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1. Introduction and statement of the results

Morse theory relates the set of critical points of a smooth functional defined
on a Hilbert manifold to the topology of the manifold itself. Morse himself
gave the first application of his theory to Riemannian geometry (cf. [6, 11, 12]),
proving two very nice and famous results. In order to recall them, consider a
Riemannian manifold (M, 〈 · , · 〉x) with Riemannian structure 〈 · , · 〉x.

A curve γ : ]a, b[ →M is said to be a geodesic if

∇sγ̇(s) = 0 for any s ∈ ]a, b[,

where γ̇ is the derivative of γ and ∇sγ̇ is the covariant derivative of γ̇ along
γ. It is well known that the geodesic curves joining two given points satisfy a
variational principle. Indeed, γ : [0, 1] → M is a geodesic joining x0 and x1

(and defined in the interval [0, 1]) if and only if γ is a critical point of the action
integral

f(x) =
1
2

∫ 1

0

〈ẋ, ẋ〉x ds
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defined on the manifold of sufficiently smooth curves joining x0 and x1. Thus
γ : [0, 1] →M with γ(0) = x0 and γ(1) = x1 is a geodesic if and only if∫ 1

0

〈ẋ,∇sv〉x ds = 0

for any smooth vector field v along γ such that v(0) = v(1) = 0. (Here ∇sv

denotes the covariant derivative of v along γ.)
The first result of Morse concerns the Morse index of a geodesic γ as a critical

point of the action integral (i.e. the maximal dimension of the subspaces of the
tangent space along γ where the Hessian of f is negative definite). Morse proved
that it is finite and equal to the number of conjugate points along the geodesic,
counted with their multiplicity (cf. Definitions 1.2–1.3 with M replaced by a
Riemannian manifold).

The second result of Morse concerns the so-called Morse relations for the
action integral, under certain nondegeneracy assumptions (cf. also [6]).

Theorem 1.1 (Morse relations). Let (M, 〈 · , · 〉x) be a complete Riemann-
ian manifold, and x0 and x1 two nonconjugate points of M (i.e. they are non-
conjugate along every geodesic joining them). Let Ω0 be the set of continuous
curves joining x0 and x1, equipped with the uniform topology, and Z the set of
geodesics joining x0 and x1. Then there exists a formal series Q(r) with natural
coefficients (possibly ∞) such that∑

γ∈Z

rm(γ,f) = Pr(Ω0) + (1 + r)Q(r),

where m(γ, f) is the Morse index of γ as a critical point of f and Pr(Ω0) is the
Poincaré polynomial of Ω0 with coefficients in an arbitrary field F .

Recall that denoting by Hk(Ω0, F ) the kth singular homology group of Ω0

with coefficients in F , we have

Pr(Ω0) =
∑
k≥0

dimHk(Ω0, F )rk.

In this paper we extend Theorem 1.1 to stationary Lorentzian manifolds with
boundary which satisfies a convexity property. Some physically relevant cases
like Schwarzschild and Reissner–Nordström space-times are covered by these
results. The Morse index of a geodesic (which is always ∞) will be replaced by
a geometric index. Indeed, as pointed out in Remark 1.4, the geometric index
of a geodesic on a stationary Lorentzian manifold is always finite, and it seems
the right tool for extending the Morse relations of Theorem 1.1.

Before stating our results, some recalls of Lorentzian geometry are needed.
A Lorentzian manifold is a couple (M, 〈 · , · 〉), whereM is a connected finite-

dimensional manifold, and 〈 · , · 〉 is a Lorentzian metric onM, i.e. a metric tensor
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having index 1 (cf. [14]). The points of a Lorentzian manifold are often called
events.

As for Riemannian manifolds, a smooth curve on a Lorentzian manifold γ :
]a, b[ →M is said to be a geodesic if

(1.1) Dsγ̇ = 0,

where Dsγ̇ is the covariant derivative of γ̇ with respect to the Lorentzian metric
〈 · , · 〉.

It is well known that if γ is a geodesic, then there exists a real constant E(γ)
such that for any s ∈ ]a, b[,

E(γ) = 〈γ̇(s), γ̇(s)〉.

The geodesic γ is called timelike, lightlike or spacelike according as E(γ) is neg-
ative, null or positive. The geodesic γ is called causal if E(γ) ≤ 0. In general
relativity a timelike geodesic represents the trajectory of a free falling particle.
Null geodesics represent the light rays, while spacelike geodesics, for a suitable
local observer, represent Riemannian geodesics consisting of simultaneous events.

We now recall the notions of conjugate point and geometric index for a
geodesic, which will be the basic tools for the Morse relations. They are just
the extensions to Lorentzian geodesics of well known concepts for Riemannian
geodesics.

Definition 1.2. Let (M, 〈 · , · 〉) be a Lorentzian manifold and γ a geodesic
joining p and q and defined in the interval [0, 1]. A point γ(s), s ∈ ]0, 1], is said
to be conjugate to p along γ if there exists a smooth vector field v 6= 0 along γ
which is a solution of the problem

(1.2) D2
sv +R(γ̇, v)γ̇ = 0, v(0) = v(s) = 0,

where R( · , · ) is the curvature tensor for the metric 〈 · , · 〉 and D2
sv is the second

covariant derivative of v along γ. The maximal number of linearly independent
solutions of (1.2) is called the multiplicity of γ(s).

Definition 1.3. Let γ : [0, 1] →M be a geodesic. The geometric index of
γ is the number of conjugate points γ(s), s ∈ ]0, 1[, to p along γ, counted with
their multiplicity.

Remark 1.4. The geometric index of a geodesic can be ∞ (see [10]); how-
ever, it is always finite for geodesics on stationary Lorentzian manifolds.

Some results of Morse theory for geodesics in globally hyperbolic Lorentzian
manifolds (cf. [14] for the definition) have been obtained in [16] (cf. also [2] and
the references therein). Note that in [2, 16], only causal geodesics (i.e. geodesics
with nonpositive energy) are considered. Therefore, the index of causal geodesics
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reflects only the topology of the space of causal curves. A smooth curve z(s) is
said to be causal if 〈ż(s), ż(s)〉 ≤ 0 for any s. In the papers quoted above, global
hyperbolicity is essential. However, there are physically interesting Lorentzian
manifolds which are not globally hyperbolic, because they have a topological
boundary (for instance, they are open subsets of a larger manifold).

In this paper we consider stationary Lorentzian manifolds with boundary.
(M, 〈 · , · 〉z) will be a Lorentzian manifold such that

(1.3) M = M0 × R,

where (M0, 〈 · , · 〉x) is a smooth Riemannian manifold, and 〈 · , · 〉z is a stationary
metric, i.e. for any z = (x, t) ∈ M0 × R and for any ζ = (ξ, τ) ∈ TzM =
TxM0 × R,

(1.4) 〈ζ, ζ〉z = 〈ξ, ξ〉x + 2〈δ(x), ξ〉xτ − β(x)τ2,

where β(x) is a smooth scalar field on M0 and δ(x) is a smooth vector field on
M0.

Classical examples of Lorentzian manifolds satisfying (1.3)–(1.4) are Schwarz-
schild, Reissner–Nordström and Kerr space-times (cf. [9] for their physical mean-
ing).

The Schwarzschild metric is the solution of the Einstein equations corre-
sponding to the exterior gravitational field produced by a static spherically sym-
metric massive body. The Schwarzschild metric is given, in polar coordinates,
by

ds2 =
(

1− 2m
r

)−1

dr2 + r2dΩ2 −
(

1− 2m
r

)
dt2,

where dΩ2 = dθ2 + sin2 θdϕ2 is the standard metric of the unit 2-sphere in the
Euclidean 3-space and m represents the mass of the body.

The Schwarzschild space-time is the Lorentzian manifold

M = M0 × R, M0 = {(r, θ, ϕ) : r > 2m},

equipped with the above metric.
The Reissner–Nordström space-time is the solution of the Einstein–Maxwell

equations corresponding to the exterior gravitational field produced by a static
spherically symmetric charged body. Denoting by m and e respectively the mass
and the charge of the body, the metric, in polar coordinates, is given by

ds2 =
(

1− 2m
r

+
e2

r2

)−1

dr2 + r2dΩ2 −
(

1− 2m
r

+
e2

r2

)
dt2.

Whenever m2 > e2, the Reissner–Nordström space-time is the Lorentzian man-
ifold

M = M0 × R, M0 = {(r, θ, ϕ) : r > m+
√
m2 − e2},

equipped with the above metric.
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The Kerr space-time is the space-time outside an axisymmetric rotating body
and its metric is stationary and nonstatic. Whenever there is no rotation of the
body, it reduces to the Schwarzschild space-time.

We first consider the case of an open subset M of a stationary Lorentzian
manifold M̃. The boundary of M will satisfy the following convexity property.

Definition 1.5. Let (M̃, 〈 · , · 〉) be a Lorentzian manifold and M an open
connected subset of M̃ with boundary ∂M. We say that M has a convex
boundary ∂M if any geodesic z : [a, b] → M ∪ ∂M with z(a), z(b) ∈ M has
support z([a, b]) ⊂M.

Let Φ : M→ R be a smooth function such that

(1.5)


Φ(z) = 0 ⇔ z ∈ ∂M,

Φ(z) > 0 ⇔ z ∈M,

∇Φ(z) 6= 0 ∀z ∈ ∂M

(whose existence can be proved using the distance from the boundary). Then, if
∂M is smooth and convex, for any z ∈ ∂M and ζ ∈ Tz∂M,

HΦ(z)[ζ, ζ] ≤ 0,

where HΦ(z) : TzM× TzM→ R denotes the Hessian of Φ at the point z. We
recall that

HΦ(z)[ζ, ζ] =
d2Φ(γ(s))

ds2

∣∣∣∣
s=0

,

where γ(s) is the geodesic such that γ(0) = z and γ̇(0) = ζ.
Now, assume that

(1.7) ∂M0 is a smooth submanifold of M̃0;

(1.8) M0 ∪ ∂M0 is complete with respect to 〈 · , · 〉x

(i.e. any geodesic x : ]a, b[ → M0 with respect to the Riemannian structure
〈 · , · 〉x can be extended to a continuous curve x : [a, b] →M0 ∪ ∂M0);

(1.9) ∂M = ∂M0 × R is convex;

(1.10) sup
x∈M0

〈δ(x), δ(x)〉x <∞, 0 < inf
x∈M0

β(x) ≤ sup
x∈M0

β(x) <∞.

The following result holds.

Theorem 1.6. Assume that (1.7)–(1.10) hold. Assume also that z0 =
(x0, t0) and z1 = (x1, t1) are nonconjugate (i.e. they are nonconjugate along
any geodesic joining them). Let

Z = {z = (x, t) : [0, 1] →M : z is a geodesic such that z(0) = z0, z(1) = z1}.
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Moreover, let Ω be the space of continuous curves joining z0 and z1 in M,
equipped with the uniform topology. Then

(1.11)
∑
z∈Z

rµ(z) = Pr(Ω, F ) + (1 + r)Q(r),

where Q(r) is a formal series with natural coefficients (possibly ∞) and Pr(Ω)
is the Poincaré polynomial of Ω with coefficients in an arbitrary field F .

Corollary 1.7. Assume that the Riemannian manifold M0 satisfies (1.7)–
(1.8) and its boundary is convex (cf. Definition 1.5 with M replaced by M0). If
x0 and x1 are nonconjugate points of M0, then the conclusion of Theorem 1.1
holds.

Remark 1.8. Theorem 1.6 is clearly a generalization of Theorem 1.1 (cf.
also Corollary 1.7). It is also a generalization of the Morse relations obtained in
[5] in the static case (i.e. δ(x) ≡ 0), with M0 complete and without boundary.

Now we consider the case in which M has a topological boundary which is
nonsmooth, the metric is not defined on the boundary, M0 is noncomplete and
β(x) may approach 0 near the boundary.

This is for instance the case of Schwarzschild and Reissner–Nordström space-
times (cf. [4] for more details), so Theorem 1.6 cannot be applied to these
Lorentzian manifolds. In this case we reinforce a little bit the assumptions on
the convexity of the boundary, to gain also control of its nonsmoothness. This
kind of assumptions are similar to those used in [4, 7] to study the geodesic
connectedness for a class of noncomplete Lorentzian manifolds.

Let (M, 〈 · , · 〉) be a stationary Lorentzian manifold and assume that M
has a topological boundary (not necessarily smooth), satisfying: there exists
ϕ ∈ C2(M,R+ \ {0}) such that

(1.12) lim
z→z0∈∂M

ϕ(z) = 0, ϕ(z) = ϕ(x, t) = ϕ(x, 0) = ϕ(x).

For any bounded set B in M, there exist positive constants N , L, ν, % such that
the function ϕ of (1.12) satisfies:

(1.13)
z ∈ B, ϕ(z) < %⇒ N ≥ 〈∇ϕ(z),∇ϕ(z)〉z ≥ ν,

z ∈ B, ϕ(z) < %, ζ ∈ TzM⇒
Hϕ(z)[ζ, ζ] ≤ Lϕ(z) [〈ξ, ξ〉x + |〈δ(x), ξ〉xτ |+ β(z)τ2].

(Here ∇ϕ denotes the gradient of ϕ with respect to the Lorentzian structure of
M).

Concerning the Morse relations on stationary Lorentzian manifolds with non-
smooth boundary, we have the following
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Theorem 1.9. Let (M, 〈 · , · 〉z) be a stationary Lorentzian manifold satis-
fying (1.12)–(1.13). Moreover, assume that:

(1.14) For any η > 0, the set {x ∈ M0 : ϕ(x) ≥ η} is complete with respect to
the Riemannian structure of M0;

(1.15) β is bounded on M0;

(1.16) for any bounded subset B of M0, there exists %0 > 0 such that for any
x ∈ B with ϕ(x) < %0, 〈gradϕ(x), gradβ(x)〉x ≥ 0, where grad denotes
the gradient with respect to the Riemannian structure of M0;

(1.17) δ/β is bounded on M0;

(1.18) δ/β and δ are uniformly continuous on bounded subsets of M0.

Then the assertion of Theorem 1.6 holds for M.

Following the computations developed in the appendix of [4], it is not difficult
to verify that Schwarzschild and Reissner–Nordström space-times satisfy (1.12)–
(1.18), by choosing

ϕ(z) =
√
β(r).

In particular, the Morse relations hold for Schwarzschild and Reissner–Nordström
space-times (where δ ≡ 0).

The main difficulty in proving Theorems 1.6 and 1.9 is the indefiniteness of the
action integral and the lack of compactness due to the presence of the boundary.
We overcome the first difficulty by using a variational principle proved in [8],
which reduces (in the stationary case) the search for critical points of f to the
search for critical points of a suitable functional J depending only on the spatial
variable x and bounded from below. As observed in [5] for the static case, the
Morse index of a critical point x of J is equal to the geometric index of the
corresponding geodesic (x, t(x)). This is also true in the stationary case.

Moreover, in order to overcome the lack of compactness, we use a suitable
penalizing family of functionals Jε (ε ∈ [0, 1]) such that J0 = J . The convexity
(or assumptions (1.12)–(1.13)) of the boundary allows us to prove some a priori
estimates on the critical points of the penalizing functionals Jε. By means of the
a priori estimates, we show that the singular homology of the sublevels of J and
Jε coincides (cf. Lemma 4.5 and Propositions 4.8–4.9). This leads to the proof
of Theorems 1.6–1.9, by passing to the limit in the Morse relations for Jε.

2. Some preliminary results

Let (M, 〈 · , · 〉z) be a stationary Lorentzian manifold satisfying (1.3)–(1.4).
By the well known Nash embedding theorem (cf. [13]), the Riemannian manifold
(M0, 〈 · , · 〉x) is isometric to a submanifold of RN (with N sufficiently large)
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equipped with the Euclidean metric. Hence, we can assume that M0 is a sub-
manifold of RN and 〈 · , · 〉x is the Euclidean metric, which will be denoted by
〈 · , · 〉.

Set I = [0, 1], and for every m ∈ N, let H1,2(I,RN ) be the Sobolev space
of absolutely continuous curves whose derivative is square summable. It is a
Hilbert space with norm

(2.1) ‖x‖21 = ‖x‖2 + ‖ẋ‖2 =
∫ 1

0

〈x, x〉 ds+
∫ 1

0

〈ẋ, ẋ〉 ds,

where ẋ denotes the derivative of x and ‖ · ‖ the usual norm of L2(I,RN ).
Now, let x0 and x1 be two points of M0, and

Ω1 = Ω1(x0, x1,M0) = {x ∈ H1,2(I,RN ) : x(I) ⊂M0, x(0) = x0, x(1) = x1}.

It is well known that Ω1 is a submanifold of H1,2(I,RN ) and, for any x ∈ Ω1,
the tangent space to Ω1 at x is

TxΩ1 = {ξ ∈ H1,2(I,RN ) : ξ(s) ∈ Tx(s)M0 for any s ∈ I, ξ(0) = ξ(1) = 0}

(cf. e.g. [15]).
On Ω1 we put the following Riemannian structure:

〈ξ, ξ〉1 =
∫ 1

0

〈∇sξ,∇sξ〉 ds,

where ∇sξ is the covariant derivative of ξ with respect to the Riemannian struc-
ture of M0.

Now, let t0 and t1 be two points of R, and consider

H1,2(t0, t1) = {x ∈ H1,2(I,R) : t(0) = t0, t(1) = t1}.

Then H1,2(t0, t1) is a closed affine submanifold of H1,2(I,R) whose tangent space
at every point is

H1,2
0 (I,R) = {τ ∈ H1,2(I,R) : τ(0) = τ(1) = 0}.

Finally, let z0 = (x0, t0) and z1 = (x1, t1) be two points of M, and consider
the path space of H1,2-curves joining z0 and z1 on M,

Z = Z(z0, z1,M) = Ω1 ×H1,2(t0, t1).

Obviously, for any z = (x, t) ∈ Z, the tangent space to z at Z is

TzZ = TxΩ1 ×H1,2
0 (I,R).
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In the following we shall also consider the Sobolev space H1/2,2(I,RN ) con-
sisting of L2(I,RN ) curves having square summable derivative of order 1/2.
More precisely, let

H1/2,2(I,RN ) =
{
x ∈ L2(I,RN ) :

∞∑
k=0

k|xk|2 <∞
}
,

where (xk)k∈N are the Fourier coefficients of x with respect to the usual trigono-
metric basis of L2(I,RN ). It is well known that H1,2(I,RN ) is compactly em-
bedded in H1/2,2(I,RN ) (for more details, see [1]).

On the manifold Z = Ω1 ×H1,2(t0, t1) we consider the action integral

(2.2) f(z) =
1
2

∫ 1

0

〈ż, ż〉z ds.

It is well known that f is smooth and its critical points are the geodesics joining
z0 = (x0, t0) and z1 = (x1, t1).

Remark 2.1. Let z = (x, t) be a geodesic joining z0 and z1. For every
s ∈ ]0, 1] consider the functional

fs(z) =
1
2

∫ s

0

〈ż, ż〉z dr

defined on the path space

Zs = Ω1
s(x0, x(s))×H1,2

s (t0, t(s))

of curves joining z0 and z(s) = (x(s), t(s)) and defined in the interval [0, s].
Denoting by zs the restriction of z to [0, s] and by f ′′s the Hessian of fs, it is not
difficult to deduce from Definition 1.2 that

A point z(s) is conjugate to z0 along z if and only if zs is a degenerate critical
point of fs, i.e. the linear operator associated with f ′′s has a kernel different
from {0}.

Moreover, the dimension of the kernel of f ′′s is just the multiplicity of the
conjugate point z(s).

The search for geodesics joining z0 and z1, i.e. critical points of f , is more
difficult than in the Riemannian case. Indeed, f is strongly indefinite, and the
Morse index of its critical points is ∞.

In this section, we recall a variational principle which allows us to reduce
the search for geodesics joining z0 and z1 to the search for critical points of a
functional defined in Ω1 and bounded from below.

Consider the action integral (2.2), i.e. the functional

(2.3) f(z) = f(x, t) =
1
2

∫ 1

0

〈ż, ż〉z ds =
1
2

∫ 1

0

[〈ẋ, ẋ〉+ 2〈δ(x), ẋ〉ṫ− β(x)ṫ2] ds.
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Let fx(x, t) : TxΩ1 → R and ft(x, t) : H1,2
0 (I,R) → R be the partial derivatives

of f , and consider the set

N = {z = (x, t) ∈ Z : ft(x, t) = 0}.

Consider, for any fixed x ∈ Ω1, the problem

ft(x, t) = 0, t(0) = t0, t(1) = t1.

This problem has a unique solution t = t(x) that can be explicitly evaluated,
yielding the following

Lemma 2.2. N is the graph of the smooth map θ : Ω1 → H1,2(t0, t1) given
by

θ(x)(s) = t0 +
∫ s

0

〈δ(x), ẋ〉
β(x)

dr(2.4)

+
( ∫ s

0

1
β(x)

dr

)(
(t1 − t0)

−
∫ 1

0

〈δ(x), ẋ〉
β(x)

dr

)( ∫ 1

0

1
β(x)

dr

)−1

.

Now consider the restriction of f to the graph of θ, i.e. consider the functional
J : Ω1 → R,

J(x) = f(x, θ(x))(2.5)

=
1
2

∫ 1

0

〈ẋ, ẋ〉 ds+
1
2

∫ 1

0

〈δ(x), ẋ〉2

β(x)
ds

− 1
2

(
t1 − t0 −

∫ 1

0
〈δ(x),ẋ〉

β(x) ds
)2∫ 1

0
1

β(x) ds
.

The following variational principle, proved in Theorem 2.2 of [8], holds.

Theorem 2.3. Let z = (x, t) ∈ Z. Then the following statements are equiv-
alent:

(a) z is a critical point of f ;
(b) t = θ(x) and x is a critical point of J .

Moreover, if (a) or (b) is true, then

(2.6) f(z) = J(x).

Let x be a critical point of J . Analogously to the static case, we have
the following “second order variational principle” for the kernels of J ′′(x) and
f ′′(x, θ(x)) (cf. [5] for the proof in the static case).
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Theorem 2.4. Let x ∈ Ω1 be a critical point of J , z = (x, θ(x)) and
ζ = (ξ, τ) ∈ TzZ. Assume that the second order partial derivative ftt(z) is
nondegenerate, i.e.

ftt(z)[τ, τ ′] = 0, ∀τ ′ ∈ H1,2
0 (I,R) ⇒ τ = 0.

Then the following statements are equivalent:

(a) ζ ∈ Ker f ′′(z), i.e. f ′′(z)[ζ, ζ ′] = 0 for all ζ ′ ∈ TzZ;
(b) τ = θ′(x)ξ and ξ ∈ Ker J ′′(x), i.e. J ′′(x)[ξ, ξ′] = 0 for all ξ′ ∈ TxΩ1,

where θ′ denotes the differential of the map θ.

Remark 2.5. From (2.2), for any z = (x, t) ∈ Z, we have

(2.7) ftt(z)[τ, τ ] = −
∫ 1

0

β(x)τ2 ds ≤ − inf
M0

β‖τ̇‖2;

therefore, by the Lax–Milgram Theorem, ftt(z) is nondegenerate.

Remark 2.6. As done in [5] for the static case, we can define θs as the
analogue of θ with fs (see Remark 2.1) instead of f , and we can put

Js(y) = fs(y, θs(y)),

obtaining the following

Definition 2.7. Let x be a critical point of J . A point x(s), s ∈ ]0, 1], is
said to be conjugate to x0 along x if the kernel of J ′′s (xs) is different from {0}.
The dimension of this kernel is called the multiplicity of the conjugate point x(s).
Moreover, the geometric index of x is the number µ(x) of points conjugate to x0

along x, counted with their multiplicity.

From Theorem 2.4 it is easy to deduce the following

Theorem 2.8. Let z = (x, θ(x)) be a geodesic and s ∈ ]0, 1]. Then:

(a) ζ = (ξ, τ) ∈ Ker f ′′s (zs) if and only if τ = θ′s(xs)ξ and ξ ∈ Ker J ′′s (xs);
(b) z(s) is conjugate to z0 along z if and only if x(s) is conjugate to x0

along x;
(c) µ(z) = µ(x), where the geometric index µ(z) of z is defined in Sec-

tion 1.

Now the following lemma is needed.

Lemma 2.9. Let x be a critical point of J . Then the linear operator associ-
ated J ′′(x) is a compact perturbation of a (strictly) positive operator on TxΩ1.

Note that from Lemma 2.9, following the proof for Riemannian manifolds (cf.
e.g. [6, 11]), we get the equality between the Morse index of x as a critical point
of J and the geometric index µ(x). More precisely, we have the following
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Theorem 2.10. Let x be a critical point of J and m(x) = m(x, J) be the
Morse index of x as a critical point of J . Then m(x) = µ(x) <∞.

Notice that from Theorems 2.8 and 2.10 we deduce immediately the following

Corollary 2.11. Let z = (x, θ(x)) be a critical point of f . Then µ(z) =
m(x, J) <∞.

Proof of Lemma 2.9. Let θ be as in (2.4). By (2.5) we obtain

(2.8) J ′′(x)[ξ, ξ] = fxx(x, θ(x))[ξ, ξ] + fxt(x, θ(x))[ξ, θ′(x)ξ],

hence we have to evaluate f ′(z) and f ′′(z). To this end, let Y be a vector field
on the Riemannian manifold M0. The first and second covariant differentials of
Y are multilinear maps

Y ′ : X (M0) → X (M0), Y ′′ : X (M0)×X (M0) → X (M0)

(where X (M0) denotes the set of smooth vector fields on M0) defined in the
following way (see [14] for the details): for any X,X1, X2 ∈ X (M0),

Y ′[X] = ∇XY, Y ′′[X1, X2] = ∇X1∇X2Y −∇∇X1X2Y,

where ∇ : X (M0)×X (M0) → X (M0) is the Levi-Civita connection associated
with the metric. The main properties of the covariant differential of a vector
field are the following.

Let x : ]a, b[ →M0 be a smooth curve and consider the vector field ξ = Y ◦x
along the curve x. Then the first and second covariant derivatives of ξ along x
are respectively given by

∇sξ = Y ′(x(s))[ẋ(s)],(2.9)

∇2
sξ = Y ′′(x(s))[ẋ(s), ẋ(s)] + Y ′(x(s))[∇sẋ(s)].(2.10)

Now, let z = (x, t) ∈ Z. In order to evaluate f ′(z) and f ′′(z), consider the
solution of the Cauchy problem

(2.11) ∇λxλ(λ, s) = 0, x(0, s) = x(s), xλ(0, s) = ξ(s),

defined on ]−λ0, λ0[×I, with λ0 > 0, and consider the curve z(λ, s) = (x(λ, s), t(s)
+ λτ(s)) on Z. Then

f ′(z)[ζ] =
d

dλ
f(z(λ, s))

∣∣∣∣
λ=0

,

while if z is a critical point of f , then

f ′′(z)[ζ, ζ] =
d2

dλ2
f(z(λ, s))

∣∣∣∣
λ=0

.
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Straightforward calculation shows that

f ′(z)[ζ] = f ′(x, t)[(ξ, τ)]

=
∫ 1

0

[〈ẋ,∇sξ〉+ 〈δ′(x)[ξ], ẋ〉ṫ+ 〈δ(x),∇sξ〉ṫ+ 〈δ(x), ẋ〉τ̇ ] ds

−
∫ 1

0

[
1
2
〈∇β(x), ξ〉ṫ2 − β(x)ṫτ̇

]
ds,

where ∇β(x) denotes the gradient of β with respect to the Riemannian metric
on M0.

Now, let z = (x, t) = (x, θ(x)) be a critical point of f . Recalling the well
known formula of Riemannian geometry,

∇λ∇sv = ∇s∇λv +R(xs, xλ)v,

where R( · , · )[ · ] denotes the curvature tensor of the metric on M0 (see e.g. [14]),
using (2.10)–(2.11) and differentiating, we obtain

f ′′(z)[ζ, ζ] = f ′′(z)[(ξ, τ), (ξ, τ)]

=
∫ 1

0

[〈∇sξ,∇sξ〉 − 〈R(ẋ, ξ)[ẋ+ ṫδ(x)], ξ〉+ 〈δ′′(x)[ξ, ξ], ẋ〉ṫ] ds

+ 2
∫ 1

0

[〈δ′(x)[ξ],∇sξ〉ṫ+ 〈δ′(x)[ξ], ẋ〉τ̇ + 〈δ(x),∇sξ〉τ̇ ] ds

− 1
2

∫ 1

0

Hβ(x)[ξ, ξ]ṫ2 ds− 2
∫ 1

0

〈∇β(x), ξ〉ṫτ̇ ds−
∫ 1

0

β(x)τ̇2 ds,

where Hβ(x) is the Hessian of β.
Now, setting τ = θ′(x)[ξ], we get

fxt(x, t)[(ξ, 0), (0, τ)] = 2
∫ 1

0

[〈δ′(x)[ξ], ẋ〉τ̇ + 〈δ(x),∇sξ〉τ̇ − 〈∇β(x), ξ〉ṫτ̇ ] ds,

and

fxx(x, t)[(ξ, 0), (ξ, 0)] =
∫ 1

0

[〈∇sξ,∇sξ〉 − 〈R(ẋ, ξ)[ẋ+ ṫδ(x)], ξ〉

+ 〈δ′′(x)[ξ, ξ], ẋ〉ṫ+ 2〈δ′(x)[ξ],∇sξ〉ṫ] ds

− 1
2

∫ 1

0

Hβ(x)[ξ, ξ]ṫ2 ds.

Since the inclusions of H1,2(I,RN ) in H1/2,2(I,RN ) and L2(I,RN ) respectively
are compact, the quadratic form∫ 1

0

[2〈δ′(x)[ξ], ẋ〉τ̇ − 2〈∇β(x), ξ〉ṫτ̇ − 〈R(ẋ, ξ)[ẋ+ ṫδ(x)], ξ〉] ds

+ 2
∫ 1

0

[〈δ′(x)[ξ],∇sξ〉ṫ+ 〈δ′′(x)[ξ, ξ], ẋ〉ṫ] ds− 1
2

∫ 1

0

Hβ(x)[ξ, ξ]ṫ2 ds
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defines a compact operator on TxΩ1. It remains to study the quadratic form∫ 1

0

〈δ(x),∇sξ〉τ̇ ds.

Towards this goal, we have to evaluate τ̇ (recall that θ(x) = t and τ = θ′(x)[ξ]).
From (2.4), it follows that we can assume β to be a constant function, because
the contributions of ∇β(x) to

∫ 1

0
〈δ(x),∇sξ〉τ̇ ds are compact. Then, assuming

β ≡ 1, differentiating (2.4) with respect to x and taking the derivative gives

τ̇ = 〈δ(x),∇sξ〉+ 〈δ′(x)[ξ], ẋ〉 −
∫ 1

0

[〈δ(x),∇sξ〉+ 〈δ′(x)[ξ], ẋ〉] ds.

Hence we obtain

(2.12)
∫ 1

0

〈δ(x),∇sξ〉τ̇ ds

=
∫ 1

0

〈δ(x),∇sξ〉2 ds+
∫ 1

0

〈δ(x),∇sξ〉〈δ′(x)[ξ], ẋ〉 ds

−
( ∫ 1

0

〈δ(x),∇sξ〉 ds
)2

−
∫ 1

0

〈δ(x),∇sξ〉 ds ·
∫ 1

0

〈δ′(x)[ξ], ẋ〉 ds.

Clearly the term∫ 1

0

〈δ(x),∇sξ〉〈δ′(x)[ξ], ẋ〉 ds−
∫ 1

0

〈δ(x),∇sξ〉 ds ·
∫ 1

0

〈δ′(x)[ξ], ẋ〉 ds

defines a compact operator on TxΩ1, because of the compact embedding of
H1,2(I,RN ) in H1/2,2(I,RN ). Moreover, by the Hölder inequality, we have∫ 1

0

〈δ(x),∇sξ〉2 ds−
( ∫ 1

0

〈δ(x),∇sξ〉ds
)2

≥ 0,

hence this difference defines a positive operator.
Thus, we have shown that J ′′(x) is a compact perturbation of the positive

definite quadratic form on TxΩ1,∫ 1

0

[〈∇sξ,∇sξ〉+ 〈δ(x),∇sξ〉2] ds−
( ∫ 1

0

〈δ(x),∇sξ〉ds
)2

.

3. The penalization argument and some a priori estimates

In this section we describe the penalization argument that we use together
with the a priori estimates needed in the proof of Theorem 1.6.

If assumption (1.10) holds, the functional J is coercive. Indeed, by using the
Hölder inequality it is easy to prove the following lemma (see also [8]).
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Lemma 3.1. Assume that (1.10) holds. Then

(3.1) lim
‖x‖∗→∞

J(x) = ∞,

where, for every x ∈ Ω1,

(3.2) ‖x‖2∗ =
∫ 1

0

〈ẋ, ẋ〉 ds.

In order to apply Morse theory to the functional J , we need the Palais–Smale
compactness condition.

We recall that a smooth functional I : X → R defined on a Hilbert manifold
X is said to satisfy the Palais–Smale condition at the level c ∈ R ((P.S.)c) if
every sequence {xk}k∈N such that

(3.3) I(xk) → c

and

(3.4) ‖I ′(xk)‖ → 0

has a convergent subsequence. Here ‖ · ‖ denotes the norm induced on TxX by
the Riemannian metric on X and I ′ the gradient of I.

Since M0 is not a complete Riemannian manifold (because of the presence of
the boundary ∂M0), Ω1 = Ω1(M0, x0, x1) is not complete (indeed, it is an open
submanifold of Ω̃1 = Ω1(M̃0, x0, x1)). For this reason the functional J does not
satisfy the Palais–Smale condition. Indeed, a sequence in Ω1 which satisfies (3.3)
and (3.4) may converge to a curve x which “touches” the boundary of M0, hence
x /∈ Ω1.

In order to overcome this difficulty, we introduce a penalization argument.
Since ∂M0 is a smooth submanifold of M̃0, there exists a smooth function
φ : M̃0 → R such that

M0 = {x ∈ M̃ : φ(x) > 0},(3.5)

∂M0 = {x ∈ M̃ : φ(x) = 0}(3.6)

(3.7) gradφ(x) 6= 0 for any x ∈ ∂M0,

where gradφ(x) denotes the gradient of φ at x with respect to the Riemannian
structure 〈 · , · 〉.

Moreover, for any z ∈M, we set

(3.8) Φ(z) = Φ(x, t) = φ(x).

Notice that, denoting by ∇ the gradient of Φ with respect to the Lorentzian
structure 〈 · , · 〉z, we have

(3.8) ∇Φ(z) = gradφ(x), 0),
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hence Φ satisfies (1.5). Now, let

ψ(σ) = eσ − (1 + σ + σ2/2),

and, for every ε > 0,

ψε(σ) =

{
ψ(σ − 1/ε) if σ ≥ 1/ε,

0 if σ < 1/ε.

Finally, for every ε > 0, consider the penalized functional fε : Z → R,

(3.9) fε(z) = fε(x, t) = f(z) +
∫ 1

0

ψε

(
1

φ2(x)

)
ds.

Since the penalization term does not depend on the variable t, the statements of
Lemma 2.2 and Theorem 2.3 also hold for the functional fε and the functional

(3.10) Jε(x) = J(x) +
∫ 1

0

ψε

(
1

φ2(x)

)
ds,

where J is defined by (2.5).
As proved in [8], the sublevels of Jε are complete and Jε satisfies the Palais–

Smale compactness condition at every level c. Indeed, the following theorem
holds:

Theorem 3.2. Assume that (1.7)–(1.8) and (1.10) hold. Then:

(i) for every ε > 0 and a ∈ R, the sublevel Ja
ε = {x ∈ Ω1 : Jε(x) ≤ a} is a

complete metric subspace of Ω1;
(ii) for every ε > 0 and c ∈ R, J satisfies (P.S.)c.

Now, for every ε > 0, let xε be a critical point of Jε such that

(3.11) Jε(xε) ≤M,

where M is a constant independent on ε. Let tε = θ(xε) (cf. (2.4) for the
definition of θ). Since φ does not depend on t, the same proof shows that the
assertion of Theorem 2.3 (cf. [8]) also holds for fε and Jε, with the same map θ.
Then, since xε is a critical point of Jε, the curve zε = (xε, tε) is a critical point
of fε and fε(zε) = Jε(xε).

Hence, for every ζ = (ξ, τ) ∈ Tzε
Z ≡ Txε

Ω1 ×H1,2
0 (I,R),

(3.12) 0 = f ′ε(zε)[ζ] = f ′(zε)[ζ]−
∫ 1

0

ψ′ε

(
1

φ2(xε)

)
· 〈gradφ(xε), ξ〉

φ3(xε)
ds.

As proved in [8], zε is a smooth curve and satisfies the system of equations

(3.13) −∇sżε = ψ′ε

(
1

φ2(xε)

)
· 2
φ3(xε)

∇Φ(zε)

for any s ∈ I, where Φ(x, t) = φ(x) and ∇Φ is the gradient of Φ with respect to
the Lorentzian metric 〈 · , · 〉z.
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Multiplying both sides of (3.13) by ż gives the existence of a constant Hε

such that, for any s ∈ I,

(3.14) Hε =
1
2
〈żε(s), żε(s)〉z − ψε

(
1

φ2(xε(s))

)
.

Integrating (3.14) in the interval I, since ψε ≥ 0, gives

Hε =
1
2

∫ 1

0

〈żε(s), żε(s)〉z ds−
∫ 1

0

ψε

(
1

φ2(xε(s))

)
ds(3.15)

≤ fε(zε)− 2
∫ 1

0

ψε

(
1

φ2(xε(s))

)
ds

≤M −
∫ 1

0

ψε

(
1

φ2(xε(s))

)
ds ≤M.

The following estimates on the family (zε)ε>0 are easy consequences of (3.10),
(3.11), (3.1) and (2.4).

Lemma 3.3. Assume that (1.10) holds. For every ε ∈ ]0, 1], let xε be a
critical point of Jε such that (3.11) holds. Moreover, let tε = θ(xε) and z =
(xε, tε). Then:

(i) supε∈]0,1] ‖xε‖1 <∞ (cf. (2.1),
(ii) supε∈]0,1] ‖tε‖1 <∞ (cf. (2.1) with m = 1).

Now consider the multiplier in the equation (3.13),

(3.16) µε(s) = ψ′ε

(
1

φ2(xε)

)
· 2
φ3(xε)

.

The following lemma is needed to prove the a priori estimates on the critical
points of Jε.

Lemma 3.4. Assume (1.7)–(1.8), (1.10) and (3.11) hold. Then

(3.17) sup
ε∈]0,1]

‖µε‖L∞ <∞.

Proof. The proof of Lemma 3.4 is contained in [8]. However, we repeat the
proof pointing out what is needed in proving Lemma 4.5. For every ε > 0, we
put

%ε(s) = φ(xε(s)) = Φ(zε(s)),

which is a C2 function on I. Let sε be a minimum point of %ε. Since the
derivative ψ′ε is nondecreasing, we have

µε(s) =
2

φ3(xε(s))
ψ′ε

(
1

φ2(xε(s))

)
≤ 2
φ3(xε(sε))

ψ′ε

(
1

φ2(xε(sε))

)
.
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Therefore it suffices to prove (3.17) assuming

(3.18) lim
ε→0

φ(xε(sε)) = 0.

From Lemma 3.3 we deduce that the families {xε}ε∈]0,1] and {tε}ε∈]0,1] are
bounded in L∞(I,RN ) and L∞(I,R), respectively. Hence there exists a pos-
itive constant c1 such that

HΦ(zε(sε))[żε, żε] ≤ c1(〈ẋε(sε), ẋε(sε)〉+ ṫε(sε)2).

Now, by (2.4), (1.10) and Lemma 3.3, there exist positive constants c2 and c3,
independent of ε, such that

ṫ2ε ≤ c2〈ẋε, ẋε〉+ c3,

while by (1.4), (2.4), (1.10) and Lemma 3.3, there exists a constant c4, indepen-
dent of ε, such that

〈żε(sε), żε(sε)〉z ≥ 〈ẋε(sε), ẋε(sε)〉 − c4.

Therefore

HΦ(zε(sε))[żε(sε), żε(sε)] ≤ c5〈żε(sε), żε(sε)〉z + c6,

where c5 and c6 are positive constants independent of ε.
Moreover, if ε is sufficiently small, from (3.18), (3.7) and (3.8), there exists

c7 > 0 such that
〈∇Φ(zε(sε)),∇Φ(zε(sε))〉z ≥ c7.

Then, since sε is a minimum point for %ε,

0 ≤ %̈ε(sε) = HΦ(żε(sε))[żε(sε), zε(sε)] + 〈∇Φ(zε(sε)), Dszε(sε)〉z
= HΦ(zε(sε))[żε(sε), żε(sε)]

− 2
φ3(xε(sε))

ψ′ε

(
1

φ2(xε(sε))

)
〈∇Φ(zε(sε)),∇Φ(zε(sε))〉z

(by (3.13))

= c5〈żε(sε), żε(sε)〉z + c6

− c7
2

φ3(xε(sε))
ψ′ε

(
1

φ2(xε(sε))

)
≤ c5

(
2Hε + ψε

(
1

φ2(xε(sε))

))
+ c6

− c7
2

φ3(xε(sε))
ψ′ε

(
1

φ2(xε(sε))

)
(by (3.13))

≤ c5

(
2M + ψε

(
1

φ2(xε(sε))

))
+ c6

− c7
2

φ3(xε(sε))
ψ′ε

(
1

φ2(xε(sε))

)
(by (3.11)).



Morse Relations for Geodesics 19

Therefore, there exists a positive constant c8 (independent of ε) such that

2
φ3(xε(sε))

ψ′ε

(
1

φ2(xε(sε))

)
≤ c8

(
1 + ψε

(
1

φ2(xε(sε))

))
.

Since the family {ψε}ε>0 of functions has the property ψε(s) ≤ ψ′ε(s) for any
s ≥ 0, we get

2
φ3(xε(sε))

ψ′ε

(
1

φ2(xε(sε))

)
≤ c8

(
1 + ψ′ε

(
1

φ2(xε(sε))

))
,

from which we immediately deduce (3.17).

Corollary 3.5.

lim
ε→0

∫ 1

0

ψε

(
1

φ2(xε(s))

)
ds = 0.

Proof. If infε>0, s∈I φ(xε(s)) > 0, then the proof is obvious. On the other
hand, if infε>0, s∈I φ(xε(s)) = 0, then we can assume that (3.18) holds, so with
the notations of Lemma 3.4, we have

ψε

(
1

φ2(xε(s))

)
≤ ψ′ε

(
1

φ2(xε(s))

)
≤ ψ′ε

(
1

φ2(xε(sε))

)
≤ c0φ

3(xε(sε)) → 0

as ε→ 0, where c0 is an upper bound for ‖µε‖L∞ .

Corollary 3.6. If εn tends to zero, then the family of positive real func-
tions

µεn
(s) =

2
φ3(xεn

)
ψ′εn

(
1

φ2(xεn
(s))

)
weakly converges to µ(s) in L2(I,R+). Moreover, if

inf{φ(xεn(s0)) : n ∈ N} > 0,

then µ(s) = 0 in a neighborhood of s0.

From Lemmas 3.3 and 3.4, it is not difficult to deduce (cf. [8]) the following

Proposition 3.7. Assume that (1.7), (1.8) and (1.10) hold. Let xε be a
critical point of Jε satisfying (3.11), and set tε = θ(xε). Then there exists a
sequence εk → 0 such that, setting xk = xεk

and tk = tεk
, we have:

(i) {xk}k∈N converges to x in H1,2(I,RN );
(ii) {tk}k∈N converges to t in H1,2(I,R);
(iii) x(s) ∈ Ω1(M0∪∂M0, x0, x1) ⊂ Ω̃1 = Ω1(M̃0∪∂M0, x0, x1) (cf. (1.7));
(iv) let z = (x, t); then for every ζ = (ξ, τ) ∈ TxΩ̃1 ×H1,2

0 (I,R),

(3.19)
∫ 1

0

〈ż, Dsζ〉z ds =
∫ 1

0

µ(s)〈∇Φ(z), ζ〉z ds,

where µ ∈ L2(I,R+) and µ(s) = 0 if Φ(z(s)) = 0;
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(v) x ∈ H2,2(I,RN ) and t ∈ H2,2(I,R); in particular x and t are of class
C1.

Finally, Proposition 3.7 and the convexity of the boundary allow us to get
the following a priori estimates on the critical points of Jε, which play a very
important role in the proof of Theorem 1.6. Their proof can be found in [8]. We
repeat the proof pointing out what it is needed in the proof of Lemma 4.5.

Lemma 3.8. Assume that (1.7)–(1.10) hold and fix c ∈ R. Then there exist
δ0 = δ0(c) > 0 and ε0 = ε0(c) > 0 such that, for any ε ∈ ]0, ε0] and for any
critical point xε of Jε satisfying

(3.20) Jε(xε) ≤ c,

we have

(3.21) φ(xε(s)) ≥ δ0 for any s ∈ I,

where φ is defined by (3.5)–(3.7).

Proof. Let tε = θ(xε) (cf. (2.4)) and zε = (xε, tε). If, by contradic-
tion, (3.21) does not hold, by Proposition 3.7 there exist a sequence εk → 0,
x ∈ H2,2(I,RN ) and t ∈ H2,2(I,R) (H1,2-limits of the sequences {xεk

}k∈N and
{tεk

}k∈N) such that z = (x, t) satisfies (3.19) and

(3.22) there exists s0 ∈ ]0, 1[ such that φ(x(s0)) = 0.

By equation (3.19) we have

(3.23) Dsż(s) = −µ(s)∇Φ(z(s)) for almost every s ∈ I.

Now, if s ∈ ]0, 1[ is such that Φ(z(s)) = 0, it is a minimum point of the real
function %( · ) = Φ(z( · )). Then by (3.23) we have

0 ≤ %̈(s) = HΦ(z(s))[ż(s), ż(s)]− 〈∇Φ(z(s)), µ(s)∇Φ(z(s))〉z,

and therefore, for almost every s such that Φ(z(s)) = 0, we have

(3.24) µ(s)〈∇Φ(z(s)),∇Φ(z(s))〉z ≤ HΦ(z(s))[ż(s), ż(s)].

Now, by the convexity of the boundary (cf. Definition 1.5 and (1.6)), for any
z ∈ ∂M and for any ζ ∈ Tz∂M, we have HΦ(z)[ζ, ζ] ≤ 0. Since z is of class C1,
Φ(z(s)) = 0 implies z(s) ∈ Tz∂M; therefore, by (3.24),

µ(s)〈∇Φ(z(s)),∇Φ(z(s))〉z ≤ 0

for almost every s such that Φ(z(s)) = 0. But, by (3.7), (3.8) and (1.4),
〈∇Φ(z(s)),∇Φ(z(s))〉z > 0; therefore, µ(s) ≤ 0 for almost every s such that
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Φ(z(s)) = 0. Then, since µ takes its values in R+ (cf. (3.19)), µ(s) = 0 for
almost every s in I. Consequently, by (3.23),

(3.25) Dsż(s) = 0 for any s ∈ I.

Finally, combining (3.25) with (3.22) gives a contradiction because of the as-
sumption of the convexity of ∂M (cf. Definition 1.5).

Moreover, we also have the following

Lemma 3.9. Assume that (1.7)–(1.10) hold and fix c ∈ R. Let δ0 = δ0(c) be
as in Lemma 3.8. Then:

(i) for any critical point x of J satisfying J(x) ≤ c, we have

φ(x(s)) ≥ δ0 for any s ∈ I;

(ii) the set
{x ∈ Ω1 : J(x) ≤ c and J ′(x) = 0}

is compact.

Proof. Let x be a critical point of J on Ω1. Then there exists ε ∈ ]0, ε0[ (ε0
as in Lemma 3.8), such that x is a critical point of Jε and Jε(x) = J(x). Then
(i) is consequence of (3.21). Moreover, if {xn}n∈N is a sequence of critical points
of J satisfying J(xn) ≤ c for any n ∈ N, since (i) holds, the same arguments used
to prove Proposition 3.7 and Lemma 3.8 show that {xn}n∈N has a subsequence
converging to x ∈ Ω1 (critical point of J), and satisfying φ(x(s)) ≥ δ0 for any
s ∈ I.

4. Proof of Theorem 1.6

In this section we prove Theorem 1.6 and get the Morse relations for geodesics
joining (x0, t0) and (x1, t1), assuming that (x0, t0) and (x1, t1) are nonconjugate.

Remark 4.1. If (x0, t0) and (x1, t1) are nonconjugate, by Theorem 2.4 it
turns out that any critical point of J is nondegenerate.

Unfortunately, we cannot immediately get the Morse relations, because J
does not satisfy the Palais–Smale condition. For this reason we use the penalized
functional Jε.

Remark 4.2. Let c ∈ R be a regular value of J . Then if ε is sufficiently
small, c is a regular value of Jε. Indeed, if {xεk

}k∈N is a sequence such that
J(xεk

) = c and J ′εk
(xεk

) = 0 (εk → 0), by Proposition 3.7 and Lemma 3.8, we
conclude that {xεk

}k∈N converges to a critical point x of J such that J(x) = c.

Using the nondegeneracy of the critical points of J , the following lemma can
be proved.
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Lemma 4.3. Assume that all the critical points of J are nondegenerate and
fix c ∈ R. Then:

(i) there are only a finite number of critical points of J on the sublevel

Jc = {x ∈ Ω1 : J(x) ≤ c};

(ii) let

(4.1) ε1(c) = min{δ20(c), ε0(c)},

where δ0(c) and ε0(c) are defined in Lemma 3.8; then, for any ε ∈
[0, ε1(c)], x is a critical point of J in Jc if and only if x is a critical
point of Jε in Jc

ε , and moreover,

(4.2) Jε(x) = J(x) and m(x, Jε) = m(x, J).

Proof. Any critical point of J is isolated (because J is a Morse function).
Moreover, by Lemma 3.4, {x ∈ Ω1 : J(x) ≤ c, J ′(x) = 0} is compact, so we have
(i). On the other hand, Lemma 3.9 and the form of the penalization term in Jε

yield (ii).
From Lemma 4.3 the following Morse relations hold on the sublevels of Jε.

Theorem 4.4. Assume that all the critical points of J are nondegenerate.
Let c be a regular value of J and set

Z(J, c) = {x ∈ Jc : J ′(x) = 0}.

Let ε1(c) be as in Lemma 4.3. Then, for any ε ∈ ]0, ε1(c)],

(4.3)
∑

x∈Z(J,c)

rm(x,J) = Pr(Jc
ε ) + (1 + r)Qε,c(r),

where Pr(Jc
ε ) is the Poincaré polynomial of Jc

ε and Qε,c(r) is a polynomial with
positive integer coefficients.

Proof. By Lemma 4.3, for any ε ∈ ]0, ε1(c)], c is a regular value for Jε and
Jε has only nondegenerate critical points below the level c. Since Jε satisfies the
Palais–Smale condition at every level, we have∑

x∈Z(Jε,c)

rm(x,Jε) = Pr(Jc
ε ) + (1 + r)Qε,c(r)

for a suitable polynomial Qε,c with positive integer coefficients (cf. e.g. [3, 6]).
Moreover, if ε ∈ ]0, ε1(c)], then Lemma 4.3 also gives

Z(Jε, c) = Z(J, c) and m(x, Jε) = m(x, J) for any x ∈ Z(J, c),

proving (4.3).
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Now, since the critical points of J do not touch the boundary, the form of
the penalization term and a priori estimates similar to those of Lemma 3.8 allow
us to get the following

Lemma 4.5. For any δ > 0, let

Mδ = {x ∈M0 : φ(x) ≥ δ}

and
Ω1

δ = {x ∈ Ω1 : φ(x(s)) ≥ δ, ∀s ∈ [0, 1]}.
Let c be a regular value of J and ε1 = ε1(c). Then there exists δ0 = δ0(c) such
that, for any δ ∈ ]0, δ0(c)] and ε ∈ ]0, ε1(c)],

(i) Ω1
δ/2 ∩ J

c is a weak deformation retract of Jc;
(ii) Ω1

δ/2 ∩ J
c
ε is a weak deformation retract of Jc

ε .

(We recall that if (A,B) is a topological pair, then B is called a weak deformation
retract of A if there exists a continuous map H : ([0, 1]×A, [0, 1]×B) → (A,B)
such that H(0, · ) is the identity map of A and H(1, A) ⊆ B.)

Proof. Let δ0(c) be as in Lemma 3.8 and ε1(c) as in (4.1). For any real
number b, denote by Sb the compact subset of M0 including the support of the
curves contained in the sublevel Jb. Choosing a smaller δ0 if necessary, we can
assume that

gradφ(x) 6= 0 for any x ∈ Sc+1 ∩ {x ∈M0 : φ(x) ≤ δ0}.

For any δ ∈ ]0, δ0[, let χδ ∈ C∞(R+, [0, 1]) be a smooth function such that
χδ(s) = 1 if s ∈ [0, δ], and χδ(s) = 0 if s ≥ 2δ, and consider the Cauchy problem

(4.4) η̇δ(s) = χδ(φ(ηδ(s)))∇φ(ηδ), ηδ(0) = x ∈ Sc+1.

Clearly there exists Tδ > 0, with Tδ → 0 as δ → 0, such that for any x ∈ Sc+1,

(4.5) φ(ηδ(Tδ, x)) ≥ δ.

By (4.5) and standard arguments in ordinary differential equations, it follows
that

(4.6) ηδ(σTδ, · ) converges to the identity in C1(Sc+1) uniformly in σ.

Now, put
Hδ(σ, x)( · ) = ηδ(σTδ, x( · )).

Moreover, choose µ ∈ ]0, 1[ sufficiently small such that [c, c+µ] does not contain
critical values for J and Jε whenever ε < ε1(c) (cf. (4.1)). By (4.4) and (4.5),
the real function ∫ 1

0

ψε

(
1

φ2(Hδ(σ, x))

)
ds
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is decreasing with respect to σ, so we can choose δ small enough such that

Hδ(σ, x) ∈ Jc+µ
ε for any σ ∈ [0, 1] and x ∈ Jc

ε ,(4.7)

Hδ(σ, x) ∈ Jc+µ for any σ ∈ [0, 1] and x ∈ Jc,(4.8)

Hδ(1, x) ∈ Jc+µ ∩ Ω1
δ for any x ∈ Jc,(4.9)

Hδ(1, x) ∈ Jc+µ
ε ∩ Ω1

δ for any x ∈ Jc
ε .(4.10)

Now, for any x ∈ Ω1(M0, x0, x1), put

d(x) = min
s∈I

φ(x(s)).

It is not difficult to prove that d is a continuous function. Moreover, d is strictly
positive on Ω1(x0, x1,M0).

For any σ ∈ [0, 1] and x ∈ Jc, let

λ = λ(σ, x) = d(Hδ(σ, x)), m = m(σ, x) =
d+ λ

2
,

and consider, for any σ ∈ [0, 1] and x ∈ Jc such that λ(σ, x) > d(x), the smooth
functional

(4.11) Jσ,x(y) = J(y) +
∫ 1

0

ψ((λ−d)/4)2

(
1

ϕ(y)−m

)2

ds,

defined on the open set

Ω1
σ,x = {y ∈ Ω1 : ϕ(y(s)) > m, ∀s ∈ I}.

Notice that Hδ(σ, x) ∈ Ω1
σ,x and Jσ,x(Hδ(σ, x)) = J(Hδ(σ, x)) ≤ c+ µ.

The same arguments that were used to prove Lemmas 3.4, 3.8 and 3.9 show
that (upon choosing δ small enough) Jσ,x has no critical points in the strip
{c ≤ Jσ,x(y) ≤ c + µ} for any σ ∈ [0, 1] and x ∈ Jc such that λ(σ, x) > d(x)
(notice that in this case we have d(x) < λ(σ, x) ≤ δ). Moreover, Jσ,x satisfies
(P.S.) in Ω1

σ,x (cf. Theorem 3.2). Consider now the Cauchy problem

(4.12) Γ̇ = − ∇Jσ,x(Γ)
‖∇Jσ,x(Γ)‖2

, Γ(0) = y0.

Then we have the well defined map Π such that

Π(y0) =

{
Γ([Jσ,x(y0)− c]+, y0) if λ(σ, x) > d(x),

y0 if λ(σ, x) = d(x),

which maps Jc+µ
σ,x to Jc

σ,x ⊆ Jc. Since d is continuous and∇J is globally Lipschitz
continuous on the sublevels of J , it is not difficult to prove, by using the Gronwall
lemma in local charts, that the map

(4.13) (σ, x) → Π(Hδ(σ, x))
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is continuous on the open subset {(σ, x) : λ(σ, x) > d(x)} (recall that λ(σ, x) =
d(Hδ(σ, x))). Moreover, if (σn, xn) → (σ, x) and λ(σ, x) = d(x), we have

dist(Hδ(σn, xn), xn) → 0 and [Jσn,xn
(xn)− c]+ → 0,

from which we can deduce that Π(Hδ(σn, xn)) → x.

Thus, (4.13) defines a continuous map. Finally, straightforward calculations
show that it is a weak deformation of Jc onto Jc ∩ Ω1

δ/2. Analogously, it is
possible to construct a weak deformation of Jc

ε onto Jc
ε ∩ Ω1

δ/2, completing the
proof.

Modifying the above proof in a suitable way, it is possible to get a stronger
result:

(i) Ω1
δ/2 ∩ J

c is a strong deformation retract of Jc;
(ii) Ω1

δ/2 ∩ J
c
ε is a strong deformation retract of Jc

ε .

We have chosen to deal only with weak deformation retracts, which is sufficient
for our purposes. On the other hand, in this case the proof is a little simpler.

In order to prove Theorem 1.6, the following preliminary results are needed.
We begin by recalling two simple lemmas in algebraic topology.

Lemma 4.6. Assume that (A,B) is a topological pair such that B is a weak
deformation retract of A. Then Pr(A,B) = 0, and consequently (by the long
exact homology sequence for the pair (A,B)), Pr(A) = Pr(B).

Proof. Let H : ([0, 1] × A, [0, 1] × B) → (A,B) be a continuous map such
that H(0, · ) is the identity map of A and H(1, A) ⊆ B, and let i : B → A be
the inclusion map. Since the map i ◦H(1, · ) : (A,B) → (A,B) is homotopically
equivalent to the identity, it follows that that H(1, · )∗ : H∗(A,B) → H∗(B,B)
is one-to-one. But H∗(B,B) = {0}, hence H∗(A,B) = {0}.

Lemma 4.7. Let (X,A) and (Y,B) be topological pairs such that B ⊂ A is
a weak deformation retract of A and Y ⊂ X is a weak deformation retract of
X. Then Pr(X,A) = Pr(Y,B).

Proof. By the exactness of the triple (B, Y,X) and Lemma 4.6 we have
Pr(Y,B) = Pr(X,B), while by the exactness of the triple (B,A,X) and Lemma
4.6 we have Pr(X,B) = Pr(X,A).

Note that if ε ≤ δ2 \ 4, then Jε = J on Ω1
δ/2, and therefore, Jc

ε ∩ Ω1
δ/2 =

Jc ∩ Ω1
δ/2. Thus, by Lemmas 4.5–4.7, the following propositions hold.

Proposition 4.8. For every regular value c of J , there exists ε(c) > 0 such
that, for any ε ∈ ]0, ε(c)], Pr(Jc

ε ) = Pr(Jc).
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Proposition 4.9. Let c2 > c1 be regular values for J . Then there exists
ε(c1, c2) > 0 such that, for any ε ∈ ]0, ε(c1, c2)], Pr(Jc2

ε , Jc1
ε ) = Pr(Jc2 , Jc1).

Now we are finally ready to prove Theorem 1.6.

Proof of Theorem 1.6. By (4.3) and Proposition 4.8, for any regular
value c of J ,

(4.14)
∑

x∈Z(J,c)

rm(x,J) = Pr(Jc) + (1 + r)Qc(r),

where Qc is a polynomial with natural coefficients.
Our aim now is to send c to ∞, showing (by a standard argument in algebraic

topology and Proposition 4.9) that

(4.15)
∑

x∈Z(J,∞)

rm(x,J) = Pr(Ω1) + (1 + r)Q(r),

where Q is now a formal series with natural coefficients. Denote by Z(J) the
set of critical points of J . Since every critical point of J is nondegenerate, by
Lemma 4.3 there exist two sequences {bh}h∈N and {ch}h∈N of real numbers such
that

• every bh is a regular value for J ,
• b0 < inf J < b1 < . . . < bh < bh+1 < . . . ,

• limh→∞ bh = ∞,

• for any h ∈ N, f bh+1
bh

∩ Z(J) = ∅ or = f−1(ch) ∩ Z(J) (here f b
a = {x :

a ≤ f(x) ≤ b}),
• for any h ∈ N, f−1ch ∩ Z(J) is finite.

Now, for any b ∈ R, the exactness of the triple (∅, Jb,Ω1) shows that (cf. [3,
Lemma 4.2(iv)]) there exists Qb ∈ S (the set of formal series with coefficients in
N ∪ {∞}) such that

Pr(Ω1, Jb) + Pr(Jb) = Pr(Ω1) + (1 + r)Qb(r).

Therefore, by (4.14), for any h ∈ N there exists Qh ∈ S such that

(4.16)
∑

x∈Z(J,bh)

rm(x,J) + Pr(Ω1, Jbh) = Pr(Ω1) + (1 + r)Qh(r).

Fix k ∈ N. Our goal is to prove (4.15) by using (4.16) and arguing on the
coefficients of each degree of the formal series in (4.15) and (4.16). If the set Mk

of points of Z(J) having Morse index k is infinite, then taking the limit in (4.16)
as h goes to ∞ gives immediately the proof of (4.15) for the degree k, because
the coefficient of degree k of

∑
x∈Z(J,bh) r

m(x,J) is nondecreasing with respect to
h and tends to ∞.
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Now suppose that Mk is finite and consider a regular value b such that

(4.17) b > max
Mk

f.

By (4.16), in order to prove (4.15) (for the degree k and consequently for all
degrees) it is sufficient to prove that

(4.18) the coefficient of degree k of Pr(Ω1, Jb) is zero

for any b satisfying (4.17).
Let c > b be a regular value for J . By Lemma 4.3 the Morse relations (4.3)

can also be written for the strip {x ∈ Ω1 : b ≤ Jε(x) ≤ c}, by replacing Pr(Jc
ε )

with Pr(Jc
ε , J

b
ε ). Then by (4.17), Lemma 4.3 and Proposition 4.9 we deduce that

(4.19) Hk(Jc, Jb) = 0.

Consider now the exact homology sequence

(4.20) · · · → Hk(Jc, Jb)
i∗k→ Hk(Ω1, Jb)

j∗k→ Hk(Ω1, Jc) → . . . ,

where i∗k and j∗k are induced by the inclusion maps. If, by contradiction, (4.18)
does not hold, then there exists α ∈ Hk(Ω1, Jb) with α 6= 0. Now, denoting by
∆ the support of α and choosing c > max∆ J gives j∗k(α) = 0. Then, by the
exactness of the homology sequence (4.20), there exists β ∈ Hk(Jc, Jb) such that
i∗k(β) = α, contrary to (4.19). Thus (4.18) and therefore also (4.15) are proved.

Finally, denoting by Z the set of geodesics z = (x, t) (from I to M) joining
z0 and z1, by (4.15), Theorem 2.10 and Corollary 2.11 we get∑

z∈Z

rµ(z) = Pr(Ω1) + (1 + r)Q(r).

Since Ω (cf. the statement of Theorem 1.6) and Ω1 are homotopically equivalent,
we get (1.11), and the proof of Theorem 1.6 is complete.

5. Proof of Theorem 1.9

Let Jε be as in (3.10). The main difference between the proofs of Theorems
1.6 and 1.9 is in the a priori estimates. They are obtained in the following

Lemma 5.1. Let M = M0 ×R satisfy (1.12)–(1.15) and (1.17). Fix c ∈ R.
Then there exist δ0 = δ0(c) and ε0 = ε0(c) such that, for any ε ∈ ]0, ε0] and for
any critical point xε of Jε on Ω1(x0, x1,M0) satisfying

(5.1) Jε(xε) ≤ c,

we have

(5.2) ϕ(xε(s)) ≥ δ0 > 0 for all s ∈ I,

where ϕ is defined in (1.12)–(1.13).
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Proof. Arguing by contradiction, assume that there exists a sequence
{xεn}n∈N (εn → 0) such that for any n ∈ N, xεn is a critical point of Jεn ,
and

(5.3) %n((sn)) = ϕ(xεn
(sn)) → 0 for n→∞,

where sn is a minimum point for the map

(5.4) %n(s) = ϕ(xεn
(sn)), s ∈ I.

Now we set
zn(s) = (xεn

(s), tεn
(s)) ≡ (xn(s), tn(s)),

where tεn
= θ(xεn

) and θ is defined by (2.4). Since zn is a critical point of fεn
,

it satisfies (3.13). Then, for all s ∈ [0, 1], we have

%′′n(s) =
d

ds
[〈∇ϕ(zn(s)), żn(s)〉z]

= Hϕ(zn(s))[żn(s), żn(s)] + 〈∇ϕ(zn(s)), Dsżn(s)〉z
= Hϕ(zn(s))[żn(s), żn(s)]− µεn(s)〈∇ϕ(zn(s)),∇ϕ(zn(s))〉z,

where µεn
(s) is defined by (3.16). Then, by assumption (1.13),

%′′n(s) ≤ Hϕ(zn(s))[żn(s), żn(s)].

Now, by (2.5), (1.15), (1.17), and (5.1), there exists a constant c1 (independent
of n) such that

(5.5)
∫ 1

0

〈ẋn, ẋn〉 ds ≤ c1.

Therefore, by (1.12) and (1.13), there exists a positive constant c0 (independent
of n) such that

(5.6) %′′n(s) ≤ c0%n(s)[〈ẋn, ẋn〉+ |〈δ(xn), ẋn〉ṫn|+ β(xn)ṫ2n].

Passing to a subsequence if necessary, let s0 = limn→∞ sn. Since ϕ(zn(0)) =
ϕ(x0) > 0, and ϕ(zn(1)) = ϕ(x1) > 0, by (5.5) we deduce that s0 6= 0 and
s0 6= 1. Therefore, for any n suffciently large we have %′n(sn) = 0. By (5.3),
(5.5) and (5.6), in order to get a contradiction (proving Lemma 5.1) it suffices
to apply the Gronwall lemma to %n(s), after having proved the existence of two
positive constants c2 and c3 (independent of n) such that

(5.7)
∫ 1

0

|〈δ(xn), ẋn〉ṫn| ds ≤ c2

and

(5.8)
∫ 1

0

β(xn)ṫ2n ds ≤ c3.



Morse Relations for Geodesics 29

Indeed, in this case we have %n(sn) → 0, %′n(sn) = 0, and 0 ≤ %′′n(s) ≤
c0%n(s)un(s), where un(s) is a function such that

∫ 1

0
un(s) ds is uniformly bounded

with respect to n. Therefore, by the Gronwall lemma, we have %n(s) → 0, uni-
formly in [0, 1], contrary to %n(0) = ϕ(x0) > 0.

In order to prove (5.8) set

(5.9) K(x) =
t1 − t0 −

∫ 1

0
〈δ(x),ẋ〉

β(x) ds∫ 1

0
1

β(x) ds

and notice that by (2.4),

ṫn =
〈δ(xn), ẋn〉+K(xn)

β(xn)
.

Therefore, we have

(5.10)
∫ 1

0

β(xn)ṫ2n ds

=
∫ 1

0

〈δ(xn), ẋn〉2

β(xn)
ds

−
( ∫ 1

0

〈δ(xn), ẋn〉
β(xn)

ds

)2( ∫ 1

0

1
β(xn)

ds

)−1

− 2(t1 − t0)
( ∫ 1

0

〈δ(xn), ẋn〉
β(xn)

ds

)( ∫ 1

0

1
β(xn)

ds

)−1

+ (t1 − t0)2
( ∫ 1

0

1
β(xn)

ds

)−1

+ 2(t1 − t0)
( ∫ 1

0

1
β(xn)

ds

)−1

.

Now, combining (1.15), (1.17), (2.5), (3.10) and (5.1) gives (using also the Hölder
inequality) the existence of a positive constant c4 (independent of n) such that

(5.11)
∫ 1

0

〈δ(xn), ẋn〉2

β(xn)
ds−

( ∫ 1

0

〈δ(xn), ẋn〉
β(xn)

ds

)2( ∫ 1

0

1
β(xn)

ds

)−1

≤ c4.

Then, from (5.10), (5.11), (1.15) and (1.17) we deduce (5.8).
In order to prove (5.7), notice that (since fε( · , θ( · )) = Jε( · ) and (5.1) holds),

by (3.15) there exists a bounded sequence {Hn}n∈N of real constants such that

〈ẋn, ẋn〉+ 2〈δ(xn), ẋn〉ṫn − β(xn)ṫ2n = 2Hn + 2ψεn

(
1

ϕ2(xn)

)
,

and so

2〈δ(xn), ẋn〉ṫn = 2Hn + 2ψεn

(
1

ϕ2(xn)

)
− 〈ẋn, ẋn〉+ β(xn)ṫ2n.

Since, for any ε > 0, ψε is a positive function, integrating on the interval I and
combining (5.1), (5.5) and (5.8), we obtain (5.7).

Proof of Theorem 1.9. Thanks to Lemma 5.1, the proof of Theorem 1.9
is the same as the proof of Theorem 1.6, except for the proof of (4.7) and (4.8)
in Lemma 4.5. However, these are simple consequences of (1.16) and (1.18).
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