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Introduction

The research of the number of solutions for elliptic boundary problems with
jumping nonlinearities is closely linked with the properties of the resonance set,
that is,

Y ={(a,3) € R* | Au+ au™ — fu~ = 0 has a nontrivial solution in Hg ()},

where 2 is a bounded smooth domain, 4™ = max(u,0) and «~ = — min(u, 0).
The study of ¥ turns out to be difficult except when €2 is an interval in R.
Therefore it is interesting to have some information about the resonance set, as
precise as possible.

In [GK] the authors showed that if A\ is a simple eigenvalue of —A then
YN Ak_1, Aks1[? coincides with two continuous curves through the point (A, Ax).
In [DeFG] the authors characterized a curve v through the point (A2, A2) which
belongs to ¥ such that ¥N{(«a,8) € R? | A1 < B < y(a), @ > A1} = 0. Finally, in
[MMP] and [M] the following result was shown: if k > 2 is such that Ay < Ag41
then there exist two continuous curves («, pr11()), through (Agy1, Agt1), and
(e, r (), through (A, \g), which respectively lie in the sets 3N ]\x, +oo[? and

1991 Mathematics Subject Classification. 35J60.
Research supported by M.P.I. (Research funds 60% and 40%) and C.N.R.

©1995 Juliusz Schauder Center for Nonlinear Studies

67



68 A. M. MICHELETTI — A. PISTOIA

¥ N]—00, \g+1[%, with the property
YN ({(a,8) €ER? | > A, M <0< @rri(a)}
U{(a, 8) € R? | a < App1, Pr(@) < B < Appa}) = 0.
Our goal in this paper is to show that also the sets
{(o, M) | A\ <<} with pppa (@) = A

and

{(o Akt1) [a < a < Mgy} with ¢ (a) = Aet1
do not intersect Y. In order to prove that, we need to use a characterization of
the curves ¢gy1 and vy different from both the one given in [M] and the one
given in [MMP]. Finally, in §1 we obtain our main result (see (1.33)).

THEOREM. Let k > 2 with A\, < Ag+1. There exists an open connected set
Sk such that

Se D {(a,B) eR?* | M S a<@ M < B < pppr(a)}
U{(e, 8) € R?* | a < a < Ay, () < B< Mg}

(where « is the unique solution of () = Ap+1 and @ is the unique solution
of wr+1(@) = A) with the property S N'E = () (see Fig. 1).
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Moreover, in §2 we use the above statement to prove (see Theorem (2.1)) the
existence of three solutions of a jumping problem in the region S N {(«a, 3) €
R? | & > Mgp1 or a < A}

1. The statement

We recall some basic definitions and set up some terminology.

(1.1) DEFINITION. Let (A,)n>1 be the sequence of eigenvalues of the prob-
lem Au+ Au = 0, u € H}(Q). We recall that 0 < A\; < Ag < ... < )\ < ...
and lim, A, = +o0o. Let e, be an eigenfunction corresponding to A\,, with
lenllp2() = 1. We can choose e such that e; > 0 in Q. Moreover, set
H; = span(ey, ... ,e;) and Hf = {w € HY(Q) | (u,w) =0 Yu € H,}.

(1.2) DEFINITION. If (o, ) € R?, define the functional Q. 5 : H}(Q) — R
by

Q) = [ (IVal? —a(u)? = 52
(1.3) DEFINITION. If § > 1, define
Mi(a, 8) = {u € Hy(Q) | Q, 5(u)(v) = 0 Vv € H;}.
(1.4) REMARK. It is well known that if & > A; and 8 > A; then M;(a, )

is the graph of a positive homogeneous and Lipschitz continuous map +;(«, 3) :
H;* — H;, which is characterized by the property

Vw € Hif 317i(a, ) (w) € H; such that Qq.5(yi(e, 8)(w)+w) = max Qa.plv+w).

First of all we extend the above statement to the case when either a = \; or

8=\

(1.5) PROPOSITION. Let i > 2. If either a > X\; and B =X; or a = )\; and
B > X\i, then M;(«, ) is the graph of a positive homogeneous and continuous
map (e, 8) : Hi — H;.

PRrOOF. To fix ideas, we assume a > A\; and § = \;.
STEP 1. Yw € Hit 30 € H; such that Qu.x, (T + w) = maxyen, Qa.z, (v +w).

It is enough to observe that for fixed w € Hi,

(1.6) lim  Qax (v+w) =—00.
veH;
llvll—+o0
Let (vp)nen in H; be such that lim, ||Jv,|| = +o0o. We can assume that, up to

a subsequence, lim,, v, /[|v,|| = v strongly in Hg (). In particular, v € H; and
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||[v]] = 1. Therefore we get
1imw —1_ a/ (vh)2 — )\i/ ()% = Qan, (v).
" l[onll Q Q
We obtain (1.6) by using the following property:
(1.7) max Qa,x (v) <0.
llvll=1

Let us prove (1.7). First of all, since v € H;, we have [|Vv[? < \;[,v* and
50 Qan, (V) < (A — @) [o(vT)? < 0, because @ > ;. Secondly, arguing by
contradiction, if Qq,x,(v) = 0 then v = 0; 50 0 = Qax, (v) = [o|V[* = A [qv?
This implies v € Ker(A — A\;I); so v changes sign in ), because i > 2. Finally,
since v+ = 0, we have v = 0, which contradicts the fact that ||v]| = 1.

STEP 2. Yw € Hi* 3,5 € H; such that Q! \ (v+w)(v) = 0 Yo € H;.

i

Arguing by contradiction, suppose that there exist v; € H; and vy € H; such
that v1 # v2 and @, y (v1 +w)(v) =0 and Q, . (v2 + w)(v) = 0 for all v € H;.

In particular, if v = v; — vo we obtain
/QVmV(vl —v3) —a(w+v1)T(v1 —v2) + Ni(w+v1) " (v1 —wv2) =0
and
/QVUQV(vl —v9) — a(w + ve) T (vy — v2) + Ni(w + v2) " (v1 —v2) = 0.
Therefore
(18) /Wm—wW
Q
= /Q{Oé[(w +o1)" = (w+2)T] = Ni[(w + 1) = (w+v2) TH (o1 — v2).
First of all, observe that
(1.9) N(t—s)?<(att —sT) =Nt~ —s))(t—s) <a(t—s)> VtscR.

By (1.9) and (1.8) we get \; [, (vi —v2)? < [lv1 — va||* < af,(v1 —vs)?. However,
since v; — vo € H;, we also have

(1.10) |mfwwzn/wfwﬂ
Q
In particular, we deduce v; — vy € Ker(A — X\, 1)\ {0} and so, since i > 2, we get

(1.11) meas{z € Q | vi(z) = va2(x)} = 0.
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On the other hand, if we consider again the expression (1.8), by using (1.10),
we deduce

0= Sl{a[(w+”1)+ — (wv2) T]=Ai[(w+v1) ™ = (w+v2) " |} v1 —va) = Ai (01 —v2)?;

by taking into account that the integrand is positive in  in view of (1.9), we
also get

(1.12) {ef(w+v1)" = (w+v2) ] = Nil(w +v1)” = (w+v2) "} (o1 — v2)

2

= \i(v1 — v2) a.e. in .

Finally, by (1.12) and (1.11) we deduce that (w+v1)(z) < 0 and (w+va)(x)
<0 a.e. in Q. In fact, if (w+v1)(z) > 0 and (w+ v2)(x) > 0 on a set of positive
measure, then by (1.12) we get (a— \;)(v1(x) —v2(x))? = 0 and so v1 (x) = va(2)
on such a set, which is absurd; on the other hand, if (w + v1)(xz) > 0 and
(w + v2)(x) < 0 on a set of positive measure, then by (1.12) we get again
(a = \)(w(x) + v1(z)) (v (x) — va(x)) = 0 and so vi(x) = vo(x) (similarly if
(w+v1)(z) <0 and (w+v2)(z) > 0).

We will get a final contradiction by showing that the functions w + v; # 0
and w + v # 0 have to change sign in Q. In fact, since @, , (v1 +w)(v) = 0 for
all v € H;, we have A(v +w) + (v +w)t =N (v1 +w)~ € Hi If (v +w)t =
then either v; +w € Ker(A — \;I) or v +w € Hf‘; so it follows that v1 +w =0
a.e. in 0, which is absurd. On the other hand, if (v; +w)~ = 0 then v; +w € H,

and so we have again a contradiction.
STEP 3. The function vi(a, \;) : Hf — H; defined by
(1.13) Qax (i Ag)(w) +w) = max Qo (v + w)
is positive homogeneous and continuous from Hf‘ equipped with the weak topology.

It is easy to verify that v;(a, A;) is positive homogeneous, that is, v; (o, A; ) (tw)
= tv;(a, \;)(w) for all w € H} and for all ¢ > 0.

Let us prove the continuity of v;(c, \;). Let (wp)nen and w in Hi* be such
that lim,, w,, = w weakly in H;-. If v,, = 7;(a, \;)(wy,) by (1.13) we get

(1.14) vp — P, i* (v +wn)T — Ni(vn +w,)7) =0,

where Py, : H}(Q) — H; denotes the orthogonal projection and i* is the adjoint
operator of the Sobolev imbedding i : H}(Q) — L*(Q).

First of all we observe that the sequence (v, )nen is bounded. In fact, arguing
by contradiction, we can assume that, up to a subsequence, lim, v, /||v,] = v
strongly in H}(Q). In particular, v € H; and ||v|| = 1. As a result, if we multiply
(1.14) by v, /v, ]|* and pass to the limit, we get 0 = 1—a [, (vF)2 =\ [,,(v7)? =
Qo (v), which is absurd in virtue of (1.7).
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Therefore, we can assume that lim, v, = v strongly in HJ(Q); finally, by
(1.14) we obtain v—Ppg,i* (a(v+w) T —X; (v+w) ™) = 0, and then v = v; (v, A;) (w),
by uniqueness (see Step 2). (|

(1.15) DEFINITION. Let i > 2. If a > A; and 8 > \; with (a, 8) # (Ai, \i),
set

mi(.8) = inf | Qap(u(a B)(w) + 1),

flwll=1

(1.16) REMARK. We point out that if m;(«, 5) > 0 then (a, §) € X. In fact,
if (o, B) € 2 then there exists u € H(Q), u # 0, such that Au+au™—Bu™ = 0.
Therefore u € M;(a, 3) and Qq,g(u) = 0. It follows that m;(a, 8) < 0.

At this stage, by the properties of m;, we will find a region in the («, 8) plane
where m;(a, 8) > 0 and give a characterization of the number @ = sup{a > \; |

( a, i) gz}
(1.17) LEMMA. Let i > 2 be such that \; < Miy1. If a > X and 8> N
with (a, B) # (Ai, Ai), then the function m; has the following properties:

(a) mi(a, B) = mi(B, );

b) m; is continuous with respect to (o, 3);

3

(

(¢) my is strictly decreasing with respect to both o and 3;
(d) mi(Aig1, Aig1) =05

(e) a> Aiy1, B> Xiy1 = mi(a,B) <0;

() a < Aix1, B < Xit1 = mi(o, 8) > 0;

(8) a> X\ = limg_ 4o mi(a, §) = —c0.

S

PROOF. (a) This is an immediate consequence of the property v;(«, 5)(—w)
= —7(8, a)(w) for all w € Hi.

(b) Let (an)nen and (Bn)nen be such that lim, a, = a > A;, lim, 8, = 8 >
A; and « > 3. We show that lim,, m;(ay, 8,) = mi(«, 3).

By the definition of m;, for € > 0 there exists (wy, )nen in Hf with [|w,|| =1
such that lim,, w, = w weakly in Hf‘ and

(1.18) mi(an, Bn) < Qay,.p, (Vi(an, Bn)(Wn) + wn) < mi(om, Bn) +€

Set v;(aun, Bn)(wn) = v,. We also recall that
(1.19) Vn — P, i (i (vn +wn) T — B(vy +w,)7) =0,

where Py, : H}(Q) — H; denotes the orthogonal projection and i* is the adjoint
operator of the Sobolev imbedding i : H} () — L2(9).

Observe that the sequence (v, )nen is bounded. In fact, arguing by contra-
diction, we can assume that, up to a subsequence, lim,, v,,/||v,|| = v strongly in
HY(Q). In particular, v € H; and ||v]| = 1. As a result, if we divide (1.19) by ||vy, ||
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and pass to the limit, we get v—Py,i* (a(v+w)*t —A;(v+w) ™) = 0, which implies
Qa.3(v) = 0. On the other hand, since 8 < \;, we have Q4 (v) < Qa x, (v) <O,
by (1.7). Thus a contradiction arises.

That is why we can assume that, up to a subsequence, lim,, v,, = v strongly
in H}(Q); finally, by passing to the limit in (1.19) we obtain

v —Pp,i*(a(v+w)T —N(v+w)") =0,
and then v = ~;(a, \;)(w) by uniqueness (see Step 2 in the proof of Proposi-

tion (1.5)).
Moreover, by (1.18), £ being arbitrary, we obtain

: ) _ 2 +\2 —\2
hyl;nml(an,ﬁn) 1—|—/Q|Vv| a/ﬂ((v—i—w) ) ﬁ/ﬂ((v—i—w) ).
Now we claim that
(1.20) lim m; (o, Bn) < my(a, B).

In fact, by the second inequality of (1.18) and by the definition (1.15), it follows
that for all w € H;t with ||w|| = 1,

Qan,ﬁn (Un + wn) < Qan,ﬁn ('Yi(ana Bn)(m) + @) +e€
and, by passing to the limit,
14 /Q Vo2~ a /Q (0 +w)") - B /Q (0 +w)")? < Qup(s(ev, B)(®@) + ) + £

so (1.20) follows.
Finally, we show that,

(1.21) limm; (e, Bn) > mi(a, B).

First, if w = 0 then also v = 0; so lim,, m;(ay, 3,) = 1. On the other hand, for
all w € Hit with |w|| = 1,

mi(aﬁﬁ) < Qaﬁ(%(avﬁ)(m) +m)
—1q /Q|w<a,ﬂ><w>|2 —a /Q((%(a,ﬂ)(ﬁ) L)ty

w/ﬂ(@@&)(w)w)w <1,

since o > 8 > \; and v;(a, B)(w) € H;. Therefore (1.21) follows.
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Next, if w # 0 then we put w* = w/||w|| and so
mi(a, 8) < Qa,p(vi(a, B)(w*) +w™)

=1 L . 2 . +3\2
1t o ([t @ - a [ (il ) + )

=5 [ (il ) +0) )

1+ [ V@B ~a [ (ulaA)w) +w)h?

- B

IN

Q
Q((%‘(O@ﬂ)(w) +w)7)?
= lirrlnmi(an,ﬂn).

Therefore (1.21) also holds in this case.
(c) Let @ > A; and 8/ > B > \;. We will show that m;(a, 8) > m;(a, 5). By
the definition of ~;(c, B) we get, for any w € H}",

Qo (vi@, B)(w) + w) = Qu,p(vi(e, B)(w) + w)
= Qap (il ) (w) + w)

(-7 /Q«vi(a,ﬂ’)(w) +w))?

weHiL
llwl=1

> mi(a, ) + (5 — #) min /Q (v B) () +w)™)2.

As a result we obtain

mi(a8) 2 mile, ) + (6= &) min [ ((sla ) w) + w) )%
lwll=1

In order to get our claim, it is enough to prove that for any o > A; and
B> X\, ifu e M(a,0) \ {0} then v~ # 0. In fact, if u € M(«, ) \ {0}, then
u = vi(a, B)(w) +w with w € H}, w # 0. Suppose u~ = 0. If v;(a, 3)(w) = 0,
then u = w € H} and so u = 0. On the other hand, if v;(«a, 3)(w) # 0, then by
the definition of v;(c, 8) and by (1.7) we get

0= Q4 s(w)(vi(e, B)(w)) = 2Qa,5(vi(cv, B)(w)) < 2Qa,x; (Vi(e, B)(w)) <0,
which is absurd.

(d) First, if w € H, then v;(Ai41, Ait1)(w) = 0; in fact, by the definition of
Yi(Xir1, Aip1) we have Ayi(Nig1, Aip1)(w) — Aip1 (vi(Aig1, Aip1) (w) + w) € Hy,
which implies v;(Ait1, Air1)(w) = 0, since v;(Ai+1, Aitr1)(w) € H;. Moreover, for
any w € Hf‘,

Quaris (5O A (w) + ) = [ V0 =g /2 w? >0,
] ¢
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Then if w € Ker(A — A\j411), we get our claim.
(e) If w € Ker(A — \jy11), w # 0, then for any v € H;,

Qo s +w) = /Q|v<v+w>|2 - a/9<<v+w>+>2 —ﬂ/ﬂ<<v+w>*>2
< (s — @) /Q (002 + (Mgt — B) / (v +w)")? <0,

Q

(f) If w € H}, w # 0, then
Qup(w) = /Q|Vw|2 o /Q<w+>2 -5 [
> (Nig1 — a)/sz(w+)2 + (Nig1 — 5)/ (w™)?>0.

Q
() First, observe that there is w* € Hi with ||w*|| = 1 such that (w* +H;) N
{ue HY(Q) |u >0 ae. in Q} = . In fact, if n > 2 we can choose wg € H}(Q)
with essinfwy = —oo and if n = 1 we can choose wo(z) = [dist(x,dQ)]° with
1/2 < 6 < 1; so w* denotes the component of wy on H; normalized in HJ ().
Therefore it is enough to prove that if & > A; then

Jlim_Qap((0, B)(w") + ) = —cx.

Let (8n)nen be such that lim,, 8, = 400 and set v,, = v;(a, B, ) (w*). We have
(12 Qup (ot w) =14 ol = a [ (04 w) 2
Q
=B [ (w0 0?)
Q

Now if (v, )nen is bounded then, up to a subsequence, lim,, v, = v € H; in Hg (£2)
and (v + w*)~ # 0, by the property of w*; so lim,, Q4 g, (v, + W*) = —00.

On the other hand, if lim,, ||v,|| = +00, we can suppose lim, v, /||v,|| = v €
H; in H}(Q), ||v]| = 1. If, by contradiction, (Qa.g, (Vn +w*))nen is bounded from
below, from (1.22) (dividing by ||v, || and passing to the limit) we get v > 0 a.e.

in 2. Moreover, since

Qo (0n +w7) < Jom]® — /Q«vn L)ty

we also obtain
ogl—a/v2g1—3.
Q

Finally, if « > \; a contradiction arises immediately; if a = \; we get v €
Ker(A — X\I) \ {0}, which is absurd because v > 0 a.e. in €. O

From Lemma (1.17) we deduce immediately the following result.
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(1.23) PROPOSITION. Let i > 2 be such that A\; < X\j11. There exist a unique
@ > A\iy1 and a continuous strictly decreasing map @iq1 : [N, @] — [\, @] such
that ©it1(Ait1) = Ait1, ©ir1(@) = A and ;41 0 ip1 = I, with the property

Ai £ B < @iti(a) & mi(a, 8) > 0.

(1.24) REMARK. By (1.16) and (1.23), the number @ = sup{a > XA; | (a, A;)
¢ Y} satisfies @ > A1 and @;41(a@) = A\;. Moreover, ¢;+1(\;) = @ = sup{3 >
Ai | (Ai, B) € B}

(1.25) REMARK. It is easy to prove that the functions defined in (1.23)
coincide with the functions p;y; introduced in [MMP] and the functions J_
introduced in [M].

Now we will give a characterization of inf{8 < Agy1 | (Akt1,0) € X} for
k > 1. We are not able to proceed as in the previous case, since the set

Niela, B) = {u € Hy(9) | Q p(u)(w) = 0 Yw € Hy },

which is the graph of a suitable map when o < A\g41 and 8 < Ag41, does not have
this property when either a < A1 and 8 = Agq1 or @ = A1 and 8 < Agq1.
In fact, the following result holds.

(1.26) REMARK. If 3 < Ajy1, then there exist infinitely many w € Hj- such
that

Quiprpler +) = min Q. pler +w).

weHy

Indeed, since w € Hi‘ and 8 < Ap4+1, we have

Q)‘k+175<€1 + w) = Q/\Hl,ﬁ(el) + A|Vw|2 — /\k-&-l‘/ﬂwz
+ (A1 — ﬁ)/ﬂ((el +w)7)?

> Q/\k+1,ﬁ(el)'

Moreover, there exists ¢ > 0 such that e; + ge > 0 for all e € Ker(A — Agp411)
with ||e|]| = 1. Hence

Qkk+1,ﬁ<€1 + Qe) = Q/\k+17ﬁ(el) + th (/ |V€|2 - )‘k+1/€2) = Qkk+1,ﬁ<€1)'
Q Q
The previous remark suggests to proceed in the following different way.
(1.27) DEFINITION. If k& > 2 define

Z(o, ) = {u € Hy(Q) | Q, 5(u)(z) =0Vz € Hy @ Hy }.
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(1.27) REMARK. It is well known that if M} < o < Apy1 and Ay < 8 < Mgy
then Zi(a, ) is the graph of a positive homogeneous and Lipschitz continuous
map (i (a, B) : Hy NHi — Hy @ Hit, which is characterized by the property

Yo € Hy NHY 31¢(e, B)(v) € Hy @ Hi such that

Qa,p(v + C(e, B)(v) = wnel;{nt max Qa,g(se1 + v + w).

We extend this to the case when either o = A1 or 8 = Ag41-

(1.29) PROPOSITION. Let k > 2. If either a < Agy1 and = Agy1 or a =
A1 and B < Agt1, then the set Zi(a, 3) is the graph of a positive homogeneous
and continuous map Cx(o, B) : Hy NHY — Hy @ Hy-.

PROOF. The proof is similar to that of Proposition (1.5). We only point
out the following properties. For simplicity we consider the case o = A1 and

B < Akg1.

Vv € Hy NHT, Yw € HE, | ‘Hm Qo p(ser +v+w) = —o0,
s|——+oo
Vv € Hy N HY, Yw € HE, s — Qa,p(se1 + v + w) is strictly concave,
Vo € Hy NHY, Vs € R, lim  Qqp(se1 + v+ w) =400,
weH?
l[w]|—+o0
Vv e Hy NHT, Vs € R, w — Qu,p(se1 + v + w) is weakly convex.

As a result, in virtue of [Ro] and [EK], we deduce that

Vv € H, NHi 3,5 € R 3w € Hi such that

Qa,p(Eer + v+ W) = min max Qq g(ser + v+ w).
weHi seR

Arguing as in the second step of the proof of (1.5), we can show the uniqueness
of w. |

Using a similar argument to the proof of Proposition (1.23), we obtain the

following result.

(1.30) PROPOSITION. Let k > 2 be such that Ay < Agy1. There exist a
unique a < A, and a continuous strictly decreasing map Vi : [a, Apr1] —
[, Akr1] such that r(Ax) = Mgy Yr(@) = Aeg1 and Yp o Yy = I, with the
property

() < B < Apy1 & I;an* Qapv+Ci(a, B)(0) <0 (= (a,0) ¢ %).
veHyMNH7
llvll=1
(1.31) REMARK. As in (1.24), the number o = inf{3 < Ap11 | (Akr1,0)
¢ 3} satisfies o < A\ and ¥g(a) = Agy1. Moreover, ¥ (Ag+1) = a = inf{a <

Aer1 | (@ Agy1) € X}
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(1.32) REMARK. It is easy to prove that the functions defined in (1.30) coin-
cide with the functions v, introduced in [MMP] and the functions J; introduced
in [M].

Finally, we get our main result.

(1.33) THEOREM. Let k > 2 with A\, < Agy1. There exists an open connected
set S such that
SO {(,B)eR? | N <a<@ M\ <0< ppi1(a)}
U{(a,B) eR? |a < a < Ak, Pr(a) << Ak},

(where « is the unique solution of i (a) = A\g+1 (see (1.30)) and @ is the unique
solution of pri1(@) = A (see (1.23))), with the property S, N3 = 0.

PrOOF. It is well known that the resonance set X is closed in R2. Our claim
follows by (1.16), (1.23), (1.24) and also (1.30), (1.31). O

2. An application

Let © ¢ RY be an open bounded smooth domain and g : @ x R — R be a
C! function, with |9g(x,s)/0s| < ¢(1 + |ulP), where ¢ € R and p < 4/(N — 2),
such that

(0.0.5) lg(z,5)] < a(z) +b|s| a.e. in Q, Vs € R, with a € L%(Q), b e R,
’a’

g lims— 400 g(z, 8) /s = @ and limg_,_ o g(z,5)/s = B a.e. in Q.
We are interested in the problem

Au+ g(x,u) =te; in Q,
(Pr) {

u=20 on 0,

where t € R and e is the positive eigenfunction, normalized in L?(f2), associated
with the first eigenvalue of —A on H}(Q).

(2.1) THEOREM. Let k > 2 be such that A\ < Agt1. Assume (g,, ) with
(o, B) € Sk and either o > Agy1 or o < Ag. If the problem (P:) admits only
nondegenerate solutions for t positive and large enough, then (P;) has at least
three solutions for t positive and large enough.

PROOF. We consider the following functional f; : H}(Q) — R:

u(z)
fe(u) = / <1|Vu|2 _/ g(x,0) d0+t€1u) dz,
Q 2 0

whose critical points are (weak) solutions of (P).
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Let Ak < Mgt1 = o = Mty < Aggo41. The assumption (o, §) € S and
a > Ap4+1 enable us to use the “links and bounds” theorem (see Th. (6.6)) of
[MMP]. Therefore the functional f; has two critical points u; and ug such that

igf fi < fi(ur) <sup fi <inf fi < fi(u2) <sup fi,
0B 2 B

where

t
B:
{a_/\161+’0

v € Hgqo, |lv]| < T}

and OB = the boundary of B in Hyy,,

t
A{ /\61+O’€+w o>0, weHy,, |Ue+w||gg},
a— M\

where e € Hiy,, e # 0,
¥ = the boundary of A in Hy,, @span(e) and o> 7.

By assumption u; and wus are nondegenerate, therefore we can evaluate their
Leray—Schauder indices:

i(V,u) = (D1 and (Vi ug) = (—1)F.

On the other hand, there exists a path 6 : [0,1] — R?\ ¥ joining (a, 8) to the
set {(MA) | A € R, X # N}, because (a, 3) € S,. This property ensures (see
Th. 6 of [D1]) that for R positive and large enough, deg(V f, Br(0),0) = (—1)*.
By the additive property of the degree, we get our claim. O

In [Ral] a result of the same type was obtained.

(2.2) REMARK. We point out that the assumption g € C1(Q x R) can be
weakened. It is enough to assume that g is a Carathéodory function such that
(V) (u) : HY(Q) — HE () is a continuous and symmetric operator for any
critical point u of the functional f;. In such a case u is a nondegenerate solution
of (P,) if (Vf)(u) is an isomorphism.
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