

(20) Br(0) ⊂ Eε,h with r ≥ C(hε)1/2,

from which it follows that

εn ≥ C inf{R(x) : x ∈ Dε,h}hn+1εn−1,

i.e., inf{R(x) : x ∈ Dε,h} ≤ Cεh−n−1. On the other hand, by the condition (17)
we have inf{R(x) : x ∈ Dε,h} ≥ Ch−n−1. This is a contradiction for ε > 0 small.

Proof of (20). Suppose near the point xh, Sh(u) is represented by

x1 = %u(x̃), x̃ = (x2, . . . , xn),

and near the point yh, Sh(φ) is represented by

x1 = %φ(x̃).

Then %u and %φ are concave functions with ∇%u(0) = ∇%φ(0) = 0. By the choice
of xh and yh we see that %u(x̃) − %φ(x̃) attains its minimum at x̃ = 0. Hence
{x̃ : %φ(x̃) > %φ(0)− δ} ⊂ {x̃ : %u(x̃) > %u(0)− δ} for δ > 0 small. Note that the
principal radii of the level surface Sh(φ) are greater than Ch for some C > 0.
We have

Br(0) ⊂ {x̃ : %φ(x̃) > %φ(0)− ε} with r ≥ C(hε)1/2.

Notice that {x̃ : %u(x̃) > %u(0) − ε/C} ⊂ Eε,h for some C > 0 depending on
inf{|∇u(x)| : x ∈ Sh(u)}. Hence (20) holds. �
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