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A CLASS OF SYMMETRIC 3-BODY TYPE PROBLEMS
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1. Introduction

In a recent paper [1] we have proved the existence of a periodic weak solution
(see [2] for the definition; see also Section 2 below) with prescribed negative
energy h for some Hamiltonian systems of N-body type, that is, solutions of

(1) mii,-+VmiV(1;1,...,:cN)=0, 1<i< N,
such that

1 N
(2) Ezmilfﬂi(t)|2+V($1(t),-~ on(t) =h

i=1
where
(3) V(IE)=V(1‘1,...,$N)’;‘— Z %7 0<a<27
i~ Lj

1SiATEN

and V is even in z, i.e. V(—z) = V(z).
Equation (1) describes the motion of N bodies of positions z; € R* and
masses m; > 0 under the action of a potential of Keplerian type. The main
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purpose of this paper is to show that for some classes of such potentials system
(1) possesses non-collision periodic solutions.

Critical point theory has been used to prove the existence of periodic solutions
of Hamiltonian systems arising in Celestial Mechanics. See [2] and the extensive
bibliography therein; see also the more recent papers [3] (dealing with 2-body
problems), [10] and [4] (dealing with N-body type potentials like (3) with o > 2
and 0 < a < 2, respectively).

The question of the existence of non-collision solutions has been addressed
either by Morse theoretical arguments, or by comparison arguments. See Sections
13 and 14 of [2]. Here we will use the former to exclude double collisions and

the latter to exclude triple collisions.

2. Existence result

In this section, for the reader’s convenience, we will recall the existence result
we refer to (Theorem B of [1]) and the variational procedure used to prove it. It
is worth recalling that existence results are known in a much greater generality
(see Remark 2 below).

Let z = (z1,... ,zx) € R*N and

@ V=3 > Vils-z)

iSi#j<N
where V;; € C?(R* \ {0}, R) satisfies (for all 1 <i # j < N)
(V1) Vis(€) = V;ule) V& #0;
(V2) 3o € [1,2] such that V5(€) - € > —aViy(€) V€ £ 0;
(V3) 36 €]0,2[ and r > 0 such that V;;(£) - £ < —V;(€) VO < [z| < 7
(V4) Vi;(€) — 0 as |¢f — oo;
(V5) 3V5(§) - €+ Vj(€)E-£>0VE #0.
Setting E = H"2(SY;R¥N), B ={u € E : u(t+ 1) = —u(t)} and

Ao = {u=(u1,... ,un) € Ep : u;(t) # u;(t), vt € S}, V1 <i #j < N},

we define f € C%(Ag,R) by

1 1
£ = glal? [(h=ve)d,  where ful? = [ Y mikiaf de
0 0 1<igN
Let u € Ag be a critical point of f at a positive level, that is, f'(u) = 0 and
f(u) = ¢ > 0; if we set
1
o2 Jo (R =V (w))dt

3 llll?
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then z(t) = u(wt) is a collision-free periodic solution of (1) with energy h. Unfor-
tunately, it is not known how to find directly critical points of f on Ag, because
Vij is singular at £ = 0. Therefore one considers perturbed potentials

(5) V@) =V(@) -2 3 ezl

1<i£j <N

and . .
few) = gl [ (b= Ve(o)ae.

If V satisfies (V1)-(V4), then f, has a Mountain Pass critical point. However,
in order to have a variational characterization appropriate for the estimates we

will discuss in Section 3, we set

M={uEA0 : /: (V(u)+%V’(u)-u)dt=h}.

If h < 0 and (V5) holds, then for all u € Ag the half-line Au, A > 0, meets M
transversally. It follows that M is a smooth manifold and that critical points
constrained on M are critical points of f,. Moreover, (PS) holds and f. has
a minimum u, on M with ¢ = f.(u.) > 0. Finally, uniform estimates with
respect to € allow us to show that u. converges, uniformly on [0,1], to u € Ej,
a weak solution of (1). It is worth recalling that, although u. € Ag and hence is
collision-free, u might belong to JAq. However, since u is a weak solution, the
collision set I' = {t € 8§ : 3i # j, ui(t) = u;(t)} has zero measure, and u is a
classical solution of (1) on S*\T.
Summarizing, we have:

THEOREM 1. Suppose that V;; € C?(R*,R) satisfies (V1)~(V5) and let V be
of the form (4). Then, for all h <0, (1) has a weak solution.

REMARKS 2.

1. We recall that Theorem B of [1] holds for all 0 < & < 2. Moreover, in [4],
the existence of a weak solution has been proved without assuming the symmetry
condition (V1).

2. For future reference, we point out that the approximating critical points u.
are minima of f. on M. Moreover, in view of the specific features of M, it follows
that u. are Mountain Pass critical points of f. with Morse index Morse(u,) = 1.

3. Estimates on triple collisions

In this section we want to prove that the weak solution found via Theorem 1
is free of triple collisions provided a pinching condition is satisfied. Let us recall
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that a weak solution z(t) has a triple collision if there exists a £ € [0,7] such
that z1(2) = z2(t) = z3(t), i.e. if the corresponding function u € E belongs to
the set

(6)  0As={ueH'([0,1);[R")’) | H €[0,1]: u1(?) = u2(?) = us(})}-

In order to prove that u does not belong to A3, we will estimate us =
inf pmnaa, f and show that mg is larger than p = infaq f. The idea of comparing
those values in order to prove existence of collision-free solutions has been first
used in [8] and [7] to find classical T-periodic solutions for the two-body problem.
See also [5] and [14] for related results on the two body problem.

Let us recall that, given u € Ay, there exists a unique A(u) € R such that
A(u)u € M and

F(Mu)u) = max f(xu).

We define, for all u € Ay,
I(u) = max FOw).

Then the following holds:

PROPOSITION 3. Assume

(V6) —~V(2) = =3 Xi<izjcs mimylzi — 5|72
Then
K
. > 42
(7 ue./\lAnrfm.aAa I(u) = 1nf I(u) A7 — i

where M = m, + mq + mg and

(8) K = K(m1,m3,ms, o, |h|)

_of2) (20 (Z_Q)/Zlhl(a_z)/z(Ei¢jmimj)(2+“)/°‘
2 2 M ‘

ProOOF. Consider u € 8A3, u Z const. If — fol V(u)du = 400, there is
nothing to prove. So assume — fol V(u) du < +o0o. This can easily be shown to
imply that I'(u) < 4oo0.

From (V6) we deduce that

2

© 1002 50w =g [ [r- WZWT_’muj,a]



NON-COLLISION PERIODIC SOLUTIONS 201
and hence
10 I(u) > Au).
(10) () 2 max fa(Au)

Recalling that [6, Lemma 2.1]

(11) Z mim; 1 (i mumy) e/ 1
[z — zj]* = 2(a+2)/2 Ma/2 (Z?=1 mg|a|2)e/2’
we also have, for all £ € R?,
(12) Z ULLG 1 (g mamy) 3t/ 1
ﬁéj lzi — zj|* = 2(a+2)/2 Me/2 (Z?:l mi|z; — flz)am'

Since u € OA3, there exists a £ € [0, 1] such that u; () = uz(f) = us () =¢. Set

1 3 7 2
=3 du(t+t) — R 0<t<1 4,
(13) Rl(t)zz{ a7 i Malus(t +7) — ¢ <1/

w7 S (1=t 4+0) + €2, 1/4<t<1/2,
Then
1. R,(0) =0;
Ri(3) = g Ticmalws(3 4D+ €P = & S0 mul — (@) + €2 = 0;
3. Ri(3-) = 3 Ty malws (3 + ) ~ €%
4 Ry(3+) = im mulus (G + 8+ 1) + €2 = Ri(3-);
and R, € Hj([0,1/2);Rt). Similarly, setting

M iy Malui(3 —t+1) + €2, 0<t<1/4,

14 Ry(1)? =
o 0 {%Zi=1miluz-(t+t+%)+§|2, 1/4<t<1/2,

we see that Ry € H}([0,1/2];R*).
Moreover, for 0 < ¢ < 1/4, we have

3
Ri@Ru(t) = 2 3 macit + D(us(t +7) — &

i=1

( Zm,|uz(t+t)|2>l 2( - gmilm(tm -El"’)m
=(M;mi|ui(t+f)l2) Rit),

so that, defining
3
1
2 _ o () [2
607 = g7 S milis(OF
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we have
Ri(t) < o(t+17), 0<t<1/4

and, similarly,

Ri(t) < o(1—-t+7), 1/4<t<1/2,
Ro(t) < o(1/2—-t+%), 0Lt
Ro(t) < o(1/2+t+17), 1/4Lt<1/2

Finally,

1/2 1/2
A Ri(t)dt+/0 Ri(t)dt < — / (zm,lu,(t)P) dt = ——||u||2

i=1
Using (12), we also deduce that, for 0 <t <1/4,

m;m; > ¢ 1
(15) Z G - wE TR = M R

where
1 (2+a)/2
(16) C= C(m1,‘m2, m3,a) = W(Zm,mj) ,
i#j

with similar relations holding for 1/4 < ¢ < 1/2 and for Rp. This implies that

Z/ _mm; _CM—‘*[ /2 N /2 g ]
Tug — w5l o R Jo Ra(t)

In order to estimate
1 m;m
> Lo 2 115
1(w) > max 232l f (r+ 55 S ey
we can always assume that
— My
g(,\u)_/ ( 2A02|£t_u]|a)dt>0.

Indeed, g(Au) — +0o as A — 0. Recalling that f(AMu)u) = maxy>o Fw), we
deduce

2 /
@) > AM( 0 s R+ ”R:(t)zdt)g(xu)

2 1/2 1/2
> A 2M ( Ri(t)?dt + Ry(t)? dt)
0
b aC  [V? dt N aC [Y? dt
Mexe f,  Ri(t)e  Medx J,  Ra(t)®

= ,‘/J(ARh ARZ)
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Collecting the above facts and setting Xo = HE([0,1/2]; R*) we deduce that

inf I(u) = inf max f(Au)

u€DA; u€A3
>
Ry, gi%Xo I’{l>a.x ¢()\R1, ARZ)
1/2 1/2
2aC dt
— 2 2 at
= Atk 3 M( , dt)(h’LMa,\a/o Ra)'

Using Jensen’s inequality, we finally find

1/2 %e,0 1/2 g\ @
> o 2 hd
1nf I(u) lgfnril%)\ M( A R dt)[ Ma)‘a (/ R) ]

Easy computations show that

2%qC 12 g\
2 2 at
®(R) —maxA M/ R dt[h+Ma/\a(/ R) J
= 2aq%/ _2—a . ")/"‘“CZ/G 1/2det 1/2§ ’
2 M|h|@2-a)/a | fo o R

1/2 1/2 g\ 2
=K R%lt)(/ —) )
(/ g

In order to evaluate inf pe i, ®(R), let us remark that such an infimum is attained
at some Ry € Fy and that such a Ry satisfies, for all ¢ € 10,1/2],

1/2 g 1/2 " 12 g\ 1
(/o R)“(o ”)(/o E)W“’

or, taking also into account the boundary conditions,
{ R+T?R2 =0 for all ¢t €]0,1/2],
R(O) = R(1/2) =0,

where T? = (f1/2 R? /(fl/2 %)- Then (see [9])

1 (12 1
= R*dt=—(22T?*® and T2 /
2 Jo 2 0

which implies

1/2 1/2 dt (27TT2)4/3
2 2\2/3 — A2
(0 Rdt)(/o R) = @rr2p s ) g,

We deduce from such an estimate that

1/2
% (2xT?)*/3,

. > 2
ulenafA I(u) > K(m, a, |h|)4r
and the proposition follows. O

We now estimate the infimum of I over Ag.
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PROPOSITION 4. Assume
(V1) -V(@)<-3% Pi<izi<s mimjlz; — z;| 7%
Then

(2—a)/ap2/a m..Y(et+2)/a
arm [2 —a b (Z#-mz'm,)

- = i <= |=—= =

ulélj{/lf(u) ulél}\"ol(u)_ 2 [ ] M]|p|@=a)/

2
Proor. We observe that
fOw) £ fo(Au)

so that
I(u) = max f () < Ty(u) = max fy(Au).

We will evaluate
max fo(Aw)

for a pai’ticular u € Ag.
Let ¢ = (1,0,0), 7 = (0,1,0) and define

_ 2mi 3 2nd
u;(t) = E[cos (27rt + —) U ; mg COS (27rt + T)]
. 3
27T'L) 1 Z . ( 27‘(’[)]
- — mygsin | 2at + — ] |.
[ ( 3 M ot 3

Then, as in [6], one obtains

3 1
m; o 2 2m(i—3) _ 32
% | e = Zmlm, sin? TC L) = 2 5 e,

1#3

and

| (t) — @, (t)|? = 4sin® Zr%) =3

and

—V(@(t), w(t), us(t)) < 30,2 > mim;.

i#]
We deduce that

fom < 227 (Zmﬂn:)[ ﬁ:/W(gmm’)]

i#j

and hence

2-a)/a - Y(@t2) /e
at“ [2—« (32, mim )
< 2/a|p|(2—a)/a i£g ]
I,I\IS()J( flxm) < 2 [ 2 ] sl M '
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4. Existence of non-collision solutions

In this section we will use the results of Sections 2 and 3 to prove existence
of a non-collision solution.

Our main result is the following;:

THEOREM 5. Suppose that V satisfies (V1)~(V7) and, moreover, that

(17) b o gGa-2ys2,
a

Then, for all h < 0, system (1) has a weak periodic solution satisfying (2) without
triple collision. If, in addition, V satisfies

(V8) V() = —# + Uy;(€) where

[Us5 (©)1€]* — 0 as [§| — 0,
U5 ONEl*H -0 as[¢] —0,
U5 ©)IEI*T? -0 as|¢] -0,

7

then such a solution is a classical one.
Proo¥r. The proof will be carried out in two steps.
STEP 1. The solution found via Theorem 1 has no triple collisions.

We recall that the weak solution z found via Theorem 1 is obtained as the
limit as £ — O of functions z.. The latter are classical solutions of the problem
(1) and (2), with V; replacing V' (V. is defined in (5)). They are obtained from
the minima w. of the perturbed functional f, on the manifold M. It is then easy
to see that f(u) < liminf. .o fe(u.), u being the point in Ey corresponding to z.

If z has a triple collision, then using Propositions 3 and 4 one deduces that

ar’KM~'<  inf < f(w) < 1é1£4 flw)

wEMNHA3
< [2-a (el |2-a)/a B/ mamy) o+ /e
<5173 |h| A ,

that is,
a2/a2(3a—2)/a < b2/a,

a contradiction which proves Step 1.
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STEP 2. The solution found via Theorem 1 has no double collisions.

Suppose that u has, possibly, a certain number v of double collisions. Then,
close to any such collision, the problem can be regarded as a perturbed 2-body
problem. This remark enables us to use a result due to Tanaka [13] (see also [12]
for similar regularity results dealing with solutions of fixed period of some 2-body
problems), that we are going to recall briefly, for the reader’s convenience.

Consider a 2-body Keplerian problem

#+V'(z) =0,

(18) %|¢|2 +V(z)=h,

where V : R \ {0} — R satisfies (V1)—~(V8). Periodic solutions of (18) can be
found with the same procedure sketched in Section 2. Using the same notation,
let v correspond to a weak solution of (18) and let v. € Ag be the corresponding
critical point of f. such that ve — v. It is shown in [13] that

(19) (k—2)k <lim i(I)lf Morse(ve ),
£—

where & denotes the number of collisions of v. Let us point out explicitly that
this result makes only use of the local properties of V' near the singularity z = 0.
As a consequence, we can repeat in our situation the arguments of [13], yielding,
as in (19), that

(k-2 < lizn_’i(rJl-f Morse(u.).

Since now Morse(u,) = 1 (see Remark 2.2), it follows that the number v of
double collisions of u is zero. This completes the proof of the theorem. O

REMARK 6. The existence of non-collision periodic solutions with prescribed
period T for the 3-body problem has been proved without any pinching condition
in [11], using Morse theoretic arguments. We point out that the arguments
therein make use of the fact that T-periodic solutions of symmetric N-body
problems can be found as (limits of) minima of the Lagrangian Action.
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