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1. Introduction

One of the main problems in the qualitative theory of differential equations
is the center-focus problem for singular points of planar vector fields (see [10],
[11}). It asks for the conditions which must be imposed on a system to ensure
the existence of a center. In the class of germs of smooth or analytic vector
fields V : (R?,0) — (R2%,0) the systems with center form a subset of infinite
codimension and the problem is divided into an infinite number of steps. Given
the n-th jet j"V(0) decide whether (i) O cannot be a center for any V' with
J"V'(0) = j"V(0) or (ii) otherwise. In the case (ii) we pass to "1V (see
[1]). (The Lyapunov stability and the asymptotic stability problems are stated
analogously and for planar vector fields they are equivalent to the center-focus
problem.)

Therefore the core of the problem is to classify polynomial vector fields
with center. The following classes of polynomial vector fields with center are
known: integrable systems with a Darbouz integral or with a Darbouz-Schwartz-
Christoffel integral or with a Darbouz hyperelliptic integral and rationally re-
versible systems. Let us define what these names mean.
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The Darbouz integrable systems have a first integral
(1) H =[] f;7en/,

where f;(z,), g;(z,y) are polynomials and a; are constants.

If M =[] f#5  em/mg;? then the vector field Vg = M~1Xp (where Xg
is the Hamiltonian vector field with the Hamilton function H) is a polynomial
vector field and the critical points of H are centers for V. The centers are at
the points of local extremum of H and are called centers of Darbouz type.

The class of Darboux integrable systems includes also all limit cases of (1)
and forms a closed subset of the set of all systems with center. For example, the

H :z:+2—l+l
a=v" at+2 a) a

of the system # = axz? I+ y? — 1, § = —2zy tends to

first integral

y?
H0=:1:2+7—1ny as a — 0.
The Darbouz-Schwartz-Christoffel integrable systems (DSC) are polynomial
systems with the first integral

U
H= U —u)* |28 OW + u — u; )4 29 P(u) du,
7 3

where u; € C\R, u; € C, P is a polynomial, g is a rational function and
U = R/S and W are some rational functions. The centers under consideration
are at R = .S = 0. Some additional (non-algebraic) conditions must be imposed
on the parameters to obtain the univalence of H in (R?,0) (the existence of a
center). The centers (located in the indefiniteness locus of U) are called centers
of DSC type.

In this paper we shall often meet systems with a first integral of a DSC type
but without centers of DSC type. Notice also that the integral in the definition
of H belongs to the class of Schwartz-Christoffel integrals justifying the name of
H.

The Darboux hyperelliptic integrable systems (DHE) have a first integral of

the form

H= H(R+\/@) p[T S(X)+/XW(u)\/§@du],

with R; = Ry(z,v), X(z,v), T(z,y) rational and S(-), W(-) rational: The critical
points of H are centers of DHE type. Notice that the integral appearing in the
definition of H belongs to the class of hyperelliptic integrals.
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A rationally reversible system at a center O admits some rational non-in-
vertible map ® : RP? — RP? and a polynomial vector field V' on RP? such
that

(i) .V and V' o ® are collinear,

(ii) the curve of non-invertibility I's of ® passes through O and there is a
neighbourhood ¢ C R? of O such that the boundary of ®(U) contains
a part of the curve IY = ®(T'y), the vector field V" is tangent to I' at
®(0) from the outside of ®(U/) and V'(®(0)) # 0.

Under such conditions the point O must be a center because the real tra-
jectories of V' are the preimages of compact pieces of trajectories of V' lying in
&U).

Here the curve of non-invertibility T's is formed by the points near which the
map & is not invertible. In particular, {det(d®) = 0} C I'y. The components of
I's going through the center O form the so-called fold curve.

Probably the first examples of reversible systems were given by Poincaré
[11]. There &(z,y) = (22,y) and the systems are invariant with respect to the
reflection with respect to the axis £ = 0 and reversion of time. They are known

as time-reversible systems (see [13]).

REMARK. The above three types of first integrals have interesting mon-
odromy groups, treated as the automorphisms groups of their Riemann surfaces
(coverings over CP? \ {branching curves}). They form exactly three types of
solvable subgroups of the Mdbius group PSL(2,C) (defined by generators):

h — A, i=1,...,r (Darboux);
h—))\lh+,u,, 1=1,...,r (DSC),
h — \h, i=1,..,r, h>p;/h, j=1,...,s (DHE).

The author thinks that the above examples form all the cases of center for
polynomial systems and that the three types of first integrals represent all first
integrals expressed in quadratures (see [12]). Probably the DHE type integral
did not appear in the literature before.

Starting with the above examples we begin the classification of all cubic
systems with center.

(Recall that quadratic systems with center were classified by Dulac [4] and
by Kapteyn [8]. They are of the form % = iz + A2? + B2z + C%2, where either
B=0o0orA=-1/2,B=1or A,B,C €Ror A=2B =2|C| =2, see also [16].)
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The cubic systems with center have not yet been classified. There are only
restricted results concerning some special subfamilies of the entire 20-parameter
family As of all cubic vector fields (see [6], [7], [15], [17]). A simple answer is
obtained only for systems with homogeneous non-linearity ¢ = iz+ D22+ Ez*z+
F27% + GZ (see [17)): ReE=3D+F =0o0r ReE =ImDF =Re DG =0 or
E=D-3F=2|F|—-|G|=0.

It is not difficult to show that there are no cubic centers with a DSC integral.
(If the linear part j'V at the center is an elementary rotation then the DSC
integral is simply of Darboux type. If 41V is nilpotent then after the resolution
of the singularity it can be shown that either the DSC integral is of Darboux
type or the system is reversible. If j7*V = 0 then also 42V = 0 and homogeneous
systems are Darboux integrable. The detailed proof will be given elsewhere.)

The first step towards a classification of Darboux integrals for cubic systems
with center was made by Sokulski in [14].

The DHE integrals for cubic centers have not yet been investigated. Probably
there are no such cases.

The present work forms the second step, the classification of cubic reversible
centers.

When the author started the investigation of cubic centers the problem of
classification of reversible centers seemed to be quite easy. As the reader will
see it is not so. The consideration of many separate subcases has turned out
very complicated. Moreover, some new methods of studying algebraic invariant

curves were developed (see Lemmas 4-6 in Section 5).

2. The result

In Theorem 1 we present a complete classification of reversible cubic systems
with center which are not integrable by means of Darboux or DSC or DHE
integrals. We denote by A% the set of such systems. To be precise, we have found
all semi-algebraic families of cubic systems with center which are reversible and
such that a generic system from such a family is not Darboux integrable. Often
these families contain some infinite series of Darboux integrable systems but
these series cannot be included in any continuous family of Darboux integrable
systems.

In the classification we exhibit a rational map & : RP?2 — RP?, &(z,y) =
(X,Y), realizing the reversibility and a vector field

V' = F(X, Y)ax + G(X, Y)ay

in the ®-image described by means of the equation dX /dY = F(X,Y)/G(X.Y).
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THEOREM 1. AnyV(z,y) € Af is reversible by means of one of the follounng
17 pairs (®, V') (where we choose some special coordinates (z, ¥, i=z+y+ec
and Ty = az® 4+ bzy + cy® + dz + ey + 1):

Case (X,Y) aX

CRM (a2 e s
CR{Y (o) (Gt

c Rém) (z ) m%) n+pX-’;:-%-qlfr&")l¥:-sXY2
CR{Y (Tve, ) VnirP rar®)

CRY (Twe, 22) Y(kX-ﬁgcf:)ég’t?iﬁi)qXYz j
CR (T, T) e G e
CR;Q) (Tiz, %) Y(k+mx)((lf|-tfl}/{3-pXY)

C’Rém) (Tyx, %i) 2Y(‘I)cc+’:1;i-)l(}inl’)

CRY  (Tiz, %) o

CR%O) (Tl:‘c ’ l}) 3Y(f+’:;f-)l()-(-f-nY)

cr)  (B,L) e s L O
crRp (%1 XY
cry) (%) i ey

crf) (&) PR CES S @
cRY (4, oy

CR{) (2,%) A X e
crRE (T, o e

In the case CR;(,,IO) there are additional restrictions:

n = 4[(3a — b%)bk + (b2 — 2a)l — bm), p = 4a[(6a — b*)k + bl — 2m],
g=38k—2l, r=4a—-bk+bl—-2m, s=k/2.

In the case CR:(llf) we have

T =z, n=zy—2ay’*+22+2(1+a)y+1.
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The upper index in the case labels above denotes the codimension in A3. It
is calculated in the following way. Firstly, we fix the form @y of ® given in the
table (the normal form with respect to the changes ® — ®; 0o ® 0 ®;, ®; 7 affine
diffeomorphisms), depending on n; parameters. Then we count the dimension
ng of the orbit of ®p. The number of parameters in V' is ng. Then n1 +ng +n3
is the dimension of the corresponding stratum of the center manifold. We have
the following.

In CRgT) : ny =0, ng = 3 (the position of I' = {# = 0} and the direction
OE), ny = 10.

In C’Rgm) : n1 = 0, ng = 4 (the position of I' = {2z + y = 0} and of the
invariant line y = 0), n3 = 6.

In C'Rgm) : ny = 1 (a or b fixed), ny = 6 (the position of I' = {y = 0} and
of an invariant quadratic curve), ng = 3, (k,I,m).

In CRE-CRD : ny =0 (c=0,1), ny = 6 (the position of T = 0 and z,y),
and ng depends on the case.

In CR&SB) : n1 = 3 (d, e fixed), no = 6, ng = 6.

In CR%” tny=1,ny=6,n3=1

Usually we shall omit this index in referring to some cases of reversibility.

We have not written the formulas for the vector field V(z,y) = 20, + 90,
because they are rather messy. The reader will find them in Section &.

The proof will be given in Sections 3, 4 and 5.

REMARK 1. The map & realizing the reversibility in the case CR; is the
same as in the Poincaré example [11]. Here the fold curve forms the line I' =
{z = 0} = {det(d®) = 0} and coincides with the curve of non-invertibility.

In the case CRs the curve of non-invertibility consists of two components: the
invariant line {y = 0} and the fold line I' = {2z +y = 0} C {det(d®) = 0}. The
vector field V has also two invariant lines given by the equation k+Ilz+mz? = 0.

The case CR3 is characterized by the fold line I' = {y = 0} (one part of the
curve of non-invertibility) and the invariant quadratic curve {zy+2az%+2b2+2 =
0}, the other component of the curve of non-invertibility. Here also the lines
k + lz +mz? = 0 are invariant.

In the case CRy the fold curve is I' = {2z + ¢ = 0}. The other component of
the curve of non-invertibility is {T1 = = + y + ¢ = 0} transformed to a point; it
is invariant for V. An equivalent form of the map ® is (T1z,T1y).

In the cases CRs, CRg, C' Ry the map realizing the invertibility is the same as
in the case CR4 with the same fold curve and the whole curve of non-invertibility.
However, here the curve T = 0 (transformed to a point) is not invariant for V.
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In the case CRs the line z = 0 is invariant for V. In the case CRg the three
lines given by the equation ky® + pT1y? + qT2y + rT§ = 0 are invariant. In the
case C'Ry; the curves z = 0 and k + ITyz = 0 are invariant.

In the cases CRg and CRy the fold curve is I' = {2z — y + ¢ = 0} and the
second component of the curve of non-invertibility Ty = 0 is transformed to a
point. The curve 71 = 0 is not invariant for V. In the case CRg the curves
# = 0 and k£ + IT1z = 0 are invariant. In the case CRy the curve ky 4 pT? = 0
is invariant. An equivalent form of the map & is (T2z, T1y).

In the case CRy9, 'e =T U{T1 = 0}, T = {2z — 2y + ¢ = 0}. The curve
Ty = 0 is not invariant for V but the curves £ = 0 and k + ITyz = 0 are. An
equivalent form of the map @ is (TPz, Thy).

In the cases CRy; and CRy3, T'e =TU{T1 =0}, T ={z —c = 0}. The
curve 77 = 0 is not invariant for V. In the case CRy; the line z = 0 is invariant
and in the case C'R;2 the two lines given by the equation ky? + pTyy + gT2 =0
are invariant.

In the cases CRy3 and CRyy, I'e =T U{T} =0}, T = {224+ y—c= 0}. The
curve 71 = 0 is not invariant for V. In the case CRy3 the line z = 0 is invariant.

In the case CRy5, I'e =TU{T1 =0}, T = {3z +y — ¢ = 0}. The curve
T: = 0 is invariant. So is also the curve my + nT? = 0.

In the case CRyg, I'e =T U {T% = 0}, T2 = ax? + bzy + cy? + dz + ey + 1,
I' = {ez? + bzy + cy? ~ 1 = 0}. The curve T = 0 is not invariant for V but the
two lines given by gz + (p — n)xy — my? = 0 are.

Finally, in the case CR17, I'e =TU{T1 = 0}U{y =1}, T = {z—ay+1 = 0}.
Here 77 = 0 is not invariant, y = 0 and y = 1 are invariant.

REMARK 2. It is interesting that the cases C Rz, CR3, C R4 were discovered
in investigating possible forms of Darboux integrals for cubic systems. There
appears an infinite series of Darboux integrals with degrees of factors going to
infinity. Any such series turns out to be included in a continuous family of

reversible systems.

ExAMPLES. 5
Bz +1 ~
> ;(6 k-—)' 2 =H(:z:,y2),
z +Z(].)w ity
k—p B2 - 2
- T ﬂ(w+.1)y =H(a:, Yy )’
y2(zF + 3 (j)xk—7)+am+by+c ar+by+c
(v +2) 7(2,0r)
H= =H(-,zP),
e+ (Day*1+... + (§)a* + =+H1P ]
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where P(z,y) is a linear polynomial. It is easy to check that such integrals give

cubic systems (see [14]).

An example of a more complicated series in C'R3 is given in the proof of
Proposition 15 in Section 5. Also some other cases contain analogous series.

3. General properties of reversible systems

Our aim is to classify all continuous semi-algebraic families of cubic systems
with center which are reversible and are not integrable. (In fact, we do not
need bother with DSC integrals because by their definition the center lies in
the set of indefiniteness of U = R/S, R = § = 0, the first component of the
map ¥ = (U, W) by means of which the system can be pushed forward). More
precisely, if & is such a semi-algebraic component of the variety AF then it
may also contain Darboux integrable systems, but a generic V € X should be
non-integrable by means of a Darboux or DHE integral.

Assume that any V(z,y) € ¥ is of the form

V=Ff8V08,

where
®(zr,y) = (X,Y),

with X, Y rational functions,
V' =F(X,Y)dx + G(X,Y)dy

is a polynomial vector field and f is a suitable rational factor. Of course, F' and
G are relatively prime, their greatest common factor (F,G) is 1.

Let us look more closely at the form of the function f. Assume for simplicity
that X and Y are polynomials. Generally f = det(d®) because along the curve
det(d®) = 0 the vector field @1V’ o @ has singularities (®, is not invertible).
However, it may happen that the polynomial vector field

V = det(d®) - &V 0 &
has some curve Z = 0 of equilibrium points, so that the vector field Z‘dV,
d € N, is polynomial but has a lower degree than V.

LEMMA 1. (a) If the above happens for an irreducible Z then Z divides
det(d®) and either
(i) the curve Z = 0 is transformed by ® to a point in C? (X = Z7X;,
Y = Z%Y; in some coordinates), or
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(ii) there are local coordinates T,y near a generic point of Z = 0 and linear
coordinates X,Y in the image of ® such that {Z = 0} = {y =0} and
(X,7) = @7,

(b) In the case (i) the curve Z = 0 may or may not be invariant for V. It
is not invariant iff V' = (yX0x + 6Y8y)K(X,Y) + V{, where K(X,Y) is a
quasi-homogeneous polynomial (with respect to the quasi-homogeneous filtration
with degrees d(X) =7, d(Y) = §), and d(V{) > d(Fp) (see below).

(c) In the case (ii), Z = 0 is an invariant curve for V and does not form a
part of the fold curve T".

We have d(X*Y78x) = (¢ — 1)y + j6, d(X*Y?8y) = iy + (j — 1)6 and
d(X*Y7) = iy + jé in the quasi-homogeneous filtration with the degrees of gen-
erators (vy, §). We shall call the degrees -y, § the indices.

Proor. (a) If 8({Z = 0}) is a point then of course Z divides det(d®).

If ({Z = 0}) is some curve and @ is invertible near a generic point pof Z = 0
then V' vanishes along #({Z = 0}), but we have assumed that (F,G) = 1. If
det(d®) = Z*(1 + ...) then there are linear coordinates X,Y such that X
is regular near p, X(p) = 0, and ¥ = ZF*1(14...). We put F = X and
G Z(1 4. )/,

(b) Let X = Z7X;, Y = 2%. If Z = 0 is not invariant for V and the
trajectories ¢ of V near a generic point of Z = 0 are given by 2 = z(Z) =
To+ ... then the &((¢) are given by Y7 = ¢X® + ..., phase curves of the system
X =4X+...,Y = 6Y + ... Because V can change direction and can have
points of contact with Z = 0 we have the factor K in (b). On the other hand, if
the lowest order part of V' is (yX8x + 6Y 8y ) K then the trajectories of V' cross
the curve Z = 0.

(c) If ® = (z,y**+1) then & = (k + 1)y*F(z,v**1), § = Q(z,y**)) for V. It
the right hand sides are divisible by y then they are divisible by y*+¥*+1) for
some i and then & = F'(z,y*t1),9 = yG'(z, y**1). O

REMARK 1. The assertions of Lemma 1 also hold when X or/and Y are
rational.

REMARK 2. If ®({Z = 0}) = {p} then we can blow up the point p to a line
and the composed map (now rational) transforms Z = 0 to a curve. We shall
always do that when the curve Z = 0 passes through the center.

However, after resolution usually another curve is transformed to a point
in CP? (on the line at infinity). Notice that when we make the blowing-up
(X,Y) = (X,Y/X)or (X :Y :Z)— (X2:YZ : XZ) then the line at infinity
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Z = 0goes to (1:0:0). Therefore we cannot avoid the phenomenon of squeezing

a curve to a point.

In the following lemma we present some situations which imply the Darboux

integrability.
LEMMA 2. In the situations listed below the systems V(z,y) and V/(X,Y)

are Darbouz integrable:

(a) V' is linear.

(b) V' is homogeneous.

(c) V' is quasi-homogeneous with respect to the quasi-homogeneous filtration

with indices (v, 8).

(d) X = F(X)F(Y), Y = G1(X)Ga(Y) (separated variables).

(e)
(2) X =FR(X), Y=G(X)+YGi(X)

where Fy = (aX +b)* and G1 = c(aX + b)* 1.

(f) V' is of the form (2) and it has an invariant algebraic curve Z' = 0 such
that X |z/—g 7 const. The curve Z' = 0 is then of the form Y = Q(X),
Q rational, and the first integral is of the form e~ J G1/Fo(Y — Q(X)).
This situation happens when 17|z=o = 0, where Z = 0 is transformed
to a curve Z' = 0 and X|z=¢ # const. If ®({Z = 0}) is not a point
then X|z—9 = a = const iff X —a = Z2X; (the latter means that
deg¢ > 2deg Z or degw > 2deg Z for X = ¢/w).

(8) X = Fo(X), Y = YG1(X) + Y"G2(X) where either Fy and Gy are as
in (e) or we have the same restrictions as in (f).

(h) V' = Vg + VY, where the V] are quasi-homogeneous, d(Vy) < d(V{)
and either V§ = (yX08x + §YO0y)K or V{ = (yX08x + 6YOy)K1 and
U = X°Y~" # const along Z = 0 (where V|z—9 = 0). Here U|z=¢ =
a = const iff X¢ — oYY = Z?W. This implies that (when Z = 0 is
not transformed to a point) either degg > degZ, degy > degZ or
degw > deg Z, degn > deg Z for X = ¢/w, Y = ¢/7.

REMARK 3. Notice that here we allow the situation when some of the x; are
0 or co. According to [12] in such situations the Darboux integral takes the form

Q+ZM¢1nfi,

with rational g, f; or

engi”"_
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PROOF OF LEMMA 2. The statements (a), (b) and (d) are obvious.

(c) If V' is quasi-homogeneous then it is easy to check that the variables
U=XY-", = v/ (7, 6), 6 = 6/(,8) ((7, ) is the greatest common divisor)
and R = X*Y !, ky' +1§' =1, are separating.

REMARK 4. However, we cannot expect a Darboux integral in the situation
when the resolution (S, W) — (X,Y) = (87, S°W) gives a system with separated
variables though the initial system is not quasi-homogeneous.

EXAMPLE.

X =2aX, Y =aY +bX +cY?2,
X=8%Y=58W,8=2, W=b-+ cW? with

H=vVX+dn (}YTJ:z—‘/\/)):g)

(DSC and DHE integral but not Darboux).
The system (2) has a DSC integral

(3) H=Ye [Gi/Fo _ /e—fGl/F*)@ dXx,
Fo

where e~/ G1/Fo = [T(X — X;)*e9X). We have to show that H is of Darboux
form.

In the case (e) we can assume that Fp = X*. Then e~/ G1/Fo = X} ) ¢R,
and the second integral in (3) is of the form X ~*~**1P(X) with polynomial P.

In the case (f) assume that the curve Z’ = 0 is irreducible and X |z:=0 #
const. The restriction of the system (3) to Z’ = 0 gives

Go, o G, . dv
A (*YFO +dX)

Z'=0

(we have also used the fact that 2X|z_o = (%—Z %)lzeo = & (Y|z:=0)).

Therefore e~ G1/FoGy /Fy = (e I G1/FoY|z0) and H = e~ fC /Py _
Y|z/=0)- Moreover, the branching points of the integral { = JeIG/Pgy /R,
are at X = X; and 2 = const + (X — z;)* x(ration. funct.) near X = X;. Also
from the behaviour near g(X) = co we know that Q contains the term e?. Thus
from Q = [[(X — X;)*e9(Y|z—0) we see that Z’ = 0 is rational of the form
Y = Q(X) with some rational Q. So H is of Darboux type.

If X|z=0 = a and the functions ¥ and Z form a coordinate system near a
generic point of Z = 0 (here we use the assumption that Z = 0 is not transformed
to a point), then X/8Z = Z - X' and X = a + O(Z?).



90 H. ZOLADEK

In the case (g) we have the Bernoulli equation which reduces to (2).

In the case (h) the variables R,U from the proof of (c) give a system of the
form (2). If Z = 0 is not transformed to a point and U|z=¢ = a = const then
X |z—0 is of the form x? and Y'|z—¢ is of the form x°® for some rational function
v; X = X"+ Zv1+0(22), Y = x* + Zug +O(Z?). Moreover, 6u1x ™" = yvax°.
From this the estimates for the degrees follow. a

NoTaTiOoNS. In the proof of Theorem 1 we shall follow the notations pre-

sented below.
The map @ is of the form

with w = [Jwi, n= an", #,,w;,n; polynomials. We have

VX =MYA4,B), M=]Juf,
VY =NY(C,D), N=][][#"*.

The vector field V(z,y), which we denote by ®*V", is given by the formula
(4) ®*V': &=[D(MF)-B(NG)R, y=[ANG)—-C(MF)R,

where R is a suitable rational factor.

We shall estimate the degrees of the terms D(MF)R, B(NG)R and A(NG)R,
C(MF)R. However, the highest order terms of these expressions can be can-
celled in (z,%). This happens when the highest degree parts of X and Y are
functionally dependent (e.g. X = zy +..., Y = (283 +...)/(zy+...) or
deg X = degY = 0). We shall eliminate such cases, which will allow us to
estimate the distinguished terms independently. We shall estimate the degrees
of the whole terms (C, D)(MF)R and (A, B)(NG)R.

We set

|P| = deg P

for a polynomial P(z,y) and |(W1,..., W,)| = max; |W;| for a rational vector-
valued function (Wi,...,W,). Here |P/Q| = |P| — |Q| when P and @ are
polynomials.

For the degrees of polynomials K (X,Y') and vector fields V;/(X,Y’) depending
on the variables in the image we shall use the standard notation deg K.

We write A B
det (c D) =wz[] 1,
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where {W = 0} = T is the fold curve (not invariant for V'), the curve Z =
0 is transformed by ® to a curve (it is invariant) and the curves 7; = 0 are
transformed to points.

By S; we shall denote the common irreducible factors of w and 7.

Notice that when X = 77, Y = T%Y; then ® = ®; 0 &, &; = (T,Y3),
®y(x,y) = (x7,2%), and the center O does not belong to the curve T = 0
(because we have assumed that we blow up all such points ®({7' = 0})). So
®,1V’ has a center and V is reversible by means of ®;. Therefore we do not
consider the cases when X = T7 or Y = T%.

We denote by d(V') the degree of a monomial vector field V/ = ¢ XiY7 Ox,y
in the quasi-homogeneous filtration. Often we shall have the situation when
V' = V§ + V{, where Vj is quasi-homogeneous, and the monomial components

V' of V{ have greater degrees. In such cases we denote by
AV = d(V') - d(Vy)

the difference between the degrees.
We denote by I’ the degree of X in ¥, by I” the degree of X in X, by J’
the degree of Y in X and by J” the degree of Y in Y. We also set

I = max(I', I" - 2), J = max(J',J" - 2).
By E, we denote the line at infinity.

If X =¢/w,w # 1, then from the form of V' we can see whether the curve

w = 0 is invariant for V or not.

LEMMA 3. If Y = ¢/n with (¥,w) = (n,w) = 1 then the curve w = 0 is
snvariant for V of I'" < I+ 2.

PrOOF. Near a generic point of a component { = w; = 0 we can choose ¢
and Y as local coordinates, X = £7%X;. Then X = £~ 1(—aX; + §X15)é +
£7%X,yY and hence

Y = (—aX1 + £X1e)G(E7° X1, Y),

) §=¢R(EX1,Y) - Xy G(E™° X1, Y)

(after multiplication by a factor).

If I = I' > I" — 2 then we have to multiply (*) by (¢*)’ and then £ =
(6 -T"+1¢Fy 4+ €Gy = £H(E,Y) with analytic H.

If I' < I'" — 2 then we multiply () by £ ~12=1 and £|¢—o # 0. m]
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4, The main part of the proof of Theorem 1

Here we present the general scheme of the proof of Theorem 1. It is divided
into many subcases. Each of the subcases is solved in an appriopriate proposition.
Many of the propositions are solved by estimating the degrees and by using
Lemma 2. The more complicated propositions are put off to the next subsection.

We shall use the symbol = to denote either an implication or a reference to
another proposition. When the systems considered in some case belong to the
list given in Lemma 2 then they are integrable and we indicate the corresponding

”

statement of Lemma 2, e.g. “(Lemma 2(d))

PROPOSITION 1. The map ® = (X,Y), X = %, Y = % can be chosen so
that:
@ 1X[ >0, [Y[>0.
() (¢ym) =1 and ($,w) = 1.
(ili) X and Y are functionally independent at infinity.
(iv) The curves w; = 0 and n; = 0 are not in the fold curve ' and none
of the curves T; = 0 (transformed to points) and of the curves S; = 0
(where the S; are divisors of (w,n)) goes through the center.
Moreover, we have one of the following cases:
e dim®~1({p}) =0, (w,n) =1 = Proposition 2,
o (¢,4)=T", (w,n) =1, dim @ ({p}) = 0 for p # 0 = Proposition 16,
o dim ®({T} = 0}) =dim ®({T> =0}) =0, (w,n) =1 = Proposition 100,
¢ dim &~ 1({p}) =0, (w,n) = S7 = Proposition 107,
e (¢,9) #1, (w,n) # 1 = Proposition 120,
e the most general case = Proposition 125.

Often we shall use the points (f), (g) and (h) of Lemma 2 where the system
reduces to (2). In such a case we write only |Z| > 0, which will mean that the
additional condition that ¥Y'|z—g # const (or X|z—q 7# const or U|z—p # const)
also holds.

No curves transformed to points.
PROPOSITION 2. Ifdim®~1({p}) =0 then R=win’Z1R, in (4) with R,
a polynomial,
12| < |Z]max = 18] + ] + Y _ lwil + D [nj| — 3,
3> [@*XYI9x| > (i — 1)|X|+5]Y|+2+v,
328" XY 0y| 2 4|X|+ (- L)Y+ 2+,
v=1Iw|+ Jn| + |Z|max — |Z].

(5)
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We divide this case into subcases considered in Propositions 3-15. (Recall
that | X| denotes the degree of X.)
PROPOSITION 3. v >2 = X = F(Y), Y = G(X) (Lemma 2(d)).
PROPOSITION 4. v =1, 0< |Y| = |X| = V' linear (Lemma 2(a)).

PROPOSITION 5. v =1, 0 < |Y| < |X| = X =kX + Fp(Y), Y =+ mY
(Lemma 2(d)).

PROPOSITION 6. v = 1, 0 = |[Y| < |X| = Jy < 1, |X] >2 X =
k+IX +mY,Y = G(Y), and either |Z| > 0 (Lemma 2(f)), or J =0, m = 0
(Lemma 2(d)).

In Propositions 7-15, v = 0, X is a polynomial, Y is a polynomial or a
rational function with J = 0 (X = F(X) and the degree of ¥ in V is < 2).
(Note that if X, ¥ are rational then I = J = 0, Lemma 2(d).)

PROPOSITION 7. 2L [|Y| < [X| < 2|Y|-1 = V' linear (Lemma 2(a)).

ProPosITION 8. 2 <[V, |X|>2Y|-1 = X =kX+Fy(Y), Y = I+mY
(Lemma 2(d)).

PrRoPoOsITION 9. 2 < |V, [X] = 2[Y| -1 = |X] =3, Y| = 2, and

=k+IX+mY +nY%Y = p+gX +7Y and |Z] = 2 (for qn # 0),
deg ®({Z = 0}) > 4 (see Lemma 4 in the next section).

ProposiTION 10. [Y] =1, |[X| >3 = X = Fp(Y)+ XFy(Y), Y = Go(Y),
and |Z| > 0 (Lemma 2(f)).

ProposITION 11. |Y| =1, |X| =2, Y a polynomial = V € CRy (see the
proof in the next section).

PropoSITION 12. |Y| = 1, |X| > 2, Y rational = X = k+iX, Y =
m+nX +pY +qY?, |Z| > 0 and Darbouz integrable (see the proof in the next
section).

PROPOSITION 13. [Y]| =0, [X[>2 = X =k+IX, Y = G(Y) (Lemma
2(d)).

PROPOSITION 14. |X| = [Y| =1 = Y rational, X = k + IX + mX2,
Y =n+pX +¢X2+Y(r+sX)+tY? and cither V € CRy or the system is
Darbouz integrable (see the proof in the nezt section).

PROPOSITION 15. |[Y| =0, [X| =1 = X =k+IX+mX2, ¥ = n+
pX + (¢ +rX)Y + (s +tX)Y?, and either V € CR3 or the system is Darbouz
integrable (see the proof in the next section).
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A curve transformed to a point.

PROPOSITION 16. If X = T7'X;, Y = T%Y;, dim®*({p}) = 0 for p # O,
Xy = ¢1/w, Ya =/n, (w,n) =1 then one of the two cases holds:

o T = 0 is invariant for V. = Proposition 17,

e T = 0 is not invariant = Proposition 44.

The curve T = 0 invariant.

PROPOSITION 17. X = T7¢y/w, Y =T /n, T = 0 invariant =
R=uw'y/T°Z7'R,
in (4), with Ry a polynomial,

o =min(ox + 6§ — 1,0y +7v—1), ox =min{yi +685: XY’ € X},

(6) |Z) < | Zlmax = |T| + 1] + lba| + Y il + Y Ing] = 3.

We have one of the three cases:
e | X3|,|Y1| < 0 = Proposition 18,
e |Y;| < 0 < |X;| = Proposition 29,
e 0 < |Xy|,|Y1] = Proposition 37.

PROPOSITION 18. X =T7X:, Y =T%Y:, | X1|, |Vl <0 =
3> |®*X'YI0x| > (i — I - 1)| X1+ (G — NV + 2+ A[T| +v,
3> |8 XYI8y| > (i — D|Xa| + (G — J - DA+ 2+ AT| +v,
v =1I|¢1| + J1] + | Z]max — | 2]

for the monomial components in V'. The right inequalities become equalities
when w and 1 have only simple factors (c; = B; = 1).

Recall that J = max(I’,I" — 2), where I, I" are the degrees of X in Y, X
(analogously J is defined), and A(-) = d(-) — d(V3) is the difference of degrees
(with respect to the first term) in the quasi-homogeneous filtration with indices

(7,6)-
PROPOSITION 19. |X;|= V1| < -2, |[X|>0 = I,J <1,
(8) X = X kX +1Y +mXY), Y =Y?*(nX+pY +¢XY),
which becomes linear in the variables X = 1/X, Y = 1/Y (Lemma 2(a)).
In Propositions 20-30, | X;| = [Yi| = —1.
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PROPOSITION 20. v =6, degVy < I+J = 72> 2, V' = V] homogeneous
(Lemma 2(c)).

PROPOSITION 21. v > §, degVy < I+ J = X;=1/z, Y1 =1/y and one
of the four cases holds:

o X2y 7=25x in VJ = Proposition 22,

o XTY7-Y(kX8x +1YBy) in V§ = Proposition 23,

o XY J(kX8x +1Ydy) in VJ = Proposition 24.

o X172y 28y in V§ = V' =V (Lemma 2(c)).

PROPOSITION 22. v > §, X2y 7295 in V] =
X = X*(kX +1XY +mXY2 +nY?), ¥V =Y3(pY +¢X +rXY),

A(X?Y?0x) = A(XY30y) = 26 — v, A(Y*dy) = 36 — 2y and one of the siz
cases holds:
(8 29/3<6<7,26—7>1 = 622, l=m=n=qg=7r=0 (Lemma
2(a)).
(b) 7/2<6<27/3 = 622, l=m=p=r =0 (Lemma 2(d)).
() 6<2y/3,26—v=1 = v=3,6=2,l=m=r =0 and either
IT| =1 and V € CRy4 (subcase with T' = 0 invariant, k = 0 in Theorem
1), or|T| > 1 and n = g =0 (Lemma 2(a)).
(d) v=26,6T|>2 = I=m=p=r=0 (Lemma 2(d)).
(6) y=126,68T| =2 = l=m=p=0 and either X =T*/z, Y = T*/y,
|T| =1, V € CRys, or|Z| > 0 (Lemma 2(g)).
) vy=2,6=1|T|=1 = p=0, the line y = 0 not invariant and the
change (X',Y') = (X/Y?,1/Y) = (T /2, T'/y/) with T' = y = 0 not
invariant gives the case CRya (see the proof of Proposition 59(a)).

PROPOSITION 23. 7 > 6, XY/ 19x in V] = X = X(k+1Y), ¥V =
Y(m +nY + pY?) (Lemma 2(d)).

PROPOSITION 24. v > 6, X'Y78x in Vj = X = kX, Y = Y(l + mY)
(Lemma 2(d)).

PROPOSITION 25. v =6, degVy =I+ J+1 = (8) (see Proposition 19).

PROPOSITION 26. v > §, degVj =I+J+1 = one of the three cases holds:
o X2y /=155 in V§ = Proposition 27,

e XY7(kX0x +1Ydy) in V] = Proposition 28,

o XI-1Y7+28y in V§ = Proposition 29.
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PROPOSITION 27. v > 6, XI*2Y7-19x in V§ = X = X%(k+1Y), Y =
mY? (Lemma 2(d)).
PROPOSITION 28. 7 > 8, X1V 70x in V{ = X = X(kY +1X + mXY),
Y =Y2(n+pY), A(X?0x) =7 — & and one of the three cases holds:
(a) y>6+1 = =0 (Lemma 2(d))-
(b) 8ITI >1 = m=p=0 (Lemma 2(d)).
(c)vy=286=1,|T| =1 = either X = T?/z, Y = T/y with the line
y = 0 not invariant and the change (X',Y') = (y?/z,y/T) shows that
V € CRyy, orv > 0,1 =m=p=0 (Lemma 2(a)).
PROPOSITION 29. v > 6, XI-1Y7+28y in V] = X =kX2, Y =Y (Y +
mX +nXY) (Lemma 2(d)).
PROPOSITION 30. v > 6, degVy§ > I+J+2 = one of the two cases holds:
(@) v> 6, XIH2Y73x in V§ = V' = kXY 70x (Lemma 2(a)).
(b) Otherwise = X = kX2, Y =1Y? (Lemma 2(d)).
In Propositions 31-34, |¥;1]| < | X;| < 0.
ProposiTION 31. V3| < |X1| <0 = JL L
PROPOSITION 32. J=0 = X = F(X),Y =YX~ Y(m+nX)+Y2Ga(X)
and one of the three cases holds:
(@) YXI18y in V§ = X = X'F(X) and |Z| > 0 (Lemma 2(g)).
b) YXI3y inV] = m =0, X = XMk + IX) and either |Z| > 0
(Lemma 2(g)), or |Z] = 0, |X| > 0, | = 0 (Lemma 2(d)), or |Z| =
|X| =0, G2 = pXT (Lemma 2(d)).
(c) YXT~Ym+nX)dy in V] = |Z| > 0 (Lemma 2(g)).
PROPOSITION 33. J =1 = |Yi| = |X1| — 1 and one of the two cases holds:
o [Xi|<-1= X=X3k+1Y),Y =Y%(mX +nY + pXY)
(see Proposition 19).
¢ |X;1|=—1 = Proposition 34.
PROPOSITION 34. J =1, |Vi|=-2, | Xi|=~1 =
X = X3[kX?+Y (I +mX +nX?)),
Y =Y2X%p+gX)+ Y (r+ sX +tX? +uX?)),
and one of the three cases holds:
(a) 12+ 92 #0 = V contains X2Y (IX8x + pYdy), A(Y3dy) =6 — 27,
A(X50x) = 2y — 6 and either § > 2y, k=0, 80 J =0, or § =27, so
v>2, V' =V, (Lemma 2(c)), or § < 2v, s0k =0 and J =0.
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b) I = p = 0, X}¥(mX0x + q¥dy) in VI = A(Y%dy) = 6 — 7,
A(X®8x) = v — 6 and either v > 2, so u = 0 ((8), see Proposition
19), or 6 =v=1,|T| 22, n=7r =5 =u =0 (Lemma 2(b)), or
§>y=1,s0k=0and J=0.

(c) Y2X?%(p+¢X)8y notin V§ = l=m=p=q=0 (Lemma 2(d)).

PROPOSITION 35. If |Y1]| < 0 £ |X3| then the following estimates hold for

the degrees of the monomial components of V':

o) 3> 8" XY 0x| 2 (i — V)| Xa| + (G — I)|Ya| + 2+ A|T| + v,
3> |®*XY0y| > il Xa| + (j — I — 1)|Ya| +2+ A|T| + v,
v=1Iw|+ J|1| +|Z|max — | Z].

The right inequalities become equalities when oz = B; = 1 (see Propositions 16
and 17).

This case is divided below into subcases considered in Propositions 36-42.

ProPOSITION 36. V1] < =2, |[X3| =0, I =0 = X rational, J = 0,
X =F(X),Y = G(Y) (Lemma 2(d)).

PROPOSITION 37. |Yi| < -1, |X4| =0, I >21 = Ijw =1, J
X =kX?,Y =1XY 4+ Y?(m +nX) (Lemma 2(d)).

Il
k=]

PROPOSITION 38. |Vi|=-1, |X1|=0,I=0 = X = F(Y)+ XF(Y)+
X2F(Y), Y = GY), Fy - F, = 0, and either |Z| > 0 (Lemma 2(f),(g)), or
v >0, X = F(X) (Lemma 2(d)).

PROPOSITION 39. |Vi1| < 2, [X1| 2 1, I =0 = either X = Fo(Y) +
XF\(Y),Y = G(Y), and |Z| > 0 (Lemma 2(f)), or v > 0, Fy = 0, Fy = const,
(Lemma 2(d)), or X = kX2, Y = G(Y) (Lemma 2(d)).

PROPOSITION 40. |Y1| £ =2, [X1| > 1, I > 1 one of the two cases holds:

(a) V§ contains X2Y78x or XY'+18y = X = kX2, Y = IXY +
Y2G1(X) (Lemma 2(d)).
(b) Vg contains X'Y7*+20y,i>1 = X =0 (Lemma 2(a)).

PROPOSITION 41. [¥;| = -1, |X1| > 2 = X = F(Y) + XYLk + 1Y),
Y =Y/ (m +nY 4+ pY? + ¢XY?) and one of the two cases holds:
(@) ¢#0 = gXY'20y in V], k=1l=m=n=0 (Lemma 2(d)).
(b) g =0 = either |Z| > 0 (Lemma 2(f)), or v > 0, k = m = 0,
YJ(IX8x + nY 8y in V§, Fo = 0 (Lemma 2(d)).
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PROPOSITION 42. |Y;| = —1, |X1| =1 = one of the siz cases holds:
(a) X2Y78x and XYty in V) = X =kX2%, ¥ =IXY +Y2(m+nX)
(Lemma 2(d)).

(b) XY7"19x and Y'0y in V§ =
X =kX +1IY +mXY, Y =Y(n+pY +qY?),

and
o if vy = 6 then either X =Tz, Y =T/y, |[T| =1 (V € CRy), or
|Z| > 0 (Lemma 2(f)),
o v <6 then |Y| >0, p=g=0 (Lemma 2(d)),
o v > § then l =0 (Lemma 2(d)).
(c) XY78x and Y/t 0y in V] = X =kX,Y =1Y + mY? (Lemma
2(d)). . .
d) Y 20x in V] = X =k+1Y +mY?, Y =0 (Lemma 2(d)).
O - »
() Y/"10x inVj = X =k+1Y,Y =0 (Lemma 2(d)).
() Y/ox inV§ = X =k+I1X,Y =Y(m+nY) (Lemma 2(d)).

PrOPOSITION 43. If 0 < |X4|,|Y1| then the estimates for the degrees of the

monomial components of V' are
(10) 321" X'Y7ox,y| 2 ilX1] +j[Y1| + 2+ v+ AIT| - | X3, Y],

with v = Ilw| + JIn| + | Z|max — |Z|. The right inequalities become equalities iff
Q; = ﬂj =1.

We divide this case into subcases considered in Propositions 44-49.

PROPOSITION 44. |X;| = |[Y1| = 0 = X,Y rational, v > 1, V' = V]
(Lemma 2(c)).
PROPOSITION 45. 0 = |V3| < |X1], J =0, Y(0) #0 = X = F(X),
Y = G(Y) (Lemma 2(d)).
PROPOSITION 46. 0 = [Y1]| < |X1|, J =0, Y(0) =0 = one of the two
cases holds:
(a) Xy inV' = X =kX,Y =IX+mY +nY?, |Z| >0 and the system
is Darbouz integrable (see the proof of Proposition 12).
(b) X = F(X), Y = YG1(X)+Y?Go(X) and either |Z| > 0 (Lemma 2(g)),
or v >0, Gy = const (Lemma 2(d)).
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PROPOSITION 47. 0 = |V3| < |X1|, J > 1 = Jnl > 1, X = Fy(Y) +
XF(Y),Y = Q) and either |Z| > 0 (Lemma 2(f)), orv > 1, F, = 0 (Lemma
2(d))-

PROPOSITION 48. 1 < |X;| = [Vi] = degV] < 2, degVy < 1 and one of
the two cases holds:

(@) y=6 = degV§ <1, V' linear (Lemma 2(a)).

(b) v>8,degVy=2 = v=2,6=1, |X;| =1,

(11) X=kX+IY?, Y =mY +aX,

where either X = T2z, ¥ = Ty, |T| = 1, whick is equivalent to
(X', Y") = (yT,y%/z),

X' =X'(nX'+mY"), V' =Y'(2nX +pY + gY’?)

(V € CRy, see Proposition 81(d)), or |Z| > 0, deg Z' > 4,{Z' =0} =
®({Z = 0}) (see Lemma 4 in the next section).

PROPOSITION 49. 1< |V3] < |X1] = X = Fo(Y)+XFi(Y) and one of the
two cases holds:
(a) Y = G(Y) and either |Z| > 0 (Lemma 2(f)), orv >0, F; =0 (Lemma
2(d)).
(b) Y depends on X = |Xi| = |Yi|+1, 12| > 0, X8y in VJ, X =
k+1Y +mX +nY2+pY3, V =gX +1Y, g #0.
Here if vy > 6 thenk =1=m =r =0, (Lemma 2(d)), if y < § thenn=p=0,
(Lemma 2(a)), and if v = § then k = p = 0, X1l =2, M| =1, |2 >0,
®({Z =0}) = {2 =0}, Z2' ~ AY®*+BX?+... invariont but Z' £ AY3 + BX2
(see the proof in the next section).
The curve T = 0 not invariant.

PROPOSITION 50. If X =T7X,, Y = T%Yi, T = 0 not invariant then
R= wI,”JT—a'—lz—lRl,

with Ry, o, d, deg Z the same as in Proposition 17 (the difference between the
two R’s is in the power of T'). Moreover,

VI=V{+V, Vi =(rXdx+6Yoy)K(X,Y),

K(X,Y) is quasi-homogeneous and d(V;) > d(Vg) = d(K). We have one of the
three cases:
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e |X;|,|Y1| < 0 = Proposition 51,
e |Y1| < 0 < |X1| = Proposition 71,
e 0 < |X4|,|Y1| = Proposition 83.

In Propositions 51-99 the assumptions of Proposition 44 hold.

PROPOSITION 51. If |X1|,|Y1| < O then the components of Vg are estimated

as follows:
3> |3"(7X8x + 6Y Oy)X'YI| 2 (i — DIXa| + (G — NN +2 = [T+,

v= I|¢1| + JW’II + lzlmax - |Zl,
and the other components have the estimate

(12) 3 2| X°Yioxyl
> (i — D|X1| + (G = NIYal+ 2+ (A = DIT|+v — [ Xa], [¥a]-
The right inequalities become equalities when oz = B = 1. Also, if X tY7 is in
K(X,Y) theni<I, j<J.
We divide this case into subcases considered in Propositions 52-70.
PROPOSITION 52. degK > I+J = I=J =0 (Lemma 2(d)).

In Propositions 53-55, | X1| = |Y1] < —2.

PROPOSITION 53. |Xi|=|V1|< -2 = i+j>I+J for XiYI8xy in V7.

PROPOSITION 54. deg Vi = I+J+1 = V{ quasi-homogeneous and |Z| > 0
(Lemma 2(h)), v >0, V{ =0 (Lemma 2(a)).

PROPOSITION 55. degV{ > I+J+2 = (I+J—deg K)(—|X1]) < [T[+1,
2T < (A(V{) ~DIT| £ —|X1|+1, 50 [+J —1<degK <I+J and one of
the three cases holds: -

(a) K = kX'Y7 = X =9X(k+1X), Y =8Y(k+mY) (Lemma 2(d)).

(b) y=06,degK=I+J -1 = |X| = Y| >0, (8) (see Proposition 19).

(©) 7> 6, K=kXT1Y7 = X =4X(k+1X), Y =Y (k+mX +nY +
pXY) and |Z| > 0 (Lemma 2(g))-

@ 7> 6, K=kXT¥7"1 = X =4X2(k+1Y),Y =8Y (kX + mXY +
nY? + pXY?), which in the variables X =1/X,Y =1/Y becomes

f:y)?(l+k17), Y=6(p+n)z+m?+kl72),
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a system equivalent to the system (18) from Lemma 6 below. Here, if
26 < «y then n = 0 (Lemma 2(d)), if 6§ > 2 or |T| > 1 or v > 0 then
Il=m=p=0 (Lemma 2(d)), and if | X1| = |Y1| < —2 then K = 0.

Therefore X = a®jw, Y = z?/n, |w| = |n| = 2. Then {Z =0} =
®({Z =0}), ® = (X,Y), is an invariant algebraic curve of degree > 6
and the system has a rational first integral (see Lemma 6 in the next
section).

In Propositions 56-66, | X1| = |¥1| = —1.

PROPOSITION 56. v > 6, K contains X*Y7 withi+j < I+J-3 = |X|> 0,
|T| > 1, A(V]) = 1, the degrees of the components of V] are > I+J, K = kX'Y7,
X =XF(Y)+ F(Y), Y = GY) and either |Z| > 0 (Lemma 2(f)), or v > 0,
Fp =0 (Lemma 2(d)).

PROPOSITION 57. v > 6, degK = I+J -2 = X = 4X(k+1Y +
mY?) + nY2, Y = 6Y(k + pY + qY2 + rY3) (we consider the cases K =
xI-2yJ xI-1y -1 X1y J=%), A(Y?8x) = 26 — v and one of the two cases
holds:

(a) 26z2y+1 = é6>1,l=m=p=gq

(b) 26 <y = n=0 (Lemma 2(d)).

r =0 (Lemma 2(d)).

PROPOSITION 58. 7> 6, K =kXI-1YJ = I=J =1,

X =X (kY +IX + mXY), Y =6Y(kY +nX +pY24+¢XY +7XY?),

A(X?%0x) = A(XY8y) =y — 8, and one of the siz cases holds:

(a) (v—0-1|T| 22 = Il=m=n=q=r =0 (Lemma 2(d)).

) y=2,|T|=1 = either X =T2%/z,Y =T/y (V€ CRy1), orv >0
and hence l =m =n=q=r =0 (Lemma 2(d)).

() y=6+1=3,|T|=1 = m=gq=r =0 and either X = T3/x,
Y =T2/y (V € CRy3), or v > 0 leading to Il = n =0 (Lemma 2(d)).

(d) y=6+1>3 = m=g=r=p=0 (Lemma 2(b)).

() y=2,|T|>1 = m=q=r=0, V] quasi-homogeneous and either
|Z] > 0 (Lemma 2(h)), or v > 0, V{ = 0 (Lemma 2(a)).

B)y=64+1=3,|T|>1 = m=p=gq=r =0, V' homogeneous
(Lemma 2(c)).

PROPOSITION 59. 7> 6, K = kX'Y/~! =

X =yX?*(kY +1X + mY? + nXY 4+ pXY?),

(13) . ) )
Y =6Y%(kX 4+ ¢XY +rY? + 5XY?),
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A(X30x) =v—6, A(Y*0y) = 26 — v, and one of the four cases holds:

(a)y=26=1 = r=0andeither X =T%/z, Y = Tfy, |T| =1
(V € CRy3), or |Z] > 0 (Lemma 2(g), here (13) is divided by X), or
v>0,l=n=p=0 (Lemma 2(d)).

(b) 226,723 = l=n=p=r =0 (Lemma 2(d)).

() 7=3,86=2 = n=p=s=0 and either X = T3/z, ¥ = T?/y,
|T|=1(V € CRyy), orv>0or|T| > 2 leadingtom =g =0, |Z| > 0,
Vi quasi-homogeneous (Lemma 2(d)).

(d) 3<6<7v<20 = m=n=p=g=s=1Ir=0 (Lemma 2(d)).

PROPOSITION 60. y=6,deg K <I+J -3 = V' =V (Lemma 2(a)).

PROPOSITION 61. y=4§,deg K =1+J—2 = one of the two cases holds:
(@) |T|=1 = v2>2, V' =V (Lemma 2(a)).
(b) |IT| 2 2 = V/ quasi-homogeneous and either |Z| > 0 (Lemma 2(h)),
orv >0, V{ =0 (Lemma 2(a)).
PROPOSITION 62. vy =4, [T|=1,degK =1+J~1,I=0 = > 2,
X=Xk+IX+mY),Y=Y(k+nY) and Y,U = X/Y separating variables
(Lemma 2(d)).

PROPOSITION 63. v=4, |T|=1,degK=I+J—-1,I,J>0 =

X = X(kX +1Y) + X*(mX +nY),
Y =Y (kX +1Y) + Y?(pX + qY),
and either X = T?/z,Y = T?/y, |T| = 1 (subcase of CRys), or |Z| > 0, V{

quasi-homogeneous (Lemma 2(h)), or v > 0, V' =V (Lemma 2(a)), or v > 3,
V' =Vy (Lemma 2(a)).

PROPOSITION 64. v=6, |T|>2,degK=I+J-1,I=0 =
X=X(k+IX+mY +nXY), Y =Y(k+pY +qY?)

and one of the two cases holds:
(@) |Z|=0<|Z|max or |T| >20r7y>1 = n=qg=0andY,U = X/Y
separating variables (Lemma 2(d)).
(b) Otherwise =

_zy+ar+by Y_my+am+by
T cx+dy T ex+ fy

H

Z =y, I'={z =0}, ®(T') a point (see Proposition 1(iv)).
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PROPOSITION 65. v=6, [T|>2,deg K =1+J-1,1,J>0 =

X = X(kX +1Y) + X*(mX +nY) + pX?Y,
Y =Y((kX+1Y)+Y2(gX +7Y) + sXY?,

and one of the four cases holds:

@) T/ =2,12] =0 < |Zlmax, Y =1 = p =5 =0 and either X =
T/z,Y = T/y (V € CRug), or |Z| > 0 (Lemma 2(h)), or v > 0,
V' =V (Lemma 2(a)).

(b) IT| > 2 = p=s=0 end either |Z| > 0 (Lemma 2(h)), or v > 0,
V' =Vy (Lemma 2(a)).

() v=22 = V' =V] (Lemma 2(a)).

(d) IT|=2,v=1,|Z| >0 = Proposition 64(b).

In Propositions 66-70, |Y;] < | X;| < 0.

PROPOSITION 66. deg K < I+J—3 ordegreeof Y in K < J—2 = V' = |7
(Lemma 2(a)).

PROPOSITION 67. XI72Y/ in K = X = F(X),Y = YG1(X)+Y2Go(X),
degG1 =2, |X| =0, [Y| > 0, and either |Z| > 0 (Lemma 2(g)), orv > 0, Gy = 0
(Lemma 2(d)).

PROPOSITION 68. XI-1y7/-l in K =

X =9X(k+1Y + mXY +nX?Y),
Y =6Y(k+pY +gXY +rY? + sXY?2),

and one of the two cases holds:
(@) |X|>0 = (v+6~-1)|T|>2, m=n=q=5=0 (Lemma 2(d)).
(b) [ XI=0<Y| = A(V{)>1, V' =V (Lemma 2(a)).
ProrosrTioN 69. XI7'Y7 in K = |T| > —|X| -1,
X =yX1(kY +1X + mX? + nXY + pXY?),

14 .
(14 Y =6XTTIY (kY +¢X +rXY) + Y3Gs(X),

A(XT+29x) = 2y — § and one of the five cases holds:
(@) y=6 = l=gq, G3 = XY (s+tX) and after the change X —
/X+C, Y -1/Y + C; we get

X =~[aX +bY + (kX +1Y)X],
Y =§[cX +dY + (kX +1Y)Y],
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where either |Z| > 0 (Lemma 2(h)), orv > [T|, l=m=p=q=r=
t =0 (Lemma 2(d)).

B)y>6 = l=g=n=p=r=0,Gs=3sX""? and either |Z| > 0
(Lemma 2(g)), or v > 0, m = 0 (Lemma 2(d)).

)2y <bory<é<2y—lor|Xy>[V1[+1 = Il=m=g=0
and either |Z| > 0 (Lemma 2(g)), or v > 0, Gs = 0 (Lemma 2(d)), or
v>0,G3=sX!,|Y]|=0,|X|>0,n=p=r=0 (Lemma 2(g)).

(d) |X1|=|Ya|+1,6=2y—1 and eithery >3 or [T|>1 = l=n=p=
g =r =0 (Lemma 2(d)).

() v=2,6=3,X1|=M1|+1|T|=1 = l=p=9¢g=0,G3=0, in the
variables X = 1/X, Y =1/Y we get

X =2kX2 4 m¥ +nX), Y=3GkX+n7,
and either v > 0, m = n = r = 0 (Lemma 2(a)), or X = z?/y,
Y =23/n, |n| =2, 12| =1, {Z =0} = 3({Z = 0}) a cubic invariant
curve (here d = ()? , 17)) By Lemma 6 below either V € CRy7 or there
is a rational first integral (see the proof in the next section).

PROPOSITION 70. XIV7-1 in K, v # & (for the case v = § see Proposition
X =X (1 + mX +nY +pXY),
Y =6X'Y (14 7Y) + Y3G3(X),
and one of the five cases holds:
(a) 6<v<20 = m=p=0,Gs=X""Y(s+tX). Neat, if [Y1| < —|T|-1
then s = 0 (Lemma 2(d)), if |Ya| = —|T| < -2 ord > 2 or [¢1| + 91| >
0 or |Z| < |Z|mex thenn =1 =t = 0 (Lemma 2(d)). So X = z3/y,
YV =22/n, [n| =2, |Z| =1 and in the chart & = (X,Y)=(1/X,1/Y)
we get the system
X =3X(IY +n), Y =20¥% +rY¥ 4+ sX +1)
with an invariant curve Z = 0 of degree < 3. FEither there is a rational
first integral or there is no center (see the proof in the next section).
(b) v>26 = m=p=0, Gy =tX' (Lemma 2(d)).
() 1<y<8 = m=n=p=r=0 (Lemma 2(d)).
(d) y=1,8 >2 = n=p=r =0 and either |Z| > 0 (Lemma 2(g)), or
v >0, m=0 (Lemma 2(d)).
(€ v=1,6=2 = |T|>—|X;|>21,n=p=r=0 and |Z| > 0 (Lemma
2(g)), or v > 0, m = 0 (Lemma 2(d)).
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ProposITION 71. If |¥1| < 0 < |X4| then
3> |8*(vX0x + YOy ) XYY | > i|Xa| + ( — N)|Y1| +2 = |T| + v,

v=Iw|+ J|¢1| + | Z]max — |12,

for terms in V and generally
32 |*X'Y70x,y| 2 ilXa| + (5 = N)¥a| + 2+ v+ (A = 1)|T| - | X4, 1],

In particular, I < 2.

We divide this case into subcases considered in Propositions 72—82.

In Propositions 72-76, |¥1| < | X1/ = 0.

PROPOSITION 72. I =0, K =kY?, j < J -2 = J=2, X =vX(k+
IY +mY?) +nY +pY?, Y = G(Y) and either |Z| > 0 (Lemma 2(f)), or v > 0,
n=p =0 (Lemma 2(d)).

PROPOSITION 73. I =0, K =kY?, j>J -1 = X = XF(Y)+kY +
X2FR(Y),Y = G(Y), kFy = 0 and either |Z| > 0 (Lemma 2(g)), or v > 0,
k = F» =0 (Lemma 2(d)).

PROPOSITION 74. I = 1, K = kY7 = v > Ilw| > 1 and either X =
YX(k+1Y), Y = GY) (j = J — 1) (Lemma 2(d)), or X = vX(k + IX),
Y =8Y (k+mX +nY +pXY) and |Z| > 0 (Lemma 2(g)), orv >2, l=m = 0
(Lemma 2(d)).

PROPOSITION 75. I =1, K dependson X = v > 1,

X =yX(kX + 1Y + mXY),
Y =6Y (kX +nY +pXY + q¥% +rXY?),

A(Y38y) = 26 — v and one of the four cases holds:
(@) 6<v<26 = l=n=0,6>2, m=p=r=0 (Lemma 2(d)).
(b) 26 <y = l=n=gq=0 (Lemma 2(d)).
() y<6 = m=p=g=r=0 (Lemma 2(b)).
(d) vy =6 = n =1 and the system is equivalent to (here X = 1/X,
Y=1/Y+C)

(15) X=Xm+1X+k¥), V=af +57 4+ (1% +47)

with |Z| > 0 (Lemma 2(h)).
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PROPOSITION 76. I >2 = I|w| 22, V' =V (Lemma 2(a)).
In Propositions 77-82, |Y;| < 0 < | X4|.

PROPOSITION 77. I = 0, K = kY7, j < J -3 = |T| > 2|n3), X =
YXK + Fy(Y), Y = 6YK (Lemma 2(d)).

PROPOSITION 78. I =0, K =kY7/%2 =
X =q4X(k+1Y +mY2) 4 nY +pY2, YV =6Y(k+qY +rY2+sY3),

and one of the three cases holds:
(@) y=6=1=> n=0andeither X =Tz, Y =T/y, |T| =1 (V € CRg)
or |Z| > 0 (Lemma 2(f)), orv > 0,l=m=g=7r =3 =0 (Lemma
2(e)).
(b) 6§22 = l=m=qg=r=28=0 (Lemma 2(e)).
() ¥>6=1 = n=p=0 (Lemma 2(d)).

PROPOSITION 79. I =0, K = kY7™! = X =4X(k+1Y)+mY, Y =
8Y (k+ nY + pY?) and one of the four cases holds:
(a) 6 <y = m =0 (Lemma 2(d)).
(b) v < 6, etther |Y1] < =1 or |T| > 1 or |X1| > 1 = either |Z] > 0
(Lemma 2(f)), orv > 0, L =n =p =0 (Lemma 2(a)).
(c) 6>2 = I=n=p=0 (Lemma 2(a)).
@ 6=2v=1= X=Tz, Y =T2/y, |T| =1, V € CR,.

ProPOSITION 80. I =0, K = kY’ = X =+4X(k+1X), Y = Q)
(Lemma 2(d)).

PROPOSITION 81. I =1, K=kY7 = j=J=0,
X =vX(k+1X), Y =6Y(k+mX +nY +pXY)

and one of the siz cases holds:
(@) y>1or X1 >1 = l=m=p=0 (Lemma 2(d)).
(b) Yi|<—1or|T|>1o0r Xy #x orYs #1/y = either |Z| > 0 (Lemma
2(g)), orv >0, l =m = p =0 (Lemma 2(d)).
(c) [2*Y28y| =2+ V4|+ (- 1)|T|=6>3 = n=p=0 (Lemma 2(d)).
(d X=Tz,Y=T/y,|T|=1 = V€ CRy.
() X=Tz,Y=T?/y,|T|=1 = p=0,V € CR,y.
() X=Tz,Y=T3/y,|T|=1 = p=0,V € CRy.
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PROPOSITION 82. =1, K = kXY7+... = eitherj=J =0, X = kX2,
Y = 6kXY + Y2(I+mX) (Lemma 2(d)), orj=J —1=0

2

X =yX(kX +1Y + mXY),

(16) i )
Y =68Y (kX +nY +pXY + qY? + rXY?),

and one of the five cases holds:

(@) y=6=1 = l=n and either X =Tz, Y =Ty, |T| =1 (V € CRy),
or (16) equivalent to (15) (X = 1/X, ¥ = 1/Y + C) with |Z| > 0
(Lemma 2(h)), or v >0, m=p=1r =0 and X,U = Y/X separating
variables (Lemma 2(d)).

(b) 6=9+1=2 = m=p=r=0, [X1| = V1| —|T| £ 1 and either g =0
(Lemma 2(b)), or g # 0, [¥i] +21T| < 1 (s0 [Xa| = |T| = 1, [¥y[ = —1,
lw|=141]=0), and X =Tz, Y =T%/y, |T| =1 (V € CRy).

() Y226 = l=n=g=0 (Lemma 2(d)).

(d) é<y<25 = l=n=0, 622, m=p=r=0 (Lemma 2(d)).

(@ é=7+1>20r6=7>20ré6>v+1 = m=p=q=r=0, V'
homogeneous (Lemma 2(b)).

ProrosITION 83. If 0 < |X4],|V3| then

32 |®*(vXOx+8Y Ov) X*Y*| > i| Xa| + j|Yi| + 2+ v — |T],
v =Iw| + J[n| +|Zlmax — 2],

for the terms in Vy and
328" XY 0x,v| 2 ilXa| +jIYa| + 2+ v + (A - 1)|T| - | Xy, |13

for the other terms.
We divide this case into subcases considered in Propositions 84-99.

PROPOSITION 84. |X;| = [Y1| =0 = X,Y rational, v > 1, V| quasi-
homogeneous and either |Z| > 0 (Lemma 2(h)), or v > 2, V' = V§ (Lemma

2(a)).
In Propositions 85-90, 0 = |Y;| < | X;|, Y rational.

PROPOSITION 85. J =0 = X = F(X), ¥ = IX + YGy(X) + Y2G,(X),
IG2 = 0 (if I # O then § > v) and either |Z| > 0 (Lemma 2(d)), or v > 0,
F =kyX, Gi = ké (Lemma 2(g)).
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PROPOSITION 86. J =1, K = const = v > Jlg| > 1, X = XF(Y) +
Fo(Y), Y = G(Y) and |Z| > 0 (Lemma 2(f)).
PROPOSITION 87. J = 1, K # const, 6 = Iy = X = yX (kX! +1Y),
Y = 6Y (kXT +1Y +mY?) and one of the two cases holds:
(a) 6>1 = m =0 (Lemma 2(a)).
(b) 6=1 = v=1 and X,U =Y/X separating (Lemma 2(d)).

PROPOSITION 88. J = 1, K # const, § < Iy = X = ykX™1, ¥ =
§Y (kXTI +1Y?), V] quasi-homogeneous and either |Z| > 0 (Lemma 2(h)), or
v >2,1=0 (Lemma 2(a)).

PROPOSITION 89. J = 1, K # const, § > Iy = X = yX (kX! +1Y),
Y = §Y (kX! +mY), V{ quasi-homogeneous and either |Z| > 0 (Lemma 2(h)),
orv>2,1=m=0 (Lemma 2(a)).

PROPOSITION 90. J >2 = v > 2, V' =V (Lemma 2(a)).

In Propositions 91-99, 0 < |¥3| < | X4].

ProPOSITION 91. 1 < |Vi| < |Xi|, K = const = X = XFi(Y) + Fp(Y),
Y = G(Y) and either |Z| > 0 (Lemma 2(f)), or v > 0, F1 = kv, G = k8Y
(Lemma 2(d)).

PROPOSITION 92. 1 < |Y7] < |X4|, K # const, 6 = Iy = X =X (kX! +
1Y) + Y2F(Y), Y = 6Y (kX! +1Y), R=YY1,U = X/R separating variables,

and there is a Darbouz first integral

Y- YU KUY /(I +1) +1) — T(Y)),
R
¥(Y)=R / I 2Fo(r1) dr.
0

PROPOSITION 93. 1 < |V3| < |Xa|, K # const, § < Iy = K = kX',
X = vkXTH + Y2Fy(Y), Y = 6kY X! (see Proposition 92).

PROPOSITION 94. 1 < [Vi] < |Xi|, K # const, [ =0 = X = XF(Y) +
Fo(Y), Y = G(Y) and either|Z| > 0 (Lemma 2(f)), orv > 0, F1 = ky, G = k§Y
(Lemma 2(d)).

PROPOSITION 95. 1 < |Vi| < |Xy|, K # const, 6 > Iy >0 = X =
X (kXT + 1Y) + Y2Fo(Y), Y = 6Y(IXT + mY), where the inequalities 3 >
|8*Y 20| > 2+ 2Y1| — | Xa| + (26 — (I + 1)y — DIT| > 2+ 2[Y1| — | X| + [T,
3 > |®* X +19x| > 2 + I|X1| — |T| lead to either Fo = 0 (Lemma 2(a)), or
I=~y=1,6=2, [Vi|=1,|T| =1, |X1| =2, V' homogeneous (Lemma 2(b)).
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PROPOSITION 96. 2 < |X;| = Y| = V' =V (Lemma 2(a)).
PROPOSITION 97. |X;|=1[Yi|=1 = degV{ < 2.

PropPoOSITION 98. | X4|=V3|=1,v=6 =
X =kX +F(X,Y), Y =kY+Gy(X,Y),

with Fy, Gy homogeneous gquadratic polynomials. This system has an invariant
line; assume that it is X = 0. We have one of the two cases:
(@) y=1 = either X =Tz, Y =Ty, |T| = 1, which is equivalent to
X'=X,Y' = X/Y with T = z = 0 not invariant (V € CRy), or
|Z| > 0 (Lemma 2(h)), or v > 0, F; = G2 = 0 (Lemma 2(a)).
(b) vy>2 = Fy, =Gy =0 (Lemma 2(a)).

PROPOSITION 99. - | X;|=Y1|=1,7v>6 =
X =yX(k+1Y), Y =46kY +mX+nY?

and one of the three cases holds:
(@) y=2,6=1 = either X =T2z, Y =Ty, |T| = 1 which is equivalent
to X' =Y,Y' =Y2/X withT' =y = 0 not invariant, X' = mX’' +
kY’ +nX'Y', Y' = 2mY’ + 2(n — )Y'? (V € CRy), or |Z| > 0, V!
quasi-homogeneous (Lemma 2(h)), or v > 0, n =1 =0 (Lemma 2(a)).
(b) y>6+1 = m =0 (Lemma 2(d)).
(c) 6<y<26 = §>2,l=n=0 (Lemma 2(a)).

Two curves transformed to points.

PROPOSITION 100. ®({T1 = 0}) = {p1}, ®({T2 = 0}) = {p2}, dim & 1({p})
=0, p# p1,2 = one of the three cases holds:
(a) p1 # p2, Ta|lry=0 = const = Ty = fT1 + p and choosing p; = (0,1),
p2 = (0,0) we have X = gTNTy, Y = T{(A+ k1Y), MAul = 1, A\ p
parameters, f,g,h functions (possibly divided by T1). In the limit A — 0
we get Proposition 101.
(b) p1 # P2, Tilr;=0 # const = choosing p1 = (0,0), p2 = (1,0) we have
X =Ti¢d1/(ATid1 +Taga), Y = T1TeY1, A= 1. In the limit A — 0 we
get the situation as in Proposition 101.
(c) pr =p2 = Proposition 101.

REMARK 1. In the first two situations we have taken the limit A — 0. But
here V and V’ can also depend on the parameter A. One may suppose that for
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A = 0 the system V' becomes Darboux integrable, e.g. some of the coefficients
of V' vanish. However, the form of V' is obtained by estimating the degrees of
terms in V arising from monomials in V’. In the limit the degrees remain the

same.

ProrosiTION 101.
X =TPT9 Xy, Y = TOTRY; = det(d®) = T T~ ayeto-ig,

{Th =Ty, =0} C {Q =0}. We consider the limit situation T; — T\T:, [T| =1,

i=1,2 (see Remark 1). We have one of the two cases:

(a) X1 #1, Y1 #1 = either CRyg with X = T1Ta/z — T?/z,Y =
T\To/y — T?/y, or CRys (with X = T2T2/z — T*/z, Y = TiTa/y —
T?/y, X = X(kX +1Y?), Y = Y2(m+nY) and either |Z| > 0 (Lemma
2(g)), orv > 0, n = 0 (Lemma 2(e)), or CRi3 or CRy4, both with
XT3z, Y - T?%/y, V] = (2X8x +3Y3y)K, T = 0 invariant. The
invariance property cannot hold for T # Ts.

(b) Y1 =1 = Proposition 102.

PROPOSITION 102. X3 = ¢1/w, Y1 =1 = one of the two cases holds:

(a) |¢1|+ |w| > 1 = Proposition 103.
(b) |¢1] + |w| =1 = Proposition 104.

PROPOSITION 103. [¢1|+ |w| > 1 = &y =1lim® = (T7X;,T%) = &3 0 &,
®, = (X,Y?), 6§ > 2 (otherwise take (X/Y',Y) as new coordinates) and ®;
is equivalent to ®; = (X1,T). Vo = limV is reversible by means of 51. The
line T = 0 is invariant for Vo (because otherwise both curves Ty 3 = 0 are non-
invariant and v1 /61 = v2/82 so we take Ty = Tf‘Tzﬂ ) and in local coordinates
(2,T) near T = 0 we have T' = Tf(z,Tﬁ),_z' = g(z,T?), § > 2. We have one of
the three cases:

(a) ECRy, X1 =2%, T=y,s=k+iz? + my+nz?y +py* + q®, 9 =
2c(r+ sz +ty+uy?) = r=s=u=m=n=0, X; = Fo(T) +1X,,
T =T (Lemma 2(d)).

(b) Vo € CRy, T = 2, X1 = 4*/(z+y) = T =IT, X1 = nX; + ¢X?
(Lemma 2(d)).

(c) V€ CR3, T =z, X1 = y*/(zy+az?+bz+c) = T =IT, X1 = G(X3)
(Lemma 2(d)).
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PROPOSITION 104. |¢1]| + |w| = 1, X = T{*"TJ%z or X = T)*T?/z, Y =
THTE, Ty =1 =
(i) We can assume that 6; > v, (if §; < v; then we can make ~; smaller).

(ii) (61,62) = 1 (otherwise ® = &3 0 By, @3 = (X, Y E1:02))),

(iii) Dy = %‘7 > 1 (here | - | denotes the absolute value; if Dy < 1
then X' = (XY 1)t/ (b)) = ge v/ = Xky~1 k) —16;, = (1, 61),
are such that only one curve x = 0 4s transformed to a point).

(iv) 72/62 € N (otherwise we take (Y72/%2 /X, Y)).

(v) We have two quasi-homogeneous filtrations dy o with indices (7:,8:), i =
1,2, with the lowest degree parts Vy;. We define A; = d; — di(VY,). If
Ti = 0 are not invariant then Vg, # Vg, (otherwise Dy = 0, see (iii)).

We have either 71 + 81 = 3,70+ 82> Tor v+ 61 > 4,72 + 6, > 5. (The
lowest degrees 1,61, 72,62 are 1,2,4,3 and 1,3, 3, 2.) In the estimates of A; in
the next proposition we strongly use the above properties; particularly (iii) is

useful.

ProrosiTiON 105. If X; = z then
3> 8" X'YIdxy| 2 i+ A1+ Ay + A+ (=1,0),

A =0 iff T12 = 0 not invariant, A = 1 iff one of T; = 0 invariant, and A = 2
iff both T1 3 = 0 invariant. Moreover,

X = Fo(Y) + XF(Y) + X2Fa(Y) + X3Fy(Y),
Y = Go(Y) + XG1(Y) + X2G,(Y),

and one of the five cases holds: - -

(a) Fo(F+G3) #0 = (Ar+ Ag)(Fodx) +A > 5.

(b) Fo =0, (F{+G§)(F§+G3) #0 = (A1+A3)(XF10x +Gody)+A > 3
and equality holds when b2 = (XF1 + X2F)0x + (Go + XGy)0y =
(kY7 +IXY7) (72 X0x + 6,V By), j1 — j2 = 72/62 (see (iv)).

(€) Fs = G2 =0, R(Ff + G}) #0 = Vg, = (Fo + XF1)dx + Gody,
Fy= kYJo, Fy = lel, Jo — j1 = 72/82 (see (iv)).

@ Fo=F=GC=0 = F =kV F =¥ G = myis+,
G1 =Y+, V' quasi-homogeneous (Lemma 2(c)).

(e) Fo=F, =Gy = (c).
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ProPOSITION 106. If X7 =1/z then
3> @ XYIoxy|> (I —i)+ A1+ Az +A+1,0,
with A as in Proposition 105. Moreover,

X = XF(Y)+ X2F(Y) + X3F3(Y) + X Fy(Y),
Y = Go(Y) + XG1(Y) + X2G(Y),
and one of the four cases holds:
(a) (F12 + G%)F4 -‘,lé 0= (Al + Ag)(X4F4ax) + A > 5.
(b) Fy=0, (F2+G3)(FZ+G3) #0 = (A1 +As)(X3F30x + X2G20y) +
A > 3 and equality holds when Vjy = (F1+X F2) X 0x +(Go+XG1)0y =
(kY3 + IXY2) (7 Xx + 6:Y By), j1 — J2 = 72/ 62 (see (iv)).
(c) s=F,=G,=0 = F = ijl, lesz, Gy = ij1+1, G =
nY 72+l V' quasi-homogeneous (Lemma 2(c)).
(d) Fy = Fy=Go =0 = division by X gives one of the previous cases.

Common denominator.

PROPOSITION 107. If X = ¢/(87w1) = S77 X1, Y = 9/(SYm) = S,
(¢,%) = (w1, 1) = 1 then | Xq| = 7|S|, |Y1| 2 v|8], |X1] + |Y1| > (7 +v)|S| and
one of the two cases hold:

o § = 0 invariant = Proposition 108,

e S = 0 not invariant = Proposition 112,

ProPOSITION 108. X = 877X, Y =857V, § =0 invariant =
R=win!5°Z 1R,

p=max(px ~v—1,py —7—1), px = max{it + ju: X'¥7 € X},

R, a polynomial,
12 < | Zlmax = |S| + 16| + [] + D lwil + D Ims| - 3
and we have the following estimates for the monomial components of V':
3> [®* X Yiox,y| 2 i +jl¥a] + 24+ v+ AlS| - | Xa, Y,
v =Ilwi| + JIm| + | Z|max — |21,

where A'(:) = d'(VJ') — d'(-) > 0, d' is the degree in the quasi-homogeneous
filtration with indices T,v and Vy' is the highest degree part.

We divide this case into subcases considered in Propositions 109-111.
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PROPOSITION 109. v > 1, V4| < |X1| = X =kX + Fy(Y), Y =1+ mY
(Lemma 2(d)).

PROPOSITION 110. |Xi| = |Y1| = |X1| > 1, V' linear (Lemma 2(a)).

PROPOSITION 111. »=0,1 < [Y1| < |X1] = X = kX+Fy(Y),Y = l+mY
(Lemma 2(d)).

PROPOSITION 112. v = 0, 1 = |V1| < |X1| = Y = "/S, |5 =1,
T>2, |X1| >3, X = kXY +IX + Fop(Y), Y = mY2+nY +p and |Z] > 0
(Lemma 2(f)).

ProposiTION 113. X = X357, Y =Y1.57Y, § = 0 not invariant =

X=1XK+..., Y=uvYK+...,
(where K(X,Y) is quasi-homogeneous and the dots denote lower degree terms),
R from Proposition 108 changes to R/S and

32 8" XY 0xy| 2 ilX1| +jIVi| + 24+ v+ (A = 1)|S| - | X, [¥a].

We divide this case into subcases considered in Propositions 114-119.
PROPOSITION 114. |X1| = |Y1| > |S|+1 = V' linear (Lemma 2(a)).

PROPOSITION 115. |Xi| = V3| =[S[+1 = X = 7X(EX+IY)+mX +nY,
Y = oY (kX + 1Y) + pX + gY (after translations of X, Y) and one of the four
cases holds:
(a) T =v = V'V quasi-homogeneous and either |Z| > 0 (Lemma
2(h)), orv >0, k =1=0 (Lemma 2(a)).
(b) T>v, k#0 = | =n=0 and either |Z| > 0 (Lemma 2(f)), or v > 0,
k =0 (Lemma 2(a)).
() 7>2v,1#0 = k=n=p=0 (Lemma 2(d)).
(d) v<7<20,l#0 = v>2, k=n=q=0 (Lemma 2(d)).

PROPOSITION 116. |S| < |V3| < |[Xi1| = X = XF(Y) + Fp(Y), ¥ = Q)
and either |Z| > 0 (Lemma 2(f)), or v > 0, F1 = k7, G = kvY (Lemma 2(d)).

PROPOSITION 117. |S| = |Y1| < |Xi|, X1 a polynomial = Y = Y;/S,
(X", Y'") = (X, XY ") (see Proposition 16).

PROPOSITION 118. v > 1, |S| = |Y1| < |X1|, X1 rational=> X = XFy(Y)+
Fo(Y), Y = G(Y) and either |Z| > 0 (Lemma 2(f)), orv > 2, Fy = kr, G = kvY
(Lemma 2(d)).
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PROPOSITION 119. v = 0, |S| = |Y1| < |Xi|, X1 rational = I = 0,
K=K(Y), X =XF(Y)+F(Y), Y = G(Y) and |Z| > 0 (Lemma 2(f)).

Common denominator and a curve sent to a point.

PROPOSITION 120. X = L2X;, ¥ = '—g—le = in the limit S — 1 (or
{8 =0} — E, the line at infinity), where ' remains finite, we get the situation
Jrom Propositions 101, 102, 103. Conclusion: X1 = 1,z,1/z, Y1 = 1,y,1/y. We
have one of the two cases:

(a) X1 #1+#Y; = Proposition 121.
(b) Y1 =1 = Proposition 122.

ProPoOSITION 121. X; #1# Y; = in the limit S — 1 we get the cases
CR4~CRy6 and considering the limits T — 1 and T — S we get additional

restrictions on T,v. We have one of the nine cases:

(a) (Tz/8,Ty/S) = equivalent to (Tz/S,z/y).
(b) (T'z/S,T?/S) = eguivalent to (Ty/z,T?y/S).
(c) (Tz/S,T?y/S?%) = equivalent to (Tx/S,z*/y).
(d) (Tz/S% T?y/S) = equivalent to (T3y/z, T?y/S).
(e) (Tz/S% T?y/S?) = eguivalent to (T'y/z, T?y/S?).
(f) (Tz/S,T%/(yS)) = equivalent to (z2y/S,zy/T)."
(8) (T%/(=8),T%/(y9)) =
equivalent to (yT/z,y2S/z%) = (T'z’ /S, T'*y'/8'®), which for T' =1
does not appear in CRy4—CR;5.
(h) (T*/(zS),T?/(yS)) = equivalent to (y2S/z,yS/T?).
(i) (T*/(=S?),T?/(yS)) = equivalent to (y*/z,yS/T?).

PrROPOSITION 122. V1 =1 =
(i) X =T78 "z*, Y =T°5~, |T| = |S| =1 as in Proposition 104(b).
(i) 6 >y or v > 7 (otherwise we can make v and T smaller).

(iif) 7/v ¢ N (otherwise ® eguivalent to (TVz*!, T55~7)).

(iv) (6,v) =1 (otherwise ® = &5 0 ¥1).

(v) D1 = (vy —16)/((7,6)(1,v)) < —1 (otherwise X' = XvY ")}/ ("),
Y' = X*Y L kr — lv = (7,v) of the form considered before).

(vi) §>v>1(if 6 =v =1 then we take (X/Y*,Y))."

(vil) We have two quasi-homogeneous filirations d_and d' with indices (v, §)
and (7,v) and with distinguished parts V§ (lowest) and V' (highest).
Define A =d —d(Vf) and A' = d'(VJ') = d' > 0. If neither T =0 nor
S = 0 is invariant then V§ # Vy' (by (v)).
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The above implies high values of the exponents (as in Proposition 104).
ProrosiTiON 123. If X; = z then
3> @ XY oxy|>i—14+A+ A +0,1.
Moreover,
X = FR(Y)+ XF(Y)+ X2R(Y)+ X3F3(Y),
Y =Go(Y)+ XG1(Y) + X2G,(Y),
and one of the seven cases holds:

(a) Fo(F2+G2%) #0 = (A+ A')(X3F30x + X%G20y) > 6.

(b) Fo =0, (F}+GJ)(F§+G3) #0 = (A+A) X F3dx+X2Gady) 2 4.

() Fy=Cy=0, Fo(F§ +G) #£0 = (A+A)(X2Fydx + XG1dy) > 4.

(d) Fo=F = Go = (e)

(e) Fp=F3 =G =0 = Fy=1 G =nY, (A + A,)(X2F23X +
XG18y) > 2 and equality holds when Fy = kY7, Gy = mYJ+! and V'
quasi-homogeneous (Lemma 2(c)).

) P =F3=G1 =Gy =0 = oneof T =0 and S = 0 invariant,
|®* X F10x| > 3, |2*Goly| > 3 and equalities hold when Fy = k, Gy =
lY (Lemma 2(d)).

(€ Fi=F=F;=Gy=G1=G,=0 = Y =0 (Lemma 2(a)).

PROPOSITION 124. If Xy = 1/x then
3> |®*XYI0xy|>(I—i)+ A+ A +1,0.
Moreover,
X =XF(Y)+ X2FR(Y) + X3F(Y) + X4F(Y),
Y =Go(Y) + XGi(Y) + X2G5(Y),
and one of the five cases holds:

(a) (F2+G3)F1#0 = (A+ A')(X*Fdx)+A>6.

(b) Fy=0, (F}+G3)(F{+G3) #0 = (A+A')(X3F30x+X2G,0y) > 4.

(c) Fi=Go =0, Fa(F} +G3) #0 = (b).

d) Fs=Fy=Gy=0, [T+ G{)(F§ +G}) #0 = (A+ A)(X2F0x +
XG10y) > 2 and equality holds when V' quasi-homogeneous (Lemma

2(c)).
(e) F1=F4=G0=0 =>(d)

PROPOSITION 125. The most general cases when (w,n) has more than one
factor and/or more than two curves are transformed to points reduce to the cases

considered before by passing to the limit T; — T™ or S; — S™.
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5. The proofs of some propositions and additional lemmas

ProOF OF ProPOSITION 1. It is enough to show (i)—(iv).

(i) The changes X — 1/X and Y — 1/Y allow us to make [X|,|Y| > 0.

(i) If X = U1 /w,Y = ¢/(UPm) then we define X' = X, ¥’ = YX¢,
i =[(B+1)/al.

(iii) There are cancellations of highest degree terms in (4) in the following
two situations:

(a) [X|=[Y]=0,

(b) I X|+1Y] >0, X =R™+... and Y = R* + ... for some rational
homogeneous A.

(Notice that these are exactly the cases when X and Y are functionally
dependent at infinity.)

To show the above statement let us introduce the variables z, u = y/x. Then
X =zaFf(u)+..., Y = z'g(u) + ... Assume first that 6X/dz = X} ~ X,
and Y; ~ Y. There are cancellations of highest order terms in (4) iff F/G ~
X, /Y, ~ X;/Y]. This means that |det(d®)| < |X|+|Y|—2 or that kfg' = lgf’.
Hence f = const g*/! (f = fI*, g = fI', m/n=k/l),or k=1=0. If | X}| < | X},|
and there are cancellations then also [Yy| < |[Y;|and X = y™+... Y =gy"+...

In order to make X and Y independent at infinity we make the following
changes. In the case (a) C = ®(E) = {P(X,Y) = 0} is a rational curve (ra-
tionally isomorphic to CP') whose field of rational functions C(C) is isomorphic
to C(z). On the other hand, C(C) is the field of quotients of its structural ring
C[X,Y]/(P). We choose two functions 0 and z from C(C). They are repre-
sented by some rational functions X; = P(X,Y) and X5 = Q(X,Y). The map
®; = (X31,Y1) is invertible because we can express X and Y as functions of X3
and Y1: X|¢ = w(2) so X = w(Q)+ PX, and we do the same with X, etc. The
map & = &, 0o ® = (X', Y’) has the property that X’ and Y’ are independent
at infinity.

In the case (b) we do the same but with the curve CP! 5 (R: 1) — (R™, R™).

(iv) To ensure the last property we make the blowing-up (in the image) when
the center O belongs to the curve (¢,1) = 0 or to the curve (w,%) = 0 and we
apply the change X —» 1/X when I' C {w = 0 # n}. Next we apply the same

transformations as in (i) and (ii). O

PROOF OF PROPOSITION 2. We have AD — BC = ZW, where {W =0} =T
and Z is the factor by which we divide V. Hence |Z| < |Z|max = [(AD, BC)| 1.
Because we classify cubic systems we have the bound 3 for the degrees of the

corresponding components in (5). O
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LEMMA 4. Consider the quadratic system
(17 &= a+ bz + cy + dy?, y=-ezx+ fy.

If it has an invariant algebraic curve Z(z,y) = 0 of degree > 3 and not containing
any of the coordinate azes then either the system is Darbouz integrable or Z =
28 — 322, £ =3z + 92, § =2y +z.

PROOF. If d = 0 then the system is linear (Lemma 2(a)), and if e = 0 then
we can apply the proof of Lemma 2(f) (we have a DSC integral). Assume then
that these parameters are non-zero and after rescaling we can put d = e = 1.

The system (17) has < 3 critical points in CP2: two finite points p, p2 and
p3 = (1:0:0) at infinity. If p; # pa are real then one of them, say pi, is a saddle
and p; is an anti-saddle (node, focus or center). If p; = p, then it is either a
saddle-node (for p; = (0,0), # = b(z + fy) +v*, 9 =z + fy, b+ f#0),o0ra
Bogdanov-Takens singularity (b+ f = 0).

The point p3 has a more complex structure. In the projective coordinates
z=1/z,u=y/z we get

@ =2z—u’+ (b— fluz — cu’z — auz?,

3= —z(u® + bz + cuz + az?).

Here we should apply the desingularization procedure. But instead of doing this
we notice that when z is of order u® then the leading part is 4 = z2~u3, 5 = —zu2.

3 we obtain W = 3(z — w),2 = —2, a 3 : 1 resonant sink. This

Putting w =
shows that p3 is a sink with separatrices z =0 and f5 =0, fo ~ 2u3 — 32+ ...
Other trajectories near ps are either all analytic or all non-analytic (depending

on the existense of resonant terms in the normal form of the 3 : 1 resonant sink

appearing in the desingularization of p3). Their equations are fo+C23 +... =0
or2y® —3z2+C+...=0.
Therefore

Z= ﬁ(2y3 ~32% + C; + o(1))(1 + 0(1))
i=1

near infinity. On the other hand,
Z = (k+lz+my)Z
But
7= 2[61:2(:5 + fy) — 6z(y® + bz +cY +a)

+OM) [](2v® — 32 + Ci + 0(1))
J#i
+J]@® - 322 + C; + o(1))O(1).
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Wesee thenthat I =m =0,c=a =0, f/b=2/3,ie & =3Az+y%, =2 y+z
with invariant curve 2y® = 322.

Notice that in the invertible variables X = y3z72, Y = y/z we get X =
X(3-2X),Y =Y(1 - X) — XY? with DSC integral

Y
Xy -3y — 3)V/6 — A/ u™/3(2u — 3)75/5dy

(not Darboux or DHE for A # 0). Near any singular point there is a local
meromorphic first integral but there is no such global integral. O

PROOF OF PROPOSITION 11. If | X| =2, |Y| =1 and X and Y are polyno-
mials then Y = y, X = az? +bry+cy? +dz +ey+ f = ax} + P(Y) is equivalent
to X = z2, Y =y. Moreover,

X =k+1X +mY +nY? 4+ pXY +qY3,
Y =r+sX +1Y +uY?

i=k+lm2+my+ny2+pz2y+qy3,

CR1: . 2 2
y = 2z(r + sz* + ty + qy°).

Tt remains to show that the latter system has a center and that it is not
Darboux integrable and not DHE integrable.

The fold curve is T' = {z = 0} and its image is I" = {X = 0}. The tangency
condition for V' means that X|x—o = F(0,Y) changes sign in such a way that
F(0,Yp) = 0, F},(0,Y5)G(0,Yp) < 0. We see that this is possible; to ensure it we
must add some inequalities on the coefficients,

To show the non-integrability we put s = 0 and get % = &Q—%ﬁﬁ with
arbitrary quadratic G. The latter equation has a DSC integral which generally
is not of Darboux or DHE type. O

PROOF OF PROPOSITION 12. The formula X = k+1X,Y = m+nX +
pY + qY2 follows from (5). V has two invariant algebraic curves X = —k/l and
Z = 0 both of degree 2 (if ¢ # 0). In the image we also have the invariant curves
X = —k/l and {Z' = 0} = ®({Z = 0}) of degree > 4. We can assume that
n # 0 # q (otherwise we can apply Lemma 2(d) or Lemma 2(a)).

Let us look at the behaviour of the curve Z’ = 0 near infinity. There are two
singular points at infinity: p1 = (0:1:0), p2 = (1 : 0:0). The point p; is a
1:1 integrable node with trajectories of the form X ~ C; + C3/Y as Y — oo,
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The point p; is very complicated and no algebraic trajectory goes through it;
one can check this trying Y ~CX*and ¥ — C as X — oo.

So, {Z' =0} NEyx = {p1} or Z' = X* + ... But then any local component
of Z' = 0 is of the form Y ~ AX?, 8 > 0, which contradicts the behaviour near
p1. Therefore such a Z' does not exist. O

PrROOF OF PROPOSITIONS 14 AND 15. By the assumptions of Proposition
14, |X]=|Y]|=1,v=0and Y = 9/7 is rational, so we can put X = z. Then
J=0,

X=k+IX+mX? Y=n4+pX+¢X?+Y(r+sX)+1tY?

and |Z| > 2|n| — 1 > 0 (otherwise V’ is linear).
Under the assumptions of Proposition 15, |Y| =0, |[X] = 1, v = 2 we have
X =z, Y =1/n and from (5) we get

X=k+IX+mX? Y=n+pX+Y(qg+rX)+Y?(s+tX).

If || = |9| =1 then & is invertible, so |¢| = || > 2 and |Z| > 2.
In both cases V' forms a Riccati system with respect to Y,

(*) O = A(X) + BX)Y +C(X)Y?,
with A, B,C rational. We know that there is some invariant algebraic curve

{Z' =0} = 3({Z = 0}), where {Z' = 0} ¢ {M(X) = 0}.

LEMMA 5. If the equation () has an invariant algebraic curve Z' = 0 not
parallel to the OY -azis then we have one of the three cases:
(i) (%) has a DSC integral if Z' = Q(X)Y — P(X) and there is no other

tnvarient algebraic curve not parallel to the OY -axis;

(ii) (*) has a Darboux integral if there are two invariant curves Y = Ry (X)
and Y = Ry(X);

(iii) (%) has a DHE integral if Z' = P(X)Y2 4+ Q(X)Y + T(X) and Z' is
trreducible.

(iv) (%) has a rational integral otherwise.

PROOF. Let us choose a branch ¥ = II; (X)) of the curve Z’ = 0. Then we
get the following equation for Y1 =Y — II; (X):

% = (B +201,)Y; + CY? = B1Y; + CY{2
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with first integral
H=v il Pt / /B,

If {Z' = 0} = {Y = II;(X)} with II; rational and there are no other invariant
algebraic curves then we have (i).

If {Z' = 0} = {Y = II;(X)} with II; rational and there is another invariant
algebraic curve Z” = 0 then we can apply Lemma 2(f). We find that H is of
Darboux type and {Z” = 0} = {Y = Ry(X)} with Ry rational.

Assume now that Z’ is irreducible and has degree > 2 with respect to Y.
We can repeat the proof of Lemma 2(f) for the integral H and another branch
Y =II;(X) of the curve Z’ = 0. We obtain

1 1
S B — fB1
H=e (Yl i H1> =(II; —II;) e

Y —1II;

P
Consider the discriminant locus of the algebraic function Y (X), the points X
where II;(X) = IL;j(X). Then branching around such points means that II; is
transformed to II;. On the other hand, the monodromy group of H forms a
subgroup of the Mébius group PSL(2,C). If the degree of Z’ with respect to Y’
is greater than 2 then this monodromy group is finite and H is rational.

Let the degree of Y in Z’ be 2. After possibly changing ¥ — Y + U(X) we

can assume that {Z' = 0} = {Y2? = R(X)}. Then Y = \/R(X) and R'/(2VR) =
A+ BVR+CR. So, B=R'/(2R), A= —CR and

H= VB2V )y, 4 / ORI OV _ (_1/2)62IM%.

This is a DHE integral which (generally) cannot be simplified. 0O

Let us come back to the map & = (x,v/n). We have Y, = 17‘2WZ , where
W(z,y) is a linear function and by Lemma 5, Y|z—¢ is a rational function of
X = z. Let us treat Y = Y(y) as a function of y (with z as a parameter).
Then all the critical values of Y (y) corresponding to the critical points defined
by Z(y) = 0 are equal. We can assume that this critical value is zero (change
Y — Y + Q(z)), and then we have

Y(y) = 21 ) y, = Z@&4n+ Zyn = Zuy)
n(y) 7
We know that lim,._,. Y (y) is not a constant (depending on ) and hence the

degree of y in 2Z,11n+ Zp1yn — Zip11y is deg Z(y) + degp1(y) +degn(y) —1 =
deg W(y) < 1. We have three possibilities:

(a) deg Z(y) =0,
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(b) degn(y) =0,
(c) dege1(y) = 0.
In the case (a), @ is equivalent to (x,1/#), with 11,7 linear in y, or (better) to
(@, %a(2)/n(z,y)) ~ (z,7) ~ (z,3).
The possibility (b) means that ® is equivalent to (z,%(x,y)) considered be-
fore (see Propositions 10 and 11).
Consider the case (c). We transform Y in such a way that the critical value
of Y(y) corresponding to W(y) = 0 is zero. Then Y = W2 /7.
Let the assumptions of Proposition 14 hold. Because [W| = |n| =1 we have
In| =|Z| =1. Wecanput Z =y and X =z, Y=0*/(z+y), W=2z+y. Ttis
the case CRy. The initial system reads

&= (k+Ilx+ mmz)(2x + ),

Cth . 5 )
¥ =yl(n+pz)(z+y)+ qy® ~ (k+ Iz + mz?)).

V' has a true DSC integral, not Darboux or DHE, because all the parameters
are arbitrary. Next, I' = {2¢+y = 0}, I' = {Y = —4X} and (Y+4X)|y——_ax =
A+ BX +CX2. So some trajectory of V' can be tangent to I from the outside
and we have a center.

Let the assumptions of Proposition 15 hold. Here we put W = X =z,
Y=9y?/(zy+az?+bz+¢c), c#£0 (otherwise we have the case CR5). In the
sequel we assume that ¢ = 1. We obtain the case

CRj: & = (k+ iz + mz?)y,

g = [(n+pz)n* + (g +re)y’n + (s +t2)y* + 12y + 20 + ) (k + Iz + ma?)] /7,

Z = zy + 2a2® + 2bz + 2. We have n|z_0 = —a(z) = —(az? + bz + 1), ylz=0 =
—20(z)/z, (y + 2az + b)|z=0 = —b — 2/z. We obtain the condition 16(s +
tz)a®(z) — 4(g+ rz)z’a(z) + (n + pa)et + de(br + 2a)(k + Iz + mz?) = 0. The
constant term on the left hand side of this equation is 16s. Hence s = 0 and one
can easily express the parameters n,p,q,r,t as functions of a,b,e,k,l,m. The
formulas are given in Theorem 1 (the case CR3).

Now we have to show that the systems from CRj3 are not Darboux or DHE
integrable and have a center. To prove the first property it is enough to show
that CR3 contains a series of systems with Darboux integrals J] f;" with deg f;
going to infinity. Such integrals are given by

He o*=A(z + 1)P (zy + dy + 1)2
~ ¥*P(z) +yQ(z) + R(z)
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where

P(z) = (z +d)*S(z) + (kf-l)m_l— (kf—2)’

Q(z) = 2(x +d)S(x) + 2(k f— 1),
R(z) = S(z)+ d,

k
S(z) = ,-Z; (f) zh

with 8, d, d' real constants, k € N. It is not difficult to check that H is an

integral of a cubic system and that H can be represented as a function of

_ (sy+dy+1)?
zy? + py? +2y+v

X=z and

for some constants p and v. The map (X,Y') is equivalent to the map from CRj.
Indeed,

Y, = 2(zy® + uy® + 2y +v) @y + dy + 1)(vz + (d - ply +dv - 1)

has the curve of non-invertibility consisting of two components I' = {vz + (d -
)y + dv — 1 =0} (the fold curve) and Z = zy + dy +1 = 0. The equivalence is

realized in a series of transformations:

. (zy +1)°
1) z— A(z+d), y — By gives Y = P+ 2T B
2)Y-Y =z-Y,
zy? + Pz —1

Y -Y'=Y/1-Y)= ,
yY = / ) y2+2zy— P+ B+1
Bx? —2zy—z—1
y+2y—Pfz+B+1

2
(iv) _ 11 — (y—Br+1)
5Y 1/Y"+ 8 B2 —dmy—z -1

REMARK 2. Exactly in this way the third reversible case was discovered.
One can also notice that when one applies the inverse transformation to the one
described above then one obtains the Bernoulli system with a DSC integral. So,
the case CR3 is DSC integrable.

The existence of center is proved easily: ' = {y = 0}, I = {Y = 0} and
Y|y=0 = n + pX, where n and p are arbitrary. O

4) YIII =z — YII .=

LEMMA 6. Consider the quadratic system

(18) & = bz + cy + 2dz?, 7 = ay + 3dzy, d#0.
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If it has an invariant algebraic curve not containing y = 0 then either it has a
rational first integral, or a = 3b# 0 # ¢ and

Z = bd?z® — c?dy? + 3bedxy + bPey = 0.

In the latter case the system is not Darbour or DHE integrable.

PROOF. If ¢ = 0 then Lemma 2(d) works, so let ¢ # 0. By coordinate
changes we can assume that d =c=1.

The crucial point of the proof is the existence of a meromorphic first integral
near E, the line at infinity. We seek it in the form

H=m6y_4+ Z aij:l:iyj =Hy+H;+...,
+i<2

with H; homogeneous of degree j. The above series is convergent as (z,y) — Fqo
along a generic ray. From H = 0 we get the following system of equations:

OH;_ , OH; 0H; 41 8H; 1
b — T ay =
5% 2z° + By 3zy + e (bz +y) + By ay =0,

or
(24 + 3j)ai; + [(i+ 1)b + jalairr,; + (5 + 2)aire,j-1 =0,

from which we can calculate a;;’s inductively. The only obstacle is that 2 + 3;
could vanish. But this does not happen.

In order to see this let us find what pairs of indices (%,;) appear in the
expansions of Hy’s. We have

Hy: (51—4)i (41 _3);
HO : (41 _4)’ (3s —3)! (2’ _2);

We see that ¢/j # —3/2 for Hy,... ,H_3, and for H_,,, m > 4,4if i/j < 0 then
i/j < ~2(m —1)/(m—2) < -2.

The existence of a meromorphic first integral near E,, can also be seen from
the analysis of the system (18) in that domain. The system (18) has at most
5 singular points in CP?: two finite singular points p1,ps on the invariant line
y = 0, the finite real point ps : z = —a/3, y = (3ab — 2a%)/9, and two singular
points at infinity: p4 = (0:1:0) and ps = (1:0:0).
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To study the point ps we use the variables z = 1/y, w = z/y:

3= —3zw — az?, W = —w? + 2 + bzw — azw?.

The linear part is nilpotent but assuming z ~ w? we find two real separatrices
z=0and vy={2z+w?+... =0}, 0r F =22 +2y+... =0 in the old variables.
' 1/3

Besides v we have the family of analytic trajectories w ~ Cz/3, or 23 ~ Cy?.

To study ps we use the variables Z = 1/z, u = y/z;
F=-32+...), a=ull+...).

Hence p4 is a saddle with separatrices 2 =0 and y = 0.

When one blows up the point py (v = z/w?,w), then on the exceptional
divisor E4 = {w = 0} there appear three singular points p} = FEo, N Ey4, pj with
the separatrix v = {F = 0} and p}’ : v = oo. One finds that the first integral H
is critical on #, i.e. H = F3H,. This gives the representation

H = F3/y*,

if F is well defined (recall that the formula for - is not unique). So, H =0 is
the equation of ~y.

If an invariant algebraic curve Z = 0 contains a branch F' = 0 then its
equation is Hy* = 0. Hence Hy* is a polynomial and H is rational.

If an invariant algebraic curve Z = 0 has degree > 4 then {Z = 0} =
{(H - C)y* =0} and H is also rational.

Therefore it remains to consider the case Z = z® — Cy? + ... Here the
curve H = C may have two components, one algebraic -Z = 0 and the other
transcendental. We have three possibilities:

(i) Z = 0 is smooth or has a double point (transversal self-intersection)
outside the line y = 0 and Z = 0 has at most first order tangency with
the line y = 0.

(ii) Z = 0 has a double point at y = 0;

(iii) Z =0 is a cusp.

(iv) Z = 0 has double tangency with y = 0.

Consider the case (i). The following lemma is very useful for us. It was
proved by Christopher (with the assumptions (i) and (ii), see [9]), and by the
author [18] (independently).

LeEMMA 7. If a polynomial vector field V (z,y) in C? has invariant irreducible
algebraic curves Si,...,8y, S; = {fj= 0}, with the properties

(a) S; are smooth,

(b) Si and S; intersect transversally,
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then
v=IT4(W+ X wxn/s),
where Xy = %5(% — %56,, is the Hamiltonian vector field, W is a polynomial

vector field and h; are polynomials.
If instead of (a) and (b) we assume

(a') the only singular points of S; are simple double points outside other Sj’s,
(b") the intersections of S; with S; have at most first order tangencies,

v =TL#(W+ S mxs/s),

where Q is an arbitrary polynomial vanishing at the double points of S; and at

then

the points of mon-transversal intersections S; N S; with the condition Q = 0

transversal to S;.

We apply this lemma to our situation. Of course we can choose the factor Q
in the form @ = z + Ay + u such that the line Q = 0 passes through the double
point of Z = 0 and through a possible tangency point of Z = 0 and y = 0. Then
we get QV = W(z,y)yZ + hi(z,y) X zy + ha(z,y) X, Z, or

(x+ Ay + )3z + y+ bx) = WiyZ +ha(—2Cy +... )y + ha(z® - Cy? +...),

(+ Ay + p)(Bry + ey) = WayZ + by (—32* + ... )y.

On the line y = 0 we have 325 + ... = hoz® + ..., s0 Ay = const + yhjy and
we can put hy = const. Along the curve Z =0, z ~ ¢/ and we get

C’ly2 + Cg)\y2+1/3 +... = C3h1y2 +...,
C’4y7/3 + C’5/\y8/3 +...= Csh1y7/3 +...

Hence A = 0, hi|z=0 = const and we can put h; = const. But then we have
W1 = Wy =0 and Z*1yh2 ig a first integral.

Consider the case (ii). Assuming that the double point is z = y = 0 we
deduce that it is a 1 : 1 resonant node with diagonal linear part. So,c=0,a=b
and we have separated variables. Integration gives a rational first integral.

Consider the case (iii). We have Z = (z — z¢)3 — C(y + Az + B)2, where we
can put zg = 0. We have two possibilities:

(a) B=0, b/a = 3/2, the wedge of the cusp at y = 0;
(b) B # 0 and by translation we get

& = bz 4+ y + 222, v = fx+ 3xy.
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Let us solve the equation Z = gZ, g = 6z + p, Z = z° — C(y + Az)? for
& =bx +y+ 222, § = 3zy + ay + fz, where a = 3b/2, f =0 in the case (a) and
a = 0 in the case (b). We have

[3x% — 2AC(y + Az)][22% + y + bz] — 2C(y + Az)(3zy + ay + fz)
= (62 + p)[z® — C(y + Az)?]

and equating the coefficients we find the following conditions:
(a) AC = 3/4, p=3b+2A%C, p=3b+ 24, so A = 0 (contradiction);
(b) AC =3/2, p=3b+24%C, p=2A, f = pA[/2—A*— Ab, [ = pA/2— Ab
and hence A =0.

Consider the case (iv). If the tangency pointis z =y = 0 theny ~ z2onZ =
0. Therefore (0,0) isa 3 : 1 resonant node, a = 3b and Z = Ay+Bzy+Cy*+Dy>.
Invariance of Z = 0 means that Z = gZ, g = 6dz + 3b. The calculation of the
coefficients gives then the form of Z from the statement of Lemma 6.

To show the non-integrability of (18) for ¢ = d = 1, b # 0 we study the
singular point ps = (—b,—b?). It is a stable focus with eigenvalues A; 5 =
1(—8+14v/3)b. If the system (18) had a Darboux or DHE integral then from its
behaviour at infinity it would follow that the integral should be rational. This
contradicts the existence of the focus. O

REMARK 3 (General). Below we shall prove the propositions (from Section 4)
which are connected with the cases CR4—C Ry of rational reversibility described
in Theorem 1. We shall be less concerned with the estimates of the degrees than
with the proof that these cases are really new situations of reversibility. For this

we shall need two things:

e non-integrability in the Darboux or DHE sense and

e existence of a reversible center.

The purpose of Remark 3 is to discuss the existence of a center here in order
not to do it separately in each case.

We have either X = Tz or X = Tf,/z, and Y = T{,/y, where T} is a
general polynomial of degree k.

If Ty = az + by + ¢ then we can assume that ¢ # 0 and b # 0 because
otherwise X is a function of z or Y is a function of y and ® = (X,Y) can be
decomposed as & = &, 0P, so V is reversible by means of a map which does not
transform a curve to a point. This is either impossible or yields one of the cases
CR;—-CRj3. Sometimes also ¢ # 0 (but not always). Anyway we can normalize
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the variables z,y so that
Mi=z+4+y+e, c=0,1, T2=aa:2+b:z:y+cy2+da:+ey+f.

Let the variables z,y be fixed. Then the fold curve T is fixed too.

Next we make the changes X — uX, U — vY. After these changes TV =
I, = ®(I) changes but the general form of V' remains the same. Assume
that ¥V’ does not depend on u,v. For almost all p,v, I‘L,,, is not invariant for
V' (otherwise V' would have a family of invariant algebraic curves and then a
rational first integral).

If IV is not invariant then it remains to show that V' is not everywhere
transversal to I and that there is a tangency point of first order. If this point
is (Xo,Yp) and I is given by Y = Y5 + A(X — Xo) + B(X — Xo)? +... = ¥(X)
(we choose a generic point), then we have to prove that

Y — (A+2B(X - Xo))X]ly=vx)=C+D(X ~Xo)+..., C=0, D#0

(with definite sign of D). But C and D depend on the coefficients of V'. In all
the cases the number of coefficients is large enough to ensure that C and D are
independent.

PROOF OF PROPOSITION 22(e). If |X1| = V3| = -1, T = 0 invariant,
¥ =26, §|T| = 2 and XT*+2Y7"=28x in V{ then from (7) we get I =0, J = 2 and

X=X(kX+1Y?, Y=Y3m+nY).

This system has a DSC integral and either |Z] > 0 (Lemma 2(g)), or X = T* /z,
Y =T2?/y, T =z +y+c, i.e. we have the case

&= (2y — T)(ky® + Iz) — dz(my + nT?),

CRy5 :
1 ¥ = (4z — T)(my + nT?) — 2y(ky® + Iz).

Because the parameters k,[,m,n are arbitrary the DSC integral is not of Dar-
boux or DHE type. a

PROOF OF PROPOSITION 42(b). We have X =T7X,, Y =T"Yy, | X;| = 1,
[Y1] = —1, T = 0 invariant and XY 718 in V{. It is easy to check that ify=46
then v = |T| =1,

X =kX +1Y +mXY, Y =Y(n+pY +q¥?).
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If X #2,Y # 1/y then |Z| > 0 and we can apply Lemma 2(f).
We then have X =Tz, Y =T/y, T =z + y + ¢, i.e. the case

i = —(z + c)(kzy + | + mTz) — x(ny® + pTy + qY'?),

CRy: ) ) )
4= 2z +y +c)(ny® + pTy + ¢T°) — y(kzy + 1 + mTx).

Of course V' has a DSC integral which is not of Darboux or DHE type (because
the coefficients &, 1, m,n, p, ¢ are independent). O

PROOF OF PROPOSITION 49(b). We need only consider the case X = T X3,
Y =TY1, |X|1 =2, |Y1| = 1. We have the system

X =1Y +mX 4+ nY?, Y =¢X +rY.

If |T| > 2 or X1,Y; are not polynomials then |Z| > 2, |Z'| > 4 and Lemma 4
excludes this possibility ({Z’ = 0} = ®({Z = 0})).

Let then |T| = |Z| = 1. One can easily see that Z' = AY®+ BX?+... By
Lemma 4 there is no Darboux integral iff Z’ = AY3 + BX2. But then Y|z is
a square and X |z—o is 2 cube. So X = T2, Y = T3, which is impossible. O

PROOF OF PROPOSITION 58(b). We have the following situation: X =
T2X,,Y =TY3, |T| =1, |X1| = |Y1| = =1, T = 0 not invariant and

X =2X (kY +1X + mXY),
Y =Y(kY + nX 4+ pY? 4+ ¢XY +rXY?).

In the variables X = 1/X, Y = 1/Y it reads (without tildes)
(19) X =2X(m+1Y +kX), Y =r+q¥ +pX+(nY +kX)Y.

If |¢1| + |#01] > O then I|¢1| + J]g1| >0 and l=m =n =g =r = 0 (Lemma
2(d)).

If X; =1/z, Y1 = 1/y then we have the case CRy1, where we have to show
non-integrability. In the variables z, y the system is

& =2z[—(p+ k)z + (I — n)y + (m —1— QyT — (m + )T,
CRy1: y =2px? — kzy — pzT + 2(n — Dy’
+2(q — m)zyT — ny*T + 2rzT? — qyT? — rT3,

The system (19) has 6 singular points: pj 2 on the line X = 0, p3 finite,
ps=(0:1:0),p5s =(1:0:0) and pg = (n — 2 : k : 0) on the line at infinity.
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If the system (19) has a Darboux or DHE integral for all values of the pa-
rameters then it has an invariant algebraic curve S. It is possible that § = E
or § = {X = 0} is multiple but then some of the singular points on S must be
resonant with resonant terms in the normal form.

Because the parameters n,k,! in (19) are independent we can achieve that
the ratios A(pg) and A(ps) of the eigenvalues at ps and at p, are irrational
(but A(ps) = 2 because there is a family of trajectories X ~ CY? and ps is
analytically linearizable). The ratios A(p;), i = 1,2, 3, are governed by m,p, q,r
and are independent. We choose all of them real and irrational. Then S cannot
be X = 0 or E,. It has to be a separatrix of a singular point. But the phase
portrait of (19) can be investigated. In particular, for generic parameters there
is no separatrix connections and no new invariant algebraic curves.

The simplest way to see this is to consider a perturbation of an integrable
system. (19) is equivalent to & = —2zy, ¥ = a + bz + cz? — y? + ex(d + ey).
For £ = 0 we have the integral H = z71(y? + az? + 8) + vlnz and for small ¢
we have the focus p; and at most one limit cycle. Next we make a continuous
passage to the case when the focus becomes a node. O

PROOF OF PROPOSITION 58(c). We have X = T3X,, Y = Y?Y;, |X,| =
|Y1| = =1, T = 0 not invariant,

X =3X(kY +1X), Y =2Y(kY +nX +pY?),
which after the transformation X — 1/X,Y — 1/Y becomes
X =3X(kX +1Y), Y =2[nX+*kX+mY)Y].

If |¢1| +|1] > O then v > 0 and ! = m = 0 (Lemma 2(d)). If |T'| > 1 then p =0,
V/ is homogeneous (Lemma 2(c)). '
If |T| =1 then X = T3/, Y = T?/y, i.e. we have the case
& = 3x[—kz + 2(1 — m)y? — lyT — 2nzT),
CRys . 2 2 2 2
Y = 2[—kzy — my“T + 3(m — Dzy* + 3nz*T — nzT?).

The non-integrability is proved in the same way as in the proof of Proposi-
tion 58(b), where the essential part of the perturbation of an integrable system
reduces to & = —2zy,y = az + bz? + cy® +ezy, H = z°(ay® + Bz? + 7). O

PROOF OF PROPOSITION 59(a). We have X = T%X,, Y = TY, |Xy| =
|Y1| = —1 and one can check that

X =2X(kY +1X +mY? 4+ nXY +pXY?), Y =Y*k+qY +rY?).
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If |T| > 1 or |¢1]| + |41| > O then either |Z| > 0 and we apply Lemma 2(g), or
v >0, =n=p=0 (Lemma 2(d)).
If X =T2%/x,Y =T/y, |T| =1 then we have the case
£=2[l-k—qzy— (m+r)zT
+1y® + (p— n)yT? + (n — )y°T — T3,
¥ = —ky® +2(g — m)zy + 2rzT
— pgT — rT? — 2ny®T — 2pyT2.

CRlz :

V' has the DSC integral
H=XY*Y -a)’(Y—b)" — / Yo Y Y —a)P"H (Y =) (I +nY +pT?)dY

with the restriction o + 8 + v = 0. Therefore H is not of Darboux or DHE
type. g

PROOF OF PROPOSITION 59(c). We have X = T3X;, Y = T?Yy, |X;| =
|Y1| = —1 and one can check that

(20) X =3X%(kY +1X +mY?), Y =2Y%(kX +nXY +pY?),
which after the change X — 1/X,Y — 1/Y becomes
X =3(mX +IY2 +kXY), Y =2(pX+nY +kY?)

(the system from Lemma 6 with 1/2 <d=2/3 < 1). ¥ |T| > 1l or || +|¥1| > O
then there is an invariant curve Z = 0 which gives an invariant algebraic curve
Z =0 of degree > 4 for (20). By Lemma 6 we have a Darboux integral.

So X =T3/z,Y =T?/y, |T| = 1, i.e. we have the case
CR & = 3[—kzy — 2pz® + 2ly® + 2(m — n)zyT — IY?*T — maT?),
e 9 = 2[3px? — ky? — poT — 3ly® + 3(n — m)zyT — nyT?].

The Darboux and DHE non-integrability of the system (20) is proved in the
same way as in the proof of Proposition 58(b) (there are irrational ratios A(p;)
and no separatrix connections because we have the perturbation £ = —2zy +
e(y+a)?, g=b+cx— (4/3)y* + edy, H = z743(y? + az + B)). O

PROOF OF PROPOSITION 66(a). If |T| > 1, X =TX;, Y =TV, | X1| =
|¥1] =1 then |Z|pax > 1 and
X = X(kX +1Y) + X%(mX +nY) + pX?Y,
Y =Y(kX +1Y)+Y?*qX +7Y) +sXY3,
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which after the change X —1/X 4 C1, Y — 1/Y + Cs becomes

X =aX +bY + (IX +kY)X, Y =cX+dY +(IX +kY)Y.
If |Z| > O then we can apply Lemma 2(h) (here are included also the cases

with [T| > 2, |¢1| + [¢1] > 0). But if |Z| = 0 < |Z|max then in the variables
X,U=Y/X we have

X=k+WU+X(m+alU), Y=UFU?+/(q—n)U—m),

a system with a DSC integral (not Darboux or DHE).
Therefore we have |Z| = 0, p = s = 0, the case CRy5 with X = T/z,
Y=T/y, T =az®+bry+cy*+dr+ey+ f and

& = — kzy — 122 — myT — naT
Chuy + (bz + 2cy + €)[-72” + (n — g)zy + my?]
¥ =—kxy — ly? — qyT — raT
+ (2az + by + d)[rz? + (g — n)xy — my?].

We can assume that the constant term f is not zero because otherwise we have
the situation as in Proposition 64(b). So, we put f = 1. O

PROOF OF PROPOSITION 69(e). We omit the proof that X = z2/y, ¥ =
z*/n, Inl =2,

X =2X(kY + mX?+nXY), Y =3Y%(k+rX)

with |Z| = 1. Let us check when we get |Z| = 1.

Let n = az + Bzy + yy? + 6z + ey + . After simple calculations we get
det(d®) = z*y~?772(3n — an — 2ym,) = 'y 20" (ax? — yy® + 26z + ey + 3¢).
Because the latter monomial is reducible and I's has a real component, we have
ay > 0. We can assume that @ =y =1. Then Z =z — y + p, W=z+y—v,
where I' = {W = 0} and Z = 0 is invariant for V and Z’ = 0 (the image of
Z = 0) is invariant for V'.

Let us introduce the variables X = 1 /X, Y =1/Y. Then

)?=2(k)?2+m?+nf), ?=3?(k)?+’r),

a system from Lemma 6. Applying Lemma 6 we deduce that {Z =0} = ZI;({Z =
0}), ® = (X,Y) is cubic (rational elliptic) with a point of double tangency with
the line ¥ = 0.
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We have ¥ = [z2 + Bzy — y? + (1 — v)&/2+ (n+v)y — wv/3ls,
jz'lZ=0 =T+ l‘l'7-21

- 1 2
Y|z—0 = BT+ (ﬁ + 5(# - V))T + g,uu'rs,

M
Il

with 7 = 1/z, yv # 0. We need the property X = const{(T — 10) + ...,
const (T — 79)3. Because 79 is a unique zero of 17, we have 9 =0, 8=0, u

It
N

After changing z,y we can assume that p =v =1,

This gives
7 =4X% - 9Y2 - 18XY —6Y
and the condition Z = gZ leads to k = —4m/3, r = 4m = n/2, or after

normalization,
X=X2_37V+2%, V=67(X+1)

It remains to show the non-existence of a center for V. We have to find IV
and prove that V' is not tangent to I from the outside of its local image. We
shall check it for T' = &(T).

We have I' = {y = 1-z}, X|p = 72—7,Y|r = 27°. This gives T = {W =0},
W =4X3 —9Y2 4+ 18XY + 67; T is the reflection of Z = 0 with respect to the

axis ¥ = 0. Calculations give

o~

W = (12X +6)W — 18Y (4X2 4 77).

But 4X2 4 7Y = 172(127% — 107 + 12) > 0. So, there are no tangency points
outside the line ¥ = 0 which is invariant. O

PROOF OF PROPOSITION 70(a). As in the proof of Proposition 69(e) we
start with X = 23/y, Y =22/, n = az + By + vy® + 6z + ey + ¢ and

X =3X2(+nY), Y =2Y(1X+rXY +sY?+tXY?).
Tt is useful to pass to the variables X = 1/X, Y =1/Y. Then

X =3X(IY +n), ?=2(l?2+r?+s)?+t).

After applying a translation of ¥ (or ¥ — Y/(1 +¢Y)) we can put t = 0 and we
get the system (18) from Lemma 6.
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We have det(d®) = z*y~?n~2(2n — o1, — 3ymy) = 2y~ 29~ 2(—2B8zy — vy? —
6z — ey + (). Assuming that the latter polynomial is reducible we need that
B #0. Assume that =1, -2WZ = (y— p)(z —vy+p) and ¥ = [(az? + zy —
2vy? + 2uz + 2(p + pv)y + pplz~2.

By Lemma 6 we are interested in the case when the curve Z = 0 is cubic
and doubly tangent to the axis X = 0. We have the following possibilities for
Z=0.

(i) Z=y, (u=0). Then Y -a=ylz-2vy+ 2p)z~? and we can apply
the change (X’,Y") = (X, (¥ — a)X) giving a simpler case.
() Z=y—p, u#0.

(iii) Z==z (v=p=0). Then Y = z/(linear).

(iv) Z=z+p. Then X = Ay, Y = By+C, Z =0 a line.

(v) Z =z —vy. Then X = 72/v, Y(r) quadratic, 7 = 1/, and Z = 0
conic.

(vi) Z=z—vy+p. Then X = 1724 243, Y quadratic and due to Lemma,

6 we need 1/v = 0.

Therefore there remains the case (ii), where we can put g = 1. We have
X|z—0 =173, Y|z=0 = a + 37 + 3pr%.

Because Z =0 is tangent to X = 0, we have a = 0. We also need p # 0 because
if p=0 then Z = 0 is different from the one given in Lemma 6. So, changing =
if necessary we can assume that p=1, X =73, ¥ = 3(7 + 7%). From the proof
of Proposition 69 we get

Z=Y3-921X%2 - 21XY - 27X

and
V: X=3kX(Y +3), Y =k(2Y?>-9X+3Y).

Now we have to check the existence of a center. We have y = (z + 1)/v on
T and
~ ~ 1 .
X|r= %(7’2 +73), Y|ir= ;[—1 + (4v — )7 + 3v7r?).

The phase portrait of V is fixed but the image T = f(u) of the fold curve is
varying with v. The right kind of tangency of V to T can be seen either by
drawing a picture or by calculation of W which is a polynomial of fifth degree

in 7.
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Finally, we present the formula for the initial system:

Oy - & = k[-9zy — 3nyny, + 32, + 20 + 92%ny]/(y - 1),
¥ = ky[—27y + 9z + 371z + 927, — 1827)/(y — 1).
O
PrROOF OF PROPOSITION 78(a). We have X = TX;, Y = TYy, |Xi| =
—|¥3| =1, T = 0 not invariant,

X=Xk+IY +m¥Y?) +nY? Y =Y(k+pY+qY%+rYd)

with a DSC integral (not Darboux or DHE). If |T| > 1 or X1 #z or Y1 # 1/y
then |Z| > 0 and we apply Lemma 2(f).
SoX =Tz, Y =T/y, |T| =1, ie.
g=—n+ny+({—k—pzy’+(m—1—q)zyT — (m +r)zT?,
CRg : 9=—ny+ (p—Dzy® + ky® + (¢ — m)zyT
+ 2T + raT? + qyT? + rT5.
O

ProOOF OF PROPOSITION 81(d). We have X = TX,, Y = TV, |[X3| =
_|Y1| =1,

X=Xk+1X), Y =Y(k+mX+nY +pXY)
with DSC integral
H=Y X"k +1X)t-m)/ _ /X—2(k +1X)" ™! (n +pX) dX

(not Darboux or DHE). So |T'| =1, X =Tz, Y =T/y, ie.

. z=z[—(n+k)+ (I - m)zy + (I — p)zT],
. 9 = nz + ky + nT + (m — Dz?y + p2®T + nxyT + pzT2.
O

PrOOF OF PROPOSITION 81(e). We have X = TX;, Y = T?Y, |X;| =
-M|=1,
X=X(k+1X), Y =2Y(k+mX+nY)

with DSC integral

H=Y'X"%k+1X)2-m/ _p / X3k +1Xx)E2m) g x
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(not Darboux or DHE). Therefore X =Tz, Y = T2/y, |T| =1, i.e.

% =z[—k — 2nT + 2(l — m)zy — =T,

CRg :
® g = 2[ky + naT + nT? + (m — D)2’y + mzyT).
O
PROOF OF PROPOSITION 81(f). We have X = TXy, Y = T3V}, |X;| =
_|Yi| =1,
X=Xk+1X), Y =3Y(k+mX+nY)
with DSC integral
H=Y'X3(k+1X)y3-m/ _n / X~k +1X)#-3m)/ g x
(not Darboux or DHE). Therefore X =Tz, Y =T3/y, |T| =1, i.e.
& = z[—k + 3(l — m)zy — l£T> 3nT?),
CRlo . 2 2 3
g = 3[ky + nzT* + (m — Dz y+ nT>].
O

PROOF OF PROPOSITION 82(b). We have X = TX;, Y = T?Yy, |X;| =
—|Y1| =1,

X =X(kX+1Y), Y =2Y(kX+mY +nY?).

If |w| > O or |¢1| > 0| then ! = m = n = 0 (Lemma 2(a)). If [T} > 1 then |Y| > 0
and n = 0 (Lemma 2(c)). So X =Tz, Y =T%/y, |T| =1, i.e.

& = 2[—IT + 2(I — m)y — kzy — 2nT?],

CRy : 2 2 3
7 = 2[(m = Dzy + myT + kzy” + neT* + nT°].

To prove the non-integrability we make the change X — 1/X,Y — 1/Y and
get
X=XkY +1X), Y =2[X+ kY +nX)Y].

Next we follow the proof of Proposition 58(b) (irrational A(p;) and the pertur-
bation & = —2zy, ¥ = az + bz? + cy? + exy, H = z°(y? + az? + Bz)). O
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