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1. Introduction

Consider the semilinear elliptic boundary value problem

(1.1)

{
∆u = f(x, u,∇u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

where Ω is a bounded domain in RN , N ≥ 3, with a smooth boundary ∂Ω and
f : Ω× R× Rn → R.

The existence of positive solutions to (1.1) in the case where f depends only
on u and grows subcritically has been studied extensively in recent years (see the
review article by Lions [3] and the references therein). In this paper, we establish
the existence of nonnegative solutions to (1.1) where f has a subcritical growth
in u and at most linear growth in ∇u. Aside from the above we do not make
any other assumptions on the domain Ω. Our results imply, for instance, the
existence of nonnegative solutions to{

∆u = −λu−
∑m

j=1 cju
pj − b|∇u| − h(x), x ∈ Ω,

u = 0, x ∈ ∂Ω,
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where λ, cj ∈ R, b ≥ 0, pj > 1, provided b, λ and the L2-norm of h are
small.

We also consider one-dimensional cases of (1.1), in particular the equations

u′′ = f(x, u, u′)

and

u′′ + ku′ = f(x, u, u′), k ∈ R,

subject to Dirichlet, Neumann and periodic boundary conditions.
We derive our results using the Lp theory of elliptic partial differential oper-

ators as presented in [2] plus some elementary properties of the Leray–Schauder
and coincidence degrees (see [4]). Our results were motivated by the studies in
[5, 7] and extend the results in these papers in several ways.

We shall denote the norms in Lp,W 2,p and Ck by ‖ · ‖p, ‖ · ‖2,p and | · |k
respectively, and for brevity, we denote the L2-norm by ‖ · ‖.

2. An existence theorem for partial differential equations

In this section we shall establish a general existence theorem solutions of
boundary value problems for semilinear elliptic problems subject to zero Dirichlet
boundary conditions. In particular, we shall establish the following theorem.

Theorem 2.1. Let f : Ω× R× Rn → R be continuous and assume:

(i) There exist h ∈ L2(Ω) and continuous functions F, F̃ : R+ → R with F

nondecreasing, F (0) = 0 and

F (u) ≤ c1u
p + c2, F̃ (u) ≤

m∑
j=1

dju
pj

for u ≥ 0, where 0 < p, pj < p∗ − 1, p∗ = 2N/(N − 2), c1, c2 and dj

are positive constants, such that

−F̃ (u)− b|v| − h(x) ≤ f(x, u, v) ≤ F (u) + b|v|

for a.e. x ∈ Ω and all u, v ∈ R with u ≥ 0, where 0 ≤ b <
√

λ1, λ1

being the first eigenvalue of −∆ on H1
0 .

(ii) There exists R > 0 such that

R >

(
1− b√

λ1

)−1( N∑
j=1

dj |Ω|(p
∗−pj−1)/p∗ δpj+1Rpj +

‖h‖√
λ1

)
,

where |Ω| denotes the Lebesgue measure of Ω and δ > 0 is such that
‖u‖p∗ ≤ δ‖∇u‖ for all u ∈ H1

0 .

Under these assumptions the problem (1.1) has a nonnegative solution.
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Even though only the values of u ≥ 0 are of interest here, we shall find
it convenient to have F defined for u < 0. We hence fix F to be defined by
F (u) = −F (−u) for u < 0.

Before proving the theorem, we establish an auxiliary result.

Lemma 2.1. Let q = p∗/p. Then for each v ∈ Lq, the problem

(2.1)

{
∆u = F (u) + b|∇u|+ v, x ∈ Ω,

u = 0, x ∈ ∂Ω,

has a unique solution u = Bv ∈ H1
0 ∩ W 2,q, and B : Lq → H1

0 is completely
continuous.

Proof. Without loss of generality, we may assume p ≥ p∗/2. So q ≤ 2.

Since H1 is continuously embedded in Lp∗ the growth conditions on F imply
that for each w ∈ H1

0 , we have

F (w) + b|∇w|+ v ∈ Lq.

We now use results about the solvability of boundary value problems for nonho-
mogeneous linear elliptic equations presented in [2] and let u = Kw ∈ W 2,q∩H1

0

be the unique solution of

(2.2)

{
∆u = F (w) + b|∇w|+ v, x ∈ Ω,

u = 0, x ∈ ∂Ω.

Since the embedding H1
0 ↪→ Lp∗ is continuous, we get

‖u‖2,q ≤ C1[‖F (w)‖q + ‖∇w‖q + ‖v‖q](2.3)

≤ C2[‖∇w‖p + ‖∇w‖+ ‖v‖q + 1],

where Ci are constants. Since q > p∗/(p∗ − 1), the embedding W 2,q ↪→ H1 is
compact. Hence K takes bounded subsets in H1

0 into relatively compact subsets
in H1

0 . We next verify that K is continuous. Let {wn}n ⊂ H1
0 be such that

wn → w in H1
0 and let un = Kwn, u = Kw. Then

(2.4) ∆(un − u) = F (wn)− F (w)− b(|∇wn| − |∇w|).

Multiplying (2.4) by un − u, integrating and using Poincaré’s and Hölder’s in-
equalities we obtain

‖∇(un − u)‖2 ≤ C‖F (wn)− F (w)‖q‖un − u‖p∗(2.5)

+
b√
λ1

‖∇(un − u)‖ ‖∇(wn − w‖.
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Next choose any subsequence of {wn}, which we again denote by {wn}. Then
since wn converges to w in Lp∗ , there exists a subsequence {wnk

} such that
wnk

→ w a.e. and |wnk
| ≤ w∗ for every k, and some w∗ ∈ Lp∗ (see [1]). Hence

F (wnk
) → F (w) a.e., |F (wnk

)| ≤ C[1 + |w∗|p] ∈ Lq,

from which it follows that ‖F (wnk
) − F (w)‖q → 0 and thus (we use (2.5))

‖∇(un − u)‖ → 0, proving the continuity of K.
We next apply the Leray–Schauder continuation theorem to prove that K

has a fixed point. To this end, let u ∈ H1
0 and λ ∈ (0, 1) be such that u = λKu.

Then

(2.6) ∆u = λF (u) + λb|∇u|+ λv.

Multiplying (2.6) by u and integrating, we obtain

‖∇u‖2 ≤ b√
λ1

‖∇u‖2 + C‖v‖q‖∇u‖,

which implies (recall that b <
√

λ1)

‖∇u‖ ≤ C,

where C is a constant independent of u and λ.
Hence K has a fixed point u, which is a solution to (2.1). To show uniqueness,

let u1 and u2 be two solutions of (2.1) and let u = u1 − u2. Then

(2.7) ∆u = F (u1)− F (u2) + b(|∇u1| − |∇u2|).

Multiplying (2.7) by u and integrating, we obtain

‖∇u‖2 ≤ b√
λ1

‖∇u‖2,

and hence u = 0.
We next verify that B : Lq → H1

0 is completely continuous. Let {vn}n ⊂ Lq

be such that vn → v in Lq and let un = Bvn, u = Bv. Then we have

(2.8) ∆(un − u) = F (un)− F (u) + b(|∇un| − |∇u|) + vn − v.

Multiplying (2.8) by un − u and integrating gives

‖∇(un − u)‖2 ≤ b√
λ1

‖∇(un − u)‖2 + C‖vn − v‖q‖∇(un − u)‖,

and hence
‖∇(un − u)‖ → 0,

proving the continuity of B.

Now let K be a bounded set in Lq and v ∈ K. Then using equation (2.1), we
deduce ‖∇u‖ ≤ C.
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Since

‖u‖2,q ≤ C[‖F (u)‖q + b‖∇u‖q + ‖v‖q]

≤ C[‖∇u‖p + b‖∇u‖+ ‖v‖q + 1],

it follows that B(K) is bounded in W 2,q and therefore is relatively compact in
H1

0 , completing the proof of lemma 2.1.

Proof of Theorem 2.1. Let E = {v ∈ H1
0 : v ≥ 0}, where we use ‖∇u‖

as a norm in H1
0 . For each v ∈ E, let

Nv = f(x, v,∇v)− F (v)− b|∇v|.

Then Nv ∈ Lq, and N maps bounded sets in E into bounded sets in Lq. It
follows from Lemma 2.1 that for each v ∈ E, there exists a unique solution
u = Av of {

∆u− F (u)− b|∇u| = Nv, x ∈ Ω,

u = 0, x ∈ ∂Ω.

Since Nv ≤ 0, it follows from the maximum principle (recall the convention made
about the definition of F for negative values of u) [2] that u ≥ 0. So A : E → E

and since A = BN , it follows that A is completely continuous.
Now let u ∈ E and λ ∈ (0, 1) be such that

u = λAu.

Then we have

∆u = λ

(
F

(
u

λ

)
− F (u)

)
+ (1− λ)b|∇u|+ λf(x, u,∇u)(2.9)

≥ λf(x, u,∇u).

Multiplying (2.9) by u and integrating, we obtain

‖∇u‖2 ≤− λ

∫
f(x, u,∇u)u ≤

∫
F̃ (u)u + b

∫
|∇u|u +

∫
|h|u

≤
m∑

j=1

dj

∫
upj+1 +

b√
λ1

‖∇u‖2 +
‖h‖√

λ1

‖∇u‖

≤
m∑

j=1

dj |Ω|(p
∗−pj−1)/p∗δpj+1‖∇u‖pj+1

+
b√
λ1

‖∇u‖2 +
‖h‖√

λ1

‖∇u‖,

which implies(
1− b√

λ1

)
‖∇u‖2 ≤

m∑
j=1

dj |Ω|(p
∗−pj−1)/p∗δpj+1‖∇u‖pj+1 +

‖h‖√
λ1

‖∇u‖

and hence ‖∇u‖ 6= R, by (ii).
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Thus A has a fixed point u, which is a nonnegative solution to (1.1), com-
pleting the proof of Theorem 2.1.

Remark 2.1. Condition (ii) is satisfied if either pj > 1 or pj < 1 for all j,
and ‖h‖ is small.

3. Existence theorems for ordinary differential equations

Now we turn to the one-dimensional case of (1.1). We first have an existence
result for the Dirchlet boundary value problem.

Theorem 3.1. Let f : [0, 1]× R× R → R be continuous and assume:

(i) There exist continuous, nondecreasing functions F, F̃ : R+ → R with
F (0) = 0, and there exist h ∈ L1(0, 1) and 0 ≤ b < 4 such that

−F̃ (u)− b|v| − h(x) ≤ f(x, u, v) ≤ F (u) + b|v|

for a.e. x ∈ [0, 1] and all u, v ∈ R with u ≥ 0.
(ii) There exists R > 0 such that

R >

(
1− b

4

)−1( 1
π

F̃

(
R

2

)
+
‖h‖1

2

)
.

Under these assumptions the problem

(3.1) u′′ = f(x, u, u′), u(0) = u(1) = 0,

has a nonnegative solution.

Proof. Let E = {u ∈ H1
0 : u ≥ 0}. Then using Opial’s inequality [6]∫ 1

0

|u||u′| ≤ 1
4

∫ 1

0

|u′|2, ∀u ∈ H1
0 ,

and the arguments in the proof of Lemma 2.1, it follows that for each v ∈ E,
there exists a unique solution u = Av of

u′′ − F (u)− b|u′| = f(x, v, v′)− F (v)− b|v′|, u(0) = u(1) = 0,

and A : E → E is completely continuous. Let u ∈ E and λ ∈ (0, 1) be such that
u = λAu. Then

(3.2) u′′ ≥ λf(x, u, u′).

Multiplying (3.2) by u and integrating gives

‖u′‖2 ≤
∫ 1

0

F̃ (u)u + b

∫ 1

0

|u||u′|+
∫ 1

0

|hu|

≤ F̃

(
1
2
‖u′‖

)
‖u′‖
π

+
b

4
‖u′‖2 + ‖h‖1

‖u′‖
2

,
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where we have used that |u|0 ≤ 1
2‖u

′‖ and Opial’s inequality. From this and
(ii), we deduce ‖u′‖ 6= R, completing the proof of Theorem 3.1 (recall that
‖u′‖ = ‖u‖H1

0
).

Remark 3.1.

(a) Theorem 2 is valid if continuity assumptions on f are replaced by
Carathéodory conditions.

(b) In [5] and [7], the existence of nonnegative solutions of (3.1) was estab-
lished for f independent of u′ and satisfying

(∗) −c1 − c2u ≤ f(x, u) ≤ 0

and

(∗∗) βu ≤ f(x, u) ≤ αu

respectively, where c1 > 0, 0 ≤ c2 < 1, β ∈ L1 and α > 0. By applying
Theorem 3.1 with F = 0, b = 0, F̃ (u) = c2u and h(x) ≡ c1, we obtain
the condition 0 ≤ c2 < 2π for (∗), and by choosing F̃ = 0, F (u) = αu,
b = 0, we obtain the condition α > 0 for (∗∗). Thus Theorem 3.1
contains the corresponding results in [5, 7] as special cases.

For the Neumann boundary condition, we have:

Theorem 3.2. Let f : [0, 1]× R → R be continuous and assume:

(i) There exists M > 0 such that f(x, u) > 0 for u > M .
(ii) There exist continuous, increasing functions F, F̃ : R+ → R with F (0)

= 0, limt→∞ F (t) = ∞, and h ∈ L1 such that

−F̃ (u)− h(x) ≤ f(x, u) ≤ F (u)

for a.e. x ∈ [0, 1] and all u ≥ 0.
(iii) There exists R > 0 such that

R2 > 2[M2 + F̃ (R)R + ‖h||1R].

Then the problem

u′′ = f(x, u), u′(0) = u′(1) = 0,

has a nonnegative solution.

In order to prove the theorem we first establish a lemma.
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Lemma 3.1. For each v ∈ C0[0, 1], the problem

(3.3) u′′ − F (u) = v, u′(0) = u′(1) = 0,

has a unique solution u = Bv, and B : C0 → C0 is a completely continuous
mapping.

Proof. Let X = C0, Z = C0.

Define L : X ⊃ dom L → Z by Lu = u′′ where dom L = {u ∈ C2 : u′(0) =
u′(1) = 0} and set

Ã : X → Z, Ãu = F (u),

N : X → Z, Nu = F (u) + v.

Then (3.3) is equivalent to
Lu = Nu.

Note that L is a linear Fredholm operator of index 0 and Ã and N are L-
completely continuous [4], with (Lu− Ã(u)) = 0 if and only if u = 0.

Let now u ∈ dom L and λ ∈ (0, 1) be such that

Lu− (1− λ)Ãu− λNu = 0

or

(3.4) u′′ − F (u) = λv.

Integrating (3.4) gives ∫ 1

0

F (u) = −λ

∫ 1

0

v,

which, by the mean value theorem, implies that there exists τ ∈ [0, 1] such that
F (|u(τ)|) = |F (u(τ))| ≤ |v|0. Since limt→∞ F (t) = ∞, it follows that |u(τ)| ≤ C,
where C depends only on F and v.

Hence

(3.5) |u|0 ≤ C + ‖u′‖.

Multiplying (3.4) by u and integrating gives

‖u′‖2 +
∫ 1

0

F (u)u ≤
∫ 1

0

|v||u| ≤ C

∫ 1

0

|v|+ ‖u′‖
∫ 1

0

|v|

and so ‖u′‖ ≤ C, |u|0 ≤ C where C is independent of u and λ. We now use
Theorem IV.3 of [4] with L and N as above and H = L− Ã and conclude that
the first condition of that theorem is satisfied on choosing Ω a large ball, and
that the second condition holds via Proposition II.18 of [4] as H is odd. Hence
there is a solution u to Lu = Nu, and hence to (3.3). Uniqueness is proved in a
standard way using the monotonicity of F .
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We now verify that B : C0 → C0 is completely continuous. Let {vn}n ⊂ C0

be such that vn → v in C0 and let un = Bvn, u = Bv. Since {vn}n is bounded
in C0, it follows from the above argument that {un}n is bounded in C0. Using
the equation

u′′n − F (un) = vn

we deduce that {un}n is bounded in C2.
Now choose any subsequence of {un}n which we again denote by {un}n. It,

in turn, has a subsequence {unk
}k such that unk

→ ũ in C1. Since

u′′nk
− u′′ = F (unk

)− F (u) + vnk
− v,

it follows that

(3.6)
∫ 1

0

|u′nk
− u′|2 +

∫ 1

0

(F (unk
)− F (u))(unk

− u) ≤
∫ 1

0

|vnk
− v||unk

− u|.

Passing to the limit in (3.6), we obtain∫ 1

0

|ũ′ − u′|2 +
∫ 1

0

(F (ũ)− F (u))(ũ− u) ≤ 0,

which implies that ũ = u. Hence un → u in C0 and B is continuous. B is
completely continuous since B maps bounded sets in C0 into bounded sets in
C2. This completes the proof of the lemma.

Proof of Theorem 3.2. Let E = {u ∈ C0 : u ≥ 0}. It follows from
Lemma 3.1 that for each v ∈ E the problem

u′′ − F (u) = f(x, v)− F (v) ≡ Nv,

u′(0) = u′(1) = 0,

has a unique solution u = Av. Since Nv ≤ 0, u ≥ 0 so A : E → E. Since
N transforms bounded sets in C0 into bounded sets in C0 and A = BN, A is
completely continuous. Let u ∈ E and λ ∈ (0, 1) be such that u = λAu. Then

(3.7) u′′ = λf(x, u) + λ

(
F

(
u

λ

)
− F (u)

)
≥ λf(x, u).

Integrating (3.7), we obtain∫ 1

0

λf(x, u) + λ

(
F

(
u

λ

)
− F (u)

)
= 0,

which implies by (i) that there exists τ ∈ [0, 1] such that u(τ) ≤ M . By the
mean value theorem we get

(3.8) |u|0 ≤ M + ‖u′‖.
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Multiplying (3.7) by u and integrating, we obtain

‖u′‖2 ≤ λ

∫ 1

0

f(x, u)u ≤
∫ 1

0

F̃ (u)u +
∫ 1

0

|h|u

≤ F̃ (|u|0)|u|0 + ‖h‖1|u|0

and hence by (3.8),

|u|20 ≤ 2M2 + 2‖u′‖2 ≤ 2[M2 + F̃ (|u|0)|u|0 + ‖h‖1|u|0],

which, together with (iii), implies |u|0 6= R. This completes the proof.

Using similar arguments one immediately obtains the following result for
boundary value problems subject to periodic boundary conditions.

Theorem 3.3. Under the assumption of Theorem 3.2, the problem

u′′ = f(x, u), u(0)− u(1) = u′(0)− u′(1) = 0,

has a nonnegative solution.

In Theorems 3.1–3.3, the constant b has to be small or equal to zero, so we
cannot apply these theorems to the problem

(3.9) u′′ + ku′ + f(x, u, u′) = 0

if |k| is large. But, as we shall see in the next theorems, problem (3.9) with
Dirichlet, Neumann or periodic boundary conditions always has a nonnegative
solution for f satisfying

(3.10) −au− b|v| ≤ f(t, u, v) ≤ au + b|v|+ c ∀u, v ∈ R, u ≥ 0,

where a, b, c are positive constants, provided |k| is sufficiently large.

Theorem 3.4. Let f : [0, 1]×R2 → R be continuous and satisfy (3.10) with

a + 2b <
|k|

1− e−|k|
.

Then the problem

u′′ + ku′ + f(t, u, u′) = 0, u(0) = u(1) = 0,

has a nonnegative solution.

We again need a lemma.
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Lemma 3.2. Let k, a, b > 0 satisfy

a + 2b <
k

1− e−k
.

Then for each v ∈ C0, the problem

(3.11) u′′ + ku′ − au− b|u′| = v, u(0) = u(1) = 0,

has a unique solution u = Bv, and B : C0 → C1 is completely continuous.

Proof. For each w ∈ C1, let u = Kw be the unique solution of

u′′ + ku′ = aw + b|w′|+ v, u(0) = u(1) = 0.

Then K : C1 → C1 is completely continuous. Let u ∈ C1 and λ ∈ (0, 1) be such
that u = λKu. Then

(3.12) u′′ + ku′ = λ(au + b|u′|+ v).

Multiplying (3.12) by e−ktu′ and integrating gives

(3.13) u′(t) = ekt

[
u′(0) + λ

∫ t

0

(au + b|u′|+ v)eks ds

]
.

Since
∫ 1

0
u′ = 0, this implies

u′(0) =
−λ

∫ 1

0
e−kt(

∫ t

0
(au + b|u′|+ v)eks ds)∫ 1

0
e−kt

=
−λ

1− e−k

∫ 1

0

(1− e−k(1−s))(au + b|u′|+ v) ds

so that

(3.14) |u′(0)| ≤ a‖u‖1 + b‖u′‖1 + ‖v‖1 ≤
(

a

2
+ b

)
‖u′‖1 + ‖v‖1.

Combining (3.13) and (3.14), we obtain

‖u′‖1 ≤ |u′(0)|1− e−k

k
+

∫ 1

0

1− e−k(1−s)

k
(a|u|+ b|u′|+ |v|) ds

≤ 2
1− e−k

k

[(
a

2
+ b

)
‖u′‖1 + ‖v‖1

]
,

which implies, by the assumption on k, that

(3.15) ‖u′‖1 ≤ C,

where C is independent of u and λ. Using this in (3.12), we deduce

(3.16) ‖u′′‖1 ≤ C1,
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where C1 is independent of u and λ. It now follows that

|u|1 ≤ C + C1.

We now use the Leray–Schauder continuation theorem to deduce that there
exists a solution u to (3.11). If u1 and u2 are two solutions of (3.11), let u =
u1 − u2. Then u satisfies

u′′ + ku′ = au + b(|u′1| − |u′2|), u(0) = u(1) = 0.

Since |au + b(|u′1| − |u′2)|| ≤ a|u|+ b|u′|, we deduce as in the existence proof that

‖u′‖1 ≤ 2
1− e−k

k

(
a

2
+ b

)
‖u′‖1,

and hence u′ = 0. So u = 0.
We now verify that B : C0 → C1 is completely continuous. Let v ∈ C0,

|v|0 ≤ M and let u = Bv. Then we have as above

‖u′‖1 ≤ M1,

where M1 depends only on M,a, b and k. Hence, by using the equation in (3.11),

‖u′′‖1 ≤ M2,

where M2 = kM1 + aM1 + bM1 + M and so

|u′|0 ≤ ‖u′′‖1 ≤ M2, |u′′|0 ≤ M3,

where M3 = kM2 +aM1 + bM2 +M . Thus B transforms bounded subsets in C0

into relatively compact subsets in C1. Now, let {vn}n ⊂ C0 be such that vn → v

in C0 and let un = Bvn, u = Bv. Then

(3.17) (un − u)′′ + k(un − u)′ = a(un − u) + b(|u′n| − |u′|) + vn − v,

which implies

(3.18) ‖u′n − u′‖1 ≤ c1‖vn − v‖1,

where c1 depends only on a, b and k. Using (3.18) in (3.17), we deduce

(3.19) ‖u′′n − u′′‖1 ≤ c2‖vn − v‖1,

where c2 = kc1 + ac1 + bc1 + 1, and so

|un − u|1 ≤ (c1 + c2)‖vn − v‖1,

i.e., B is continuous.

Proof of Theorem 3.4. Note first that u is a solution of

u′′ + ku′ + f(x, u, u′) = 0
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if and only if v(x) = u(1− x) is a solution of

v′′ − kv′ + g(x, v, v′) = 0,

where g(x, u, v) = f(1 − x, u,−v). Therefore we may assume that k > 0. Let
E = {u ∈ C1 : u ≥ 0}. For each v ∈ E, let u = Av be the unique solution of

u′′ + ku′ − au− b|u′| = −f(x, v, v′)− av − b|v′| ≡ Nv,

u(0) = u(1) = 0.

Since N transforms bounded subsets in C1 into bounded subsets in C0, and
A = BN , it follows that A : E → E is completely continuous. Let u ∈ E and
λ ∈ (0, 1) be such that u = λAu. Then

(3.20) u′′ + ku′ = −λf(t, u, u′) + (1− λ)(au + b|u′|).

Since

(3.21) |−λf(t, u, u′) + (1− λ)(au + b|u′|)| ≤ au + b|u′|+ c,

by (3.10), it follows as in the proof of Lemma 3.2 that ‖u′‖1 ≤ C, where C is
independent of u and λ. Hence, by (3.20) and (3.21), we deduce ‖u′′‖1 ≤ C1,
where C1 is independent of u and λ, and so |u|1 ≤ C2, where C2 is independent
of u and λ.

For the Neumann problem, we have the following result.

Theorem 3.5. Let f : [0, 1]×R2 → R be continuous and satisfy (3.10) with

a + 2b <
|k|

1− e|k|

and suppose that there exists M > 0 such that

f(x, u, v) < 0 for u > M.

Then the problem

u′′ + ku′ + f(x, u, u′) = 0, u′(0) = u′(1) = 0,

has a nonnegative solution.

The following lemma will be needed.

Lemma 3.3. Let k, a, b > 0 satisfy

a + 2b <
k

1− e−k
.

Then for each v ∈ C0, the problem

(3.22) u′′ + ku′ − au− b|u′| = v, u′(0) = u′(1) = 0,

has a unique solution u = Bv, and B : C0 → C1 is completely continuous.
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Proof. Let X = C1, Z = C0. Define L : X ⊃ dom L → Z by Lu = u′′+ku′,
where dom L = {u ∈ C2 : u′(0) = u′(1) = 0}, and let

Ã = X → Z, Ãu = au,

N = X → Z, Nu = au + b|u′|+ v.

Then L is a linear Fredholm mapping of index 0, Ã and N are L-completely
continuous and (3.22) is equivalent to Lu = Nu. Since ker(L − Ã) = {0}, we
need only prove that all possible solutions of the family

(3.23) Lu− (1− λ)Ãu− λNu = 0, λ ∈ (0, 1),

are bounded independently of u and λ. Let u ∈ dom L and λ ∈ (0, 1) satisfy
(3.23). Then

(3.24) u′′ + ku′ = au + λ(b|u′|+ v).

Multiplying (3.24) by ekt and integrating gives

(3.25) u′(t) = e−kt

∫ t

0

eks(au + b|u′|+ v) ds.

Since u′(1) = 0, there exists τ ∈ [0, 1] such that

|u(τ)| ≤ b

a
|u′|0 +

|v|0
a

and so

(3.26) |u|0 ≤
(

b

a
+ 1

)
|u′|0 +

|v|0
a

.

From (3.25) and (3.26), we deduce

(3.27) |u′(t)| ≤ 1− e−k

k
[(a + 2b)|u′|0 + 2|v|0],

which implies |u′|0 ≤ C, and thus, by using (3.26), |u|1 ≤ C1, where C1 is
independent of u and λ. So by Theorem IV.5 of [4], there exists a solution u to
(3.22).

Now, let u1 and u2 be two solutions to (3.22) and let u = u1 − u2. Then we
have

u′′ + ku′ = au + b(|u′1| − |u′2|),

which implies

|u′|0 ≤
1− e−k

k
(a + 2b)|u′|0,
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and hence u′ = 0, u = 0. Finally, by using (3.27) it can be proved that B : C0 →
C1 is completely continuous, and the proof is complete.

Proof of Theorem 3.5. Let E = {u ∈ C1 : u ≥ 0}. For each v ∈ E, let
u = Av be the unique solution of

u′′ + ku′ − b|u′| − au = −f(x, v, v′)− av − b|v′|,
u′(0) = u′(1) = 0.

Then A : E → E is completely continuous. As in Theorem 3.4, we assume k > 0.
Let u ∈ E and λ ∈ (0, 1) be such that u = λAu. Then we have

(3.28) u′′ + ku′ = (1− λ)(au + b|u′|)− λf(x, u, u′).

Multiplying (3.28) by ekt and integrating, we obtain∫ 1

0

ekt[(1− λ)(au + b|u′|)− λf(t, u, u′)] dt = 0,

which implies that there exists τ ∈ [0, 1] such that u(τ) ≤ M , from which we
deduce as in the proof of Lemma 3.3 that |u|1 ≤ M1, where M1 is independent
of u and λ.

Using a similar argument we obtain the following result.

Theorem 3.6. Let the assumptions of Theorem 3.5 hold, with

a + 2b < |k|.

Then the problem

u′′ + ku′ + f(t, u, u′) = 0, u(0)− u(1) = 0, u′(0)− u′(1) = 0,

has a nonnegative solution.
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