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A MINIMAX THEOREM FOR MARGINALLY
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Let X, Y be nonempty convex subsets of real separated topological vector
spaces. Sion [3] proved that every u.s.c./l.s.c. quasi-concave-convex function
f : X × Y → R has a saddle value, whenever either X or Y is compact.

Recall that f is said to be u.s.c./l.s.c. (resp. quasi-concave-convex) if for
every x0 ∈ X, y0 ∈ Y and r ∈ R the sets {x ∈ X : f(x, y0) ≥ r} and {y ∈
Y : f(x0, y) ≤ r} are closed (resp. convex). Moreover, f is said to have a saddle
value if infY supX f = supX infY f.

The purpose of this note is to show an improvement of the finite-dimensional
version of the Sion Theorem, by replacing the upper/lower semicontinuity of
f with the marginal upper/lower semicontinuity. A function f is said to be
marginally u.s.c./l.s.c. if for every r ∈ R, open subset U of X and open subset
V of Y , the sets

{x ∈ X : inf
y∈V

f(x, y) ≥ r} and {y ∈ Y : sup
x∈U

f(x, y) ≤ r} are closed.

It is clear that every u.s.c./l.s.c. function is marginally u.s.c./l.s.c. The follow-
ing example gives a function which is marginally u.s.c./l.s.c. but not u.s.c./l.s.c.

Example 1. Let X = Y = [0, 1]. Let Ω = {(x, y) ∈ X × Y : y ≥ 2x
and 0 ≤ x < 1/2} ∪ {(x, y) ∈ X × Y : y < 2(x − 1/2) and 1/2 < x ≤ 1}.
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Its indicator function ψΩ on X × Y (equal to 0 on Ω, and to +∞ otherwise) is
quasi-concave-convex; it is marginally u.s.c./l.s.c., but not u.s.c./l.s.c. �

Example 2 [2]. Let f : X × Y → R be a quasi-concave-convex function.
Define the functions f+−, f−+ : X × Y → R by

f+−(x, y) = lim inf
y′→y

lim sup
x′→x

f(x′, y′) and f−+(x, y) = lim sup
x′→x

lim inf
y′→y

f(x′, y′).

Then f+− and f−+ are quasi-concave-convex and marginally u.s.c./l.s.c. �

Minimax Theorem. Let X, Y be nonempty convex subsets of real sepa-
rated locally convex topological vector spaces such that either X or Y is finite-
dimensional and compact. Then every quasi-concave-convex, marginally
u.s.c./l.s.c. function on X × Y has a saddle value.

The proof of this Minimax Theorem requires additional terminology, some
well known elementary properties of multifunctions and two preparatory lemmas.
Let A, B be two sets and Γ be a multifunction from A to B, denoted by A � B. If
Γ′ is another multifunction from A to B, the inclusion Γ ⊂ Γ′ means “Γx ⊂ Γ′x,
for every x ∈ A”. If A and B are convex sets, then Γ is said to be concave-convex
whenever the values of Γ are convex and, for every y ∈ Y , the set {x ∈ X : y 6∈
Γx} is convex (see [2]).

Moreover, if A and B are topological spaces, the multifunction LiΓ : A � B,
called the Kuratowski lower limit of Γ, is defined for every x ∈ A by LiΓx =
{y ∈ B : for every neighbourhood V of y, there is a neighbourhood U of x
such that for every x′ ∈ U the sets Γx′ and V intersect}. As usual, Γ is called
a lower semicontinuous multifunction if Γ ⊂ LiΓ; in other words, Γ is lower
semicontinuous if and only if, for every open subset V of B, {x ∈ X : Γx∩V 6= ∅}
is an open subset of A.

Let Γ : A � B denote the multifunction defined by Γx = Γx, where Γx is
the closure of Γx in B. Then LiΓ = LiΓ ⊂ Γ; hence, Γ is lower semicontinuous
if and only if Γ = LiΓ. Observe that if a topological subspace B′ of B contains
all the values of Γ, then the multifunction Γ′ : A � B′ defined by Γ′x = Γx is
lower semicontinuous if and only if Γ is lower semicontinuous.

Let Γ be lower semicontinuous. Recall that, for any open subset V of B, the
multifunction Γ′ : A � B defined by Γ′x = Γx∩V is lower semicontinuous; but,
generally, Γ′ is not lower semicontinuous when V is closed.

Lemma 1. Let A be a topological space and let Γ : A � L be a lower
semicontinuous multifunction with convex values in a real separated locally con-
vex topological vector space L. Let H be a closed affine hyperplane in L and
AH := {x ∈ A : H strictly separates two distinct points of Γx}. Then AH is an
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open subset of A and the multifunction Γ′ : AH � L defined by Γ′x := Γx ∩H
is lower semicontinuous and has nonempty values.

Proof. Denote by H+ and H− the open half-spaces corresponding to H.
By the definition of AH , a point x belongs to AH if and only if

(i) Γx ∩H+ 6= ∅ and Γx ∩H− 6= ∅.

By the lower semicontinuity of Γ, the sets Γ−H+ := {x ∈ A : Γx∩H+ 6= ∅} and
Γ−H− := {x ∈ A : Γx ∩H− 6= ∅} are open subsets of A; hence AH = Γ−H+ ∩
Γ−H− is open. Moreover, by the lower semicontinuity of Γ, the multifunctions
Γ−, Γ+ : AH � L defined by Γ−x = Γx ∩ H− and Γ+x = Γx ∩ H+ are lower
semicontinuous, because H− and H+ are open; in other words,

(ii) Γ−x = LiΓ−x and Γ+x = LiΓ+x.

For every pair of convex subsets C, D of a separated topological vector space
for which C ∩ intD 6= ∅, one has the known equality C ∩ intD = C ∩D (see, for
example, [1]). Hence, for every x ∈ AH , from (i) it follows that

(iii) Γ−x = Γx ∩H− and Γ+x = Γx ∩H+.

Therefore, by combining (ii) and (iii), the multifunctions Γ1,Γ2 : AH � L

defined by

(iv) Γ1x = Γx ∩H− and Γ2x = Γx ∩H+

are lower semicontinuous. Now, to show that Γ′ is lower semicontinuous, pick
an x0 ∈ AH , a y0 ∈ Γ′x0 and an open convex neighbourhood V of y0. We must
find a neighborhood U of x0 such that, for every x ∈ U , Γ′x ∩ V 6= ∅. Since

(v) Γ′x = Γ1x ∩ Γ2x,

by the lower semicontinuity of the multifunctions Γ1 and Γ2, there is a neigh-
borhood U ⊂ AH of x0 such that, for every x ∈ U ,

(vi) V ∩ Γx ∩H− 6= ∅ and V ∩ Γx ∩H+ 6= ∅.

Now, using the fact that V ∩ Γx is convex and that H = H− ∩H+, from (vi) it
follows that, for every x ∈ U , V ∩Γx∩H 6= ∅. This shows the lower semicontinuity
of Γ′. Obviously, the values of Γ′ are nonempty. �

The following lemma is an immediate consequence of [2, Theorem 2.5].
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Lemma 2. Let X be a convex subset of a real topological vector space and
let Y be a compact convex subset of a real locally convex topological vector space.
If Ω : X � Y is a lower semicontinuous concave-convex multifunction with
nonempty values then

⋂
x∈X Ωx 6= ∅.

Proof. By virtue of [2, Theorem 2.5] we need only verify that, for every
x ∈ X, LiΩx 6= ∅. This is a consequence of the nonemptiness of the values of Ω
and of the lower semicontinuity of Ω which amounts to “Ωx = LiΩx, for every
x ∈ X”. �

Intersection Theorem. Let X be a convex subset of a real locally con-
vex topological vector space and let Y be a compact convex subset of Rn. Let
∆ : X � Y be a multifunction such that, for every open subset U of X,

⋂
x∈U ∆x

is a closed subset of Y . If there is a lower semicontinuous concave-convex multi-
function Ω : X � Y with nonempty values such that Ω ⊂ ∆, then

⋂
x∈X ∆x 6= ∅.

Proof. We will prove this theorem by induction on the dimension m of Y .
For m = 0, the assertion of the theorem is trivial. So suppose that the Theorem
holds true if dimY ≤ m, and assume that dimY = m+1. By Lemma 2, we have⋂

x∈X Ωx 6= ∅. Then choose y0 ∈
⋂

x∈X Ωx and x0 ∈ X. In order to prove that
the required set intersection is nonempty, we need only show that y0 ∈ ∆x0.

If y0 ∈ Ωx0, it is clear that y0 ∈ ∆x0, because Ω ⊂ ∆. Hence suppose that
y0 6∈ Ωx0. Then choose an open ball B0 in Rn with center at a point of the
nonempty value Ωx0 such that y0 6∈ B0. Since Ωx0 ∩ B0 6= ∅ and B0 is open,
from the lower semicontinuity of Ω it follows that there is an open neighborhood
U0 of x0 in X such that the multifunction Ω′ : U0 � Y defined by Ω′x := Ωx∩B0

is lower semicontinuous and has nonempty values. Since X is a convex subset
of a locally convex topological vector space, we can suppose that U0 is convex.
Then, since Ω′ is concave-convex, by Lemma 2, one obtains

⋂
x∈U0

Ωx ∩B0 6= ∅.
Now, pick y1 ∈

⋂
x∈U0

Ωx ∩B0. Since y0 6∈ B0 and y0 ∈
⋂

x∈X Ωx, we have

(1) y0 6= y1 and [y0, y1] ⊂
⋂

x∈U0

Ωx,

where [y0, y1] is the closed segment joining y0 and y1. Let B be an open ball in Rn

centered at y0 and let HB be an affine hyperplane in Rn such that y0 6∈ HB and
(y0, y1)∩B∩HB 6= ∅, where (y0, y1) denotes the open segment joining y0 and y1.
We derive from (1) that, for every x ∈ U0, there exist two distinct points of Ωx∩B
strictly separated by the hyperplane HB . Therefore, by Lemma 1, the concave-
convex multifunction ΩB : U0 � Y ∩HB defined by ΩBx = Ωx∩B∩HB is lower
semicontinuous and has nonempty values. On the other hand, the multifunction
∆B : U0 � Y ∩ HB defined by ∆Bx = ∆x ∩ B ∩ HB satisfies ΩB ⊂ ∆B and,
for every open subset U of U0, the set

⋂
x∈U ∆Bx is closed. Therefore, since the
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dimension of Y ∩HB is ≤ m, the inductive hypothesis entails
⋂

x∈U0
∆Bx 6= ∅.

Hence, by the definition of ∆B , we have B ∩
⋂

x∈U0
∆x 6= ∅. Since

⋂
x∈U0

∆x
is a closed set and B is an arbitrary open ball centered at y0, it follows that
y0 ∈

⋂
x∈U0

∆x. Finally, since x0 ∈ U0, we have y0 ∈ ∆x0. This completes the
proof of the theorem. �

Proof of the Minimax Theorem. Without loss of generality, assume
that Y is finite-dimensional and compact. Let f : X × Y → R be a marginally
u.s.c/l.s.c. quasi-concave-convex function. Since infY supX f ≥ supX infY f , it
is enough to prove that, for every real number r > supX infY f , the inequal-
ity r ≥ infY supX f holds. Therefore, let r > supX infY f and consider the
multifunctions Ω,∆ : X � Y defined by

(2) Ωx = {y ∈ Y : f(x, y) < r} and ∆x = {y ∈ Y : f(x, y) ≤ r}.

Observe that, by (2), Ω ⊂ ∆. For every open subset U of X,
⋂

x∈U ∆x =
{y ∈ Y : supx∈U f(x, y) ≤ r} is closed, because f is marginally u.s.c./l.s.c. The
multifunction Ω is lower semicontinuous, since, for every open set V in Y , the
set {x ∈ X : Ωx ∩ V 6= ∅} = {x ∈ X : infy∈V f(x, y) < r} is open, because f
is maginally u.s.c./l.s.c. Since r > supX infY f , the values of Ω are nonempty.
Moreover, f being quasi concave-convex, the multifunction Ω is concave-convex.
Hence, from the Intersection Theorem it follows that

⋂
x∈X ∆x 6= ∅; that is,

there is y0 ∈ Y such that, for every x ∈ X, f(x, y0) ≤ r; thus r ≥ infY supX f .
This completes the proof. �
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