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A MINIMAX THEOREM FOR MARGINALLY
UPPER/LOWER SEMICONTINUOUS FUNCTIONS
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Dedicated to Ky Fan

Let X, Y be nonempty convex subsets of real separated topological vector
spaces. Sion [3] proved that every u.s.c./l.s.c. quasi-concave-convex function
f: X xY — R has a saddle value, whenever either X or Y is compact.

Recall that f is said to be w.s.c./l.s.c. (resp. quasi-concave-conver) if for
every g € X, yo € Y and r € R the sets {z € X : f(z,y0) > r} and {y €
Y : f(xo,y) < r} are closed (resp. convex). Moreover, f is said to have a saddle
value if infy supy f = supy infy f.

The purpose of this note is to show an improvement of the finite-dimensional
version of the Sion Theorem, by replacing the upper/lower semicontinuity of
f with the marginal upper/lower semicontinuity. A function f is said to be
marginally w.s.c./Ls.c. if for every r € R, open subset U of X and open subset
V of Y, the sets

{reX:inf f(x,y)>r} and {y €Y :sup f(z,y) <r} are closed.
yev xelU
It is clear that every u.s.c./l.s.c. function is marginally u.s.c./l.s.c. The follow-
ing example gives a function which is marginally u.s.c./l.s.c. but not u.s.c./Ls.c.

EXAMPLE 1. Let X =Y = [0,1]. Let Q@ = {(z,y) € X xY 1y > 2z
and 0 < z < 1/2} U{(z,y) € X xY :y < 2(x —1/2) and 1/2 < < 1}.
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Its indicator function g on X x Y (equal to 0 on Q, and to +o0o otherwise) is
quasi-concave-convex; it is marginally u.s.c./l.s.c., but not u.s.c./Ls.c. O

EXAMPLE 2 [2]. Let f : X x Y — R be a quasi-concave-convex function.
Define the functions f¥—, f~t: X xY — R by

fT(z,y) = liminflimsup f(2',y') and f~*(x,y) = limsupliminf f(2’,y’).
y'— "=y

Yy x/—x x! —x Yy
Then f*~ and f~ are quasi-concave-convex and marginally u.s.c./l.s.c. g

MINIMAX THEOREM. Let X, Y be nonempty conver subsets of real sepa-
rated locally convex topological vector spaces such that either X or Y 1is finite-
dimensional and compact. Then every quasi-concave-convex, marginally
w.s.c./l.s.c. function on X XY has a saddle value.

The proof of this Minimax Theorem requires additional terminology, some
well known elementary properties of multifunctions and two preparatory lemmas.
Let A, B be two sets and I' be a multifunction from A to B, denoted by A — B. If
I is another multifunction from A to B, the inclusion I' C IV means “I'z C Iz,
for every x € A”. If A and B are convex sets, then I is said to be concave-convex
whenever the values of I" are convex and, for every y € Y, the set {xr € X : y &
Tz} is convex (see [2]).

Moreover, if A and B are topological spaces, the multifunction LiT' : A — B,
called the Kuratowski lower limit of T', is defined for every © € A by Lil'z =
{y € B : for every neighbourhood V of y, there is a neighbourhood U of z
such that for every 2’ € U the sets Tz’ and V intersect}. As usual, T' is called
a lower semicontinuous multifunction if ' C Lil; in other words, I' is lower
semicontinuous if and only if, for every open subset V of B, {z € X : TanV # (}
is an open subset of A.

Let T : A — B denote the multifunction defined by 'z = 'z, where 'z is
the closure of 'z in B. Then Lil’ = LiT C T; hence, I is lower semicontinuous
if and only if I' = LiT. Observe that if a topological subspace B’ of B contains
all the values of I', then the multifunction IV : A — B’ defined by Iz = I'z is
lower semicontinuous if and only if I' is lower semicontinuous.

Let T be lower semicontinuous. Recall that, for any open subset V' of B, the
multifunction IV : A — B defined by IVx = Tz NV is lower semicontinuous; but,

generally, IV is not lower semicontinuous when V' is closed.

LEMMA 1. Let A be a topological space and let T' : A — L be a lower
semicontinuous multifunction with convezr values in a real separated locally con-
vex topological vector space L. Let H be a closed affine hyperplane in L and
Ap :={x € A: H strictly separates two distinct points of Tx}. Then Ap is an
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open subset of A and the multifunction TV : Ay — L defined by IVx :=Txz N H
is lower semicontinuous and has nonempty values.

PrROOF. Denote by H; and H_ the open half-spaces corresponding to H.
By the definition of Ay, a point x belongs to Ay if and only if

(i) FeNHy #0 and TaenNH_ #0.

By the lower semicontinuity of T, the sets " Hy := {x € A: Te N H, # (0} and
I'"H_:={xz € A:Txn H_ # (}} are open subsets of A; hence Ay =T~ Hy N
I'"H_ is open. Moreover, by the lower semicontinuity of I', the multifunctions
I, Ty : Ay — L defined by ' 'z =T'e N H_ and I'yz = 'z N Hy are lower
semicontinuous, because H_ and H, are open; in other words,

(ii) I x=Lil_z and T,z=Lil .

For every pair of convex subsets C', D of a separated topological vector space
for which C'Nint D # (), one has the known equality C Nint D = CN D (see, for
example, [1]). Hence, for every € Ay, from (i) it follows that

(iii) Il r=TxNH_ and Ty z=TxNH,.

Therefore, by combining (ii) and (iii), the multifunctions I';,Ts : Ay — L
defined by

(iv) IFz=TzNH_ and Texr=TxnNH,

are lower semicontinuous. Now, to show that I" is lower semicontinuous, pick
an xg € Ay, a yo € Izg and an open convex neighbourhood V of yy. We must
find a neighborhood U of xg such that, for every x € U, IV NV # . Since

(v) Mz =T1x N Tz,

by the lower semicontinuity of the multifunctions I'; and T', there is a neigh-
borhood U C Ap of xg such that, for every xz € U,

(vi) VNTzNH_#0 and VNTzNH; #0.

Now, using the fact that V N Tz is convex and that H = H_ N H, from (vi) it
follows that, for every x € U, VNT'zNH # (). This shows the lower semicontinuity
of TV. Obviously, the values of IV are nonempty. O

The following lemma is an immediate consequence of [2, Theorem 2.5].
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LEMMA 2. Let X be a convex subset of a real topological vector space and
let Y be a compact convex subset of a real locally convex topological vector space.
If Q: X — Y is a lower semicontinuous concave-convexr multifunction with
nonempty values then (¢ x Qx # 0.

PROOF. By virtue of [2, Theorem 2.5] we need only verify that, for every
z € X, LiQx # 0. This is a consequence of the nonemptiness of the values of Q
and of the lower semicontinuity of  which amounts to “Qx = LiQx, for every
reX”. O

INTERSECTION THEOREM. Let X be a convex subset of a real locally con-
vex topological vector space and let Y be a compact convexr subset of R™. Let
A X =Y be a multifunction such that, for every open subset U of X, (¢ Az
is a closed subset of Y. If there is a lower semicontinuous concave-convex multi-
function Q : X — Y with nonempty values such that Q C A, then (¢ x Az # (.

Proor. We will prove this theorem by induction on the dimension m of Y.
For m = 0, the assertion of the theorem is trivial. So suppose that the Theorem
holds true if dim Y < m, and assume that dimY = m+1. By Lemma 2, we have
MNaex Qx # (). Then choose yo € MNaex Qz and ¢ € X. In order to prove that
the required set intersection is nonempty, we need only show that yy € Axg.

If yo € Qxg, it is clear that yg € Axg, because 2 C A. Hence suppose that
yo € Qxg. Then choose an open ball By in R™ with center at a point of the
nonempty value Qxo such that yo &€ By. Since Qxg N By # 0 and By is open,
from the lower semicontinuity of € it follows that there is an open neighborhood
Uy of zg in X such that the multifunction Q' : Uy — Y defined by 'z := QzN By
is lower semicontinuous and has nonempty values. Since X is a convex subset
of a locally convex topological vector space, we can suppose that U is convex.
v, QT By £ 0.
Qx N By. Since yg € By and yg € ﬂa:EX Qx, we have

Then, since Q' is concave-convex, by Lemma 2, one obtains [

Now, pick y1 € N cp,

S wo#Ay and [yo.y] C [ Oz,
zeUy

where [yo, 1] is the closed segment joining yo and y;. Let B be an open ball in R™
centered at yy and let Hg be an affine hyperplane in R™ such that yo ¢ Hpg and
(yo,y1)NBNHp # 0, where (yo,y1) denotes the open segment joining yo and y;.
We derive from (1) that, for every x € Uy, there exist two distinct points of QzNB
strictly separated by the hyperplane Hg. Therefore, by Lemma 1, the concave-
convex multifunction Qp : Uy - YN Hpg defined by Qpx = QexN BN Hpg is lower
semicontinuous and has nonempty values. On the other hand, the multifunction
Ap : Uy - Y N Hp defined by Agz = Az N BN Hp satisfies Q3 C Ap and,
for every open subset U of Uy, the set [, ., Apz is closed. Therefore, since the
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dimension of Y N Hp is < m, the inductive hypothesis entails ﬂzer Apz # 0.
Hence, by the definition of Ap, we have B N[,y Az # 0. Since (o, Az
is a closed set and B is an arbitrary open ball centered at yg, it follows that
Yo € ﬂerO Az. Finally, since x¢g € Uy, we have yg € Axg. This completes the
proof of the theorem. O

PROOF OF THE MINIMAX THEOREM. Without loss of generality, assume
that Y is finite-dimensional and compact. Let f : X x Y — R be a marginally
u.s.c/Ls.c. quasi-concave-convex function. Since infy supy f > supy infy f, it
is enough to prove that, for every real number r > supy infy f, the inequal-
ity » > infy supy f holds. Therefore, let r > supy infy f and consider the
multifunctions Q, A : X — Y defined by

(2) Qr={yeY: flr,y)<r} and Ax={yeY: f(z,y) <r}.

Observe that, by (2), & C A. For every open subset U of X, (| ., Az =
{y € Y :sup,¢p f(z,y) <} is closed, because f is marginally u.s.c./l.s.c. The
multifunction € is lower semicontinuous, since, for every open set V in Y, the
set {x € X : QenNV #0} = {z € X :infycy f(z,y) < r} is open, because f
is maginally u.s.c./ls.c. Since r > supy infy f, the values of §) are nonempty.
Moreover, f being quasi concave-convex, the multifunction € is concave-convex.
Hence, from the Intersection Theorem it follows that (1, Az # (0; that is,
there is yg € Y such that, for every z € X, f(z,y0) < r; thus r > infy supy f.
This completes the proof. O
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