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1. Introduction

In this paper we look at parabolic partial differential equations from a new
point of view. We regard a parabolic system as arising from an elliptic system by
adding time dependence. We inquire if it is possible to use the detailed analysis
of the resulting elliptic system to study the time-dependent situation. Moreover,
we focus on special classes of solutions of the time-dependent problem, namely,
periodic solutions.

A new feature of our viewpoint is an attempt to use the new infinite-dimensio-
nal theory of singularities of maps for nonlinear dynamical systems defined by
nonlinear evolution equations. In fact, we regard a nonlinear evolution equation
subject to appropriate boundary conditions as a mapping between two infinite-
dimensional spaces. By focusing attention on periodic time-dependence we are
able to assume the mapping in question is a Fredholm operator of index zero.
Once this fact has been established, we are able to use the infinite-dimensional
theory of singularities to determine a very explicit type of bifurcation at a sin-
gular point.

In this paper we carry out the detailed analysis of the above idea which was
proposed in a paper of Berger and Schechter [5]. We consider the bifurcation of
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T-periodic solutions from equilibria for the nonlinear evolution problem

uy — Lu — f(z,u) = g(z,t) in Q x R,

1
(1) = () on 9 x R.

with a given T-periodic smooth forcing term g(z,t). The corresponding elliptic

partial differential equation is

—Lu - f(IB,U) =g(.’L‘) in Q>

2
@ u=0 on 9.

The content of this paper is as follows: We consider equation (1) for 2 being
an arbitrary bounded domain in R® with smooth boundary 952 and L a uniformly
elliptic formally self-adjoint second order differential operator defined on §). The
function f{z,u) is specialized to be a C? real-valued convex function with f,
bounded and

< A1, A1 < lim < Az,

8—+00

(3) 0< lim

8— —00

f(z,3) f(z,s)
5 - 8

where Ay, Ay are the lowest two eigenvalues of — L relative to Q.
More explicitly, we define our real Hilbert spaces X and Y of T-periodic
functions in t to be X = W 9[(0,T), H] with the norm

1/2
lwu={/ [ﬁ+WM+m$@ ,
Qx(0,T)

and Y = L;[(0,T), H] with the norm

lww:{/
ox(0,T

)

1/2
[v? + qulzl} :
)

Here H = W{,(€2). Also we define a nonlinear operator B: X — Y by

<mw¢n=/

Qx(0,T

)[ued’ —uL¢ — f(z,u)¢)]
and a nonlinear operator A: H — H by
(A(u),p)n = / [uL¢ + f(z,u)d).
Q

We prove the following theorems.
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THEOREM 1. The operator B regarded as a C! mapping between the real
Hilbert spaces X and Y is a nonlinear Fredholm operator of index zero.

THEOREM 2. Regular points of the mapping A are reqular points of the map-
ping B. Moreover, singular points of A are singular points of B and, for any
ue H,

(4) dim ker A’(u) = dim ker B’ (u).

THEOREM 3. Any singular point u of A is an infinite-dimensional Whitney
fold for B, provided B is regarded as a mapping between X and Y.

THEOREM 4. For g(x,t) smooth, restricted to a small neighborhood of a sin-
gular value of A in Y, the nonlinear evolution eguation has ezactly 2, 1 or 0
smooth, real T-periodic solutions in an appropriate neighborhood of the associ-

ated singular point of A.

We look for a weak solution of equation (1) and try to use the duality method
which enables us to conduct the detailed analysis of the bifurcations of periodic
solutions.

In Section 2, we will give a short account of singularity theory. In Section 3,
by choosing appropriate function spaces we will prove that the induced nonlinear
operator is Fredholm of index zero. In Section 4, we will show the local properties

of the induced operators.

2. Background from singularity theory

Let us begin by recalling some simple facts of singularity theory. For more
details we refer to Berger [2] and Berger and Church [3]. Let X and Y be
Banach subspaces of a Hilbert space Z and F : X — Y be a C! operator. By
F': X — L(X,Y) we denote the Fréchet derivative of the operator F'. A linear
operator L : X — Y is called Fredholm if (a) the range of L is closed in Y, and
(b) the subspaces ker I and coker L are finite-dimensional. The index of L is

index L = dimker L — dim coker L.

We say a C! operator F : X — Y is Fredholm if F'(u) € L(X,Y) is a Fredholm
operator for any « € X. Actually, the index of F'(u) does not depend on u, so
that we may speak of the index of F.

Let F: X — Y bea C! operator. We say that u € X is a singular point of F
if ker F'(u) contains a nontrivial element. Otherwise u is said to be a regular point
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of F. The set of singular points will be denoted by S(A). We investigate what
happens when mappings have singularities. The first two types of singularities
are fold and cusp singularities (see Whitney [6]). Let us introduce the concept
of infinite-dimensional Whitney fold.

DEFINITION 5. Let u € X be a singular point of F. We call » an infinite-
dimensional fold point of F if the following conditions hold:

(i) F is Fredholm with index 0,
(ii) dimker F'(u) = 1;

(iii) for some (and hence for any) nonzero element e € ker F'(u),
(F"(u)(e;€),e)z # 0.

The following proposition gives a nice description of the behavior of a map-
ping in a neighborhood of an infinite-dimensional fold point. This description is

invariant under local coordinate change.

THEOREM 6 (BERGER AND CHURCH [3]). Let u be an infinite-dimensional
fold point of F. Then there ezists a Banach space E such that F is locally C*
equivalent at u to the map ¢ : R x E — R x E given by

(t,v) = (t,v), teR, ve E.

3. Function spaces and properties of nonlinear operators

Let H = W{,(). Denote by W12[(0,T), H] the Hilbert space of all real
functions u on Q x R that are T-periodic in ¢ with the norm

1/2
ulls = { /Q [u? + uel? + |uz|2]}

for Q = Q x (0,T). By L,[(0,T), H] we mean the Hilbert space of all real
functions u on Q x R that are T-periodic in ¢ with the norm

AT }1’2 |

We define a solution of (1) as follows:
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DEFINITION 7. By & solution ol problem (1) we mean a lunction o €
W1,2[(0,T), H] which satislies

(5) /Q e — ulp — [, )] = /Q g

for any ¢ € Ly[(0,T), H].

We define X = W, ,5[(0,T), H|, Y = 1,[(0,T), H].
Now for u € H = W{,(Q2) the formula

Io(#) = f( [l + Sz upy]

defines a bounded linear functional for 4» € H and the Riesz Representation

Theorem yields Io(4) = (A(u), ¥), giving an operator A : H — H satisfying
(6) (Aw), ¥y = [ lukp+ 1G]
For fixed w € W) 2[(0,T), H] the formula
I(g) = /Q fued - ul ~ f(z,u)e]

defines a bounded linear functional for ¢ € L,[(0,T), H]. This yields an operator
B: X — Y such that

(7) (B(u),¢)y = /Q [ — ulg — f(z,u)¢).
It is clear that the operator B is well defined. Actually, we can write
B: XY, B(u) = uy — Lu — f(z,u),
with D(B) = W;,[(0,T), H]. If we denote the inner product and norm of H as
(u,v) = (U,'“)W{{,(n), ||u||2 = (u,u),
the inner product and norm in ¥ can also be written as
T
(o) = [ Gordt, 1l = (),
A linear operator related to B, called By, is defined by
(8) Bou=uy—Lu: X —Y.

It is clear that the operators B and By are well defined. Moreover, the

operator B has the following property:
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THROREM 8. The operator B : X — Y defined by (7) is a C! nonlinear

Fredholm operator of index zero.

PRrROOF. (a) In fact, we can define a linear operator U : X — Y by
(W),8)) = [ [hp ~ b = (o, whe].
Q
It is clear that U is well defined. We compute
(Bt 1) = Bu) = Uk, ) = = [ [f(@,0+0) = f(o,) — fuwr )l

Since f is smooth we know that ||B(u + h) — B(u) — Uh|| = o(h). This means
that the derivative of B at a point u is well defined and is given by

B'(u)v = v — Lv — fu(z,u)v.

We note that the asymnptotic properties (3) imply that f,(z,t) — 0 as |t] — oo,
so that f,(z,t) is uniformly bounded on (—o0,+00). Using this fact we now
show that as u, -+ u in X, B’(u,) — B'(u) in the space of bounded linear
operators on X.

In fact,
l.fu(xyun) - fu(za u)l S (SUP fuu(x’ 3))""‘11 - ula
so that if up, — v in X, then f,(z,u,) — fu.(z,v) in measure over @, and for

fixed v € X of norm 1 in X,
(9) |B' (un)v — B’ (u)v|| < || fu(@, un)v — fulz, u)vliL,q) — 0

by the Lebesgue dominated convergence theorem. This last inequality shows
that
B'(un)v — B'(u)v,
and it remains to show that the convergence is uniform in v. We prove this by
contradiction. Suppose the convergence is not uniform in v. Then there is a
sequence {v,} of norm 1 functions in X and an absolute constant § > 0 such
that
(fulz, un) = fulz, w))vnllLa@) = 6 > 0.
Using Rellich’s lemma we may assume that {v,} is strongly convergent in Y.
Thus
|(fulzyun) = fulz, u))vnllL(@) < | ful@, un)(vn = v)llLo(@)
+ | (fulz, un) — fu(z, )]l Q)
+ | fulz, w)(vn = v)l|22(0)-
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Consequently, by (9),
“(fu(m, un) - fu(x, u))vn”Lg(Q) - 01

contrary to § > 0.
(b) We now show that the operator B so defined is a Fredholm operator of
index zero. Using B'(u)v = Byv — f,(z,u)v we first show that By is invertible.

Indeed, we have
By lw(t) = e (1 - L) Kw(T) + Kuw(t)

where .
Kw(t)=/ e (=l (s) ds.
0

In fact, since D(Bg) = D(B) and from the inequality
(—Lu,u) > allu|)?, u € D(L), a >0,
and B'(u)v = v, — Lv — f,(z,u)v = Byv — fu(z,w)v we find that
((Bow,w)) > ofl[u]l®>,  we D(B),

by integrating (u; — Lu, u) over the interval [0, T7.

If we write ,
y(t) = Kw(t) = / e~ (#=8Ly(s) ds
0
then
(10) y'(t) = e w(0) + Kw'(t) and [ly(e)]| < £/ |[w]||.

Now defining an operator M by
Muw(t) = e (1 — eT5) " Kw(T) + Kw(t),
we find that BpMw = w. In fact, it is clear that

Mw(0) = (1 - "Ly~ Kw(T),
Muw(T) = 2 (1 ~ eTH) ' Kw(T) + Kw(T) = Mw(0).

We rewrite y(t) as

y(t) = /Ot e~ (-t [w(O) + /0aJ w'(r) dr} ds

t t t
= w(O)/ e~ (=8l gg +/ [/ e~ (st ds] w'(r) dr
0 0 r
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to obtain ,
—Ly(t) = (1 — eT)w(0) + / [1—e L)' (r) dr
0

= w(t) — eTEw(0) - Kw'(t) = w(t) — y'(t).
We actually have the estimate

M) < (1 + |11 = e INT2wli].

Using the fact that L~! is compact, the Ascoli-Arzeld Theorem and the

estimate
ly(t) — y(s)ll < Colt — sP|llwlll, 0<8<1/2,

we find that K is a compact operator from Y to C[(0,T), W1 2(2)]. It follows
that M is a compact operator from Y to X and M f,(z,u) is also a compact
operator from Y to X. Now for any u € D(B), B'(u) is a Fredholm operator of

index zero since B'(u) can be written as
B'(u)v = Bov — fu(z,u)v = Bo(v — M fu(z,u)v).

Thus B is a nonlinear Fredholm operator of index zero. O

4, Local behavior of nonlinear operators

To use the detailed analysis of fold singularities of elliptic operators to study
the bifurcations of T-periodic solutions of evolution equations we need to know
the relationship between T-periodic solutions of evolution equations and solu-

tions of elliptic equations. The connection is the following:

THEOREM 9. If g(z,1) = g(z) in (1), then the T-periodic solutions of (1)

are solutions of (2).

PROOF. Set @ = x [0,T]. We multiply both sides of (1) with u; and then

integrate over @ to get
(11) [l = wku = g wud = [ gy
Q

Since u is a T-periodic function, we have

(12) /ng = -/ng(z) /(f u; = 0,
(13) /Q Fla, w)ug dt = fn /0 T% [ /0 : f(x,s‘)ds] — 0,
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and

(14) /utLu— /L m(“gu)—o

Putting (12)-(14) into (11) gives fQ u}(z,t) = 0. So u(z,t) = u(z) and u is
a solution of (2). O

The next theorem concerns the relationship between the singular points of
the nonlinear operators A and B and the dimensions of the kernels of A’ and B'.

THEOREM 10. Ifu € H is a regular point of A, then u is a reqular point of
B. Ifu € H is a singular point of A, then u is a singular point of B. Moreover,
Jorue HN S(A),

(15) dimker A'(u) = dim ker B'(u).

Proor. (1) Let u € H be a regular point of A. Suppose that for some v € X
such that B'(u)v = 0, we have

(16) /Q (026 — 0L — ful, u)vd] = 0

for every ¢ € Ly[(0,T), H]. We want to show that v = 0. Choosing ¢ = v, in
(16) we get

(17 / [v? — viLv — f, (&, w)vry] = 0.
Q

Since v is T-periodic in t and u is independent of ¢ we have

1 T o
= — — L =
/Qva, 2/(;‘4 f)f.(v v) =0,
Ty ('02)
w (T, u)ov, = T —| =] =0.
/Qf( oo = [ guten) [ 2 (5

Putting these into (17) we get
/ﬁ:m
Q

which means that v(z,t) = v(z) and v satisfies

([ ) w79 o
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But u is a regular point of A so v = 0. Hence u is a regular point of B.
(2) Suppose u € H is a singular point of A. Then there exists a nontrivial

element v € H such that
(18) / (LY + fu(z, u)o] = 0
1]

for all 4y € H. Now v € H is independent of ¢, so that

((B'(u)v, 8)) = /Q foed — 0L — fu(z, uvd]

_ _/n[vL(/oTcp) +fu(z,u)v(/0T¢)]'

Since ¢ = f(;r ¢ € H, from (18) we get ((B'(u)v,¢)) = 0. So u is a singular point
of B.

(3) We now start, to prove (15). Using Theorem 8 we can write every v €
ker B/(u) as '

n
(19) vz, t) =) cx(t)ur() + w(z, )
k=1
where ¢y, ... , ¢, are weakly differentiable functions and vy, ... , v, is an orthonor-

mal basis for ker A'(u), i.e.

(20) (V55 V%) Lo() = Gjks

and w is orthogonal to ker A’(u) for all ¢ in L, sense, i.e.
(21) (w,vj) 1, =0 (i=1,...,n)

for all t. To prove (15) it suffices to prove

(22) ¢ = const. (k=1,...,n)
and
(23) w(z,t) =0.

We first note that

cr(t) = / v(x, t)v(z)de fork=1,...,n
Q
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and ¢ (t) is T-periodic in t. Since
v — Lv— fy(z,u)v =0,

we obtain
(v, ) = (ve — A'(w)v, ve) + (A’ (w)v,v:) =0

by using the self-adjointness of A’(u) and the fact that v € ker B’(u). That is,

dit(v, ) =0

and so
(v, vk) = cx = const. fork=1,...,n.

Now since v € ker B'(u) and v is independent of ¢ we find that
Aww = A'(u)v = —v; = —wy

and so 1d
’ - _ __-& 2
(A @y, w) = —(we,0) = =3 2 ]

But w L ker B'(u) for each fixed ¢, so we have
(A'(w)w, w) > cofjwl|?, co >0

Thus

1d
2. _Lla, 12
collwll? < ~3 2wl
which implies |Jw||? = 0 for any t. Hence w(z,t) = 0. O
LeMMA 11.

(a) For w € HN S(A), condition (iii) in Definition 5 of a fold point reads
(24 [ Funla,wieta)® £0,
Q

where e(u) is the solution of

Le+ fu(z,u)e=0 in 2,

25
(25) e=0 on OfL.

(b) For u € X N S(B), condition (iii) in Definition 5 reads

(26) fo ' /ﬂ Fuu(w)E()® #0,
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where €(u) is the T-periodic solution of
e — Le— fu(z,u)e=0 in ) xR,

(27) - .
e=0 in 90 x R.

ProoF. We only give a proof for the case (b) since the proof for (a) is similar.

From the definition of B we compute
B'(u)é =¢&; — Le — fu(z,u)e =0,

since € is a T-periodic solution of (27). This means that € € ker B'(u). Now

taking the Fréchet derivative of B’ we get

(28) (B )@ 2.8y = = [ fuulo w2

which is (26). O
We now have the following theorem regarding the type of the singular point

of B.

THEOREM 12. Any u € H N S(A) is an infinile-dimensional Whitney fold
for B, provided B is regarded as a mapping between X and Y.

PRrOOF. (a) We know that B is a nonlinear Fredholm operator of index zero

and from Theorem 10,
dim ker B'(1) = dim ker A'(u) = 1.
Let u € HNS(A). From Berger and Church [3], [4] we know that u is a Whitney

fold point of A. From the definition there exists a nonzero element e € ker A’(u)
such that
(A”(u)(e,€),€) # 0.

From Lemma 11(a), this can be written as
(29) / fun(@, u)® #0.
Q

Now since e is independent of ¢ we know e € ker B’(u). Integrating on both sides
of (29) over [0, T] gives

T
(30) / / fuu(z,u)e® # 0,
0o Ja
and from Lemma 11(b) we know u is a Whitney fold point of B. a

For the multiplicity of T-periodic solutions of the nonlinear evolution equa-

tion (1) we have the following theorem.
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THEOREM 13. For g(x,1) smooth, in a small neighborhood of o singular value

of A inY, the nonlinear evolulion cquation (1) has eractly 2, 1 or 0 smooth,
real T-periodic solutions in X in an appropriate neighborhood of the associated

singular poinl of A.

Proor. This follows from the regularity of weak solutions and the canonical

normal form for an infinite-dimensional fold singularity. The regularity of weak

solutions is obtained by using the standard hootstrap argninent. O
REFERENCES

[1] A. AMBROSETTI AND G. PRODI, On the inversion of some differentiable maps with
singularities, Ann. Mat. Pura Appl. 93 (1972), 231-246.

[2] M. S. BERGER, Nonlinearity and Functional Analysis, Academic Press, New York, 1977.

[3] M. S. BERGER AND P. T. CHURCH, Complete integrability and perturbation of nonlinear
Dirichlet problem. I, Indiana Univ. Math. J. 28 (1979), 935-952.

14] , Complete integrability and perturbation of nonlinear Dirichlet problem. II, In-
diana Univ. Math. J. 29 (1980), 715--735.

[5] M. 5. BERGER AND M. SCHECHTER, Bifurcation from equilibria for certain infinite-
dimensional dynamical systems, Contemp. Math. 28 (1990), 133-138.

[6] H. WHITNEY, On singularities of mappings of Euclidean spaces I, Mappings of the plane

into the plane, Ann. of Math. 62 (1955), 374--410.

Manuseript receioed November 15, 1994

MELVYN BERGER

Department of Mathematics and Statistic
University of Massachusetts

Ambherst, MA 01003, USA

MARTIN SCHECHTER
Department of Mathematics
University of California
Irvine, CA 92717, USA

GUOZHANG SUN

Department of Mathemalics and Statistic
University of Massachusetts

Ambherst, MA 01003, USA

TMNA : VOLUME 4 - 1994 — N°2



