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CLASSIFICATION OF POSITIVE SOLUTIONS
OF QUASILINEAR ELLIPTIC EQUATIONS

JAMES SERRIN — HENGHUI ZoU

To Jean Leray, with profound admiration for a life filled with great discoveries

1. Introduction
We are interested in positive solutions of the quasilinear elliptic equation
(1.0) Au+ f(|z|,u,|Vu|) =0, z € R™\ {0},

where n > 2 and f is a smooth function of its arguments.
When f is a pure power u? (p > 1), then (1.0) reduces to

(D Au+uf =0, z € R™"\ {0}.

It was shown by Fowler that (I) does not admit any positive radial solutions
when p < {;, and no bounded positive radial solutions when I; < p < I, where

n [ = n+ 2
’ T n—2

h=0"3

When p > [, (I) admits infinitely many bounded positive solutions, which may
be extended to regular solutions of (I) on the entire space R®. On the other
hand, (I) admits infinitely many unbounded positive solutions when I; < p < [
and exactly one unbounded positive solution when p > I. We refer to these
unbounded solutions as singular.

For p > I3, let

(1.1) o= —— N l=an-2-a)
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Then it is easy to see that (I) has a singular solution of the form
(1.2) U(r) = Ar—c.

Thus the unique singular solution when p > ! has exactly the form (1.2). For
l; < p < 1, the function U(r) also has an exceptional role: it is the only positive
solution of (I) with slow decay at infinity

(1.3) lim r*u(zx) > 0, r = |zl

When p > [ all positive solutions of (I} other than U(r) are still singular at
infinity, i.e. have slow decay:

lim r%u = A,
™00

but are regular (bounded) at the origin. When /; < p < [ the conclusion is
reversed: all positive solutions of (I) other than U(r) are still singular at the
origin:

lim r%u = A,

r—

but are regular at infinity:

lim r* 2y =c,
T—00

where c is a positive constant (the entire set of positive values c is attained in
this way). For these results, see the proposition in Section 3.

In this paper, we shall, among other things, reprove Fowler’s results concern-
ing positive radial solutions of (I) when p > I, and also provide some generaliza-
tions for quasilinear equations.

Our uniqueness results depend only on the behavior of solutions at infinity
when p < I, and at the origin when p > [. In particular, the exterior problem

Au+uP =0, u>0, |z|>ro>0,
lim,—0or®u(r) > 0

has no radial solution when {; < p < ! other than « = U(r), and a corresponding
result holds when p > (.

When p < [, it was proved by Gidas and Spruck in [5] that positive solutions
of (I) with a non-removable singularity at the origin and slow decay at infinity
necessarily have the form (1.2). However, their proof depends on the requirement
that both the singularity at the origin and the slow decay at infinity are non-
removable and thus cannot be directly extended to our case.

More recently, Bideaut-Veron studied the Emden-Fowler equation (I) with
the Laplacian replaced by the “p-Laplacian”. She classified all solutions of this
equation by transforming it to an autonomous first order system (phase plane
analysis). As was the case for Fowler’s earlier analysis, however, her arguments
depend crucially on the fact that for the Emden-Fowler equation the function f
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is a pure power. Our approach, on the other hand, does not require autonomy
and moreover generalizes to quasilinear functions f.

Thus for (1.0) we are able to obtain similar results for suitable functions I
including, in particular, the Chipot-Weissler case

flzlw, |Vul) = v — [Vul?,  p>0, ¢>0,
and the canonical example
fzlu, |Vul) =v” +uf,  h<p<g
The Chipot-Weissler equation, that is,
Au+4uP — |Vul|? =0, z € R™\ {0},

has been extensively studied in [11]. The presence of the term —|Vul|? in this
equation is the source of major difference. Nevertheless, the uniqueness results
for the Lane-Emden equation hold in this case (see Theorem 4.3 for details of
this conclusion).

The modified Lane-Emden equation equation

(1.4) Auv+uP +u? =0, zeR"\ {0}, h<p<y,

has drawn much attention recently. When p and g arein therangel; < p < < g,
the mixed growth structure (supercritical for u large and subcritical for small)
has a profound impact on the existence and non-existence theory, and changes
the outcome for the Lane-Emden equation. The analysis is surprisingly difficult,
and there is no definitive result as yet.

When either p > ! or ¢ < [, the answer is complete and we are able to classify
all positive solutions of (1.4) (see (0)-(iv) of Proposition 5.1).

As noted above, the situation when I; < p <l < ¢ is complicated. The
only known fact is that (1.4) admits a unique positive slow decay (regular at
the origin) solution for some (p,q) (see in particular Section 5, where explicit
solutions are given for ¢ = 2p — 1 and p > n/(n — 2) = Iy; see also [6]). On the
other hand, it is unknown if (1.4) has any positive solution at all for other (p,q)
values. Finally, it is not even known whether there are any fast decay solutions.

One may view the asymptotic behavior at a singularity of (1.4) as the effect of
a perturbation to the Lane-Emden equation (I). If, say, the origin is a singularity,
then the term u? is dominant and the term v? is thus a small perturbation.
Therefore, the outcome ought to be essentially the same as that of (I) with
p replaced by ¢. At infinity, the situation is just reversed. The term u? is
dominant and the term u? is a small perturbation. This, in particular, explains
the difficulty when [; <p <l <gq.

The situation for (p,q) in the parameter domain 1 < p < g is illustrated
in the following Figure. In the region (i) there is a single positive slow decay
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FIGURE. The parameter domain 1 < p < g. The regions (i), (iii), (v)
correspond to the cases of Theorem 5.2. The region (o) where 1 < p < l1,
on the other hand, allows no positive solutions whatsoever. The dashed
lineisgq=2p—1,p> 1.

solution and a family of singular positive fast decay solutions, while in (iii) there
is a unique positive singular solution and a family of regular positive slow decay
solutions. On the other hand, for (p,g) on the line ¢ = 2p — 1 in (v) there is a
unique positive (regular) slow decay solution.

2. Preliminaries

In this section we present some preliminary results for radial ground states
u(r) of (I), where r = |z| is the radius. Obviously we can consider u(r) to be a
solution of the ordinary differential equation

(2.0) u’(r) + ?—;—111’(7') +uP(r) =0, 0<r<oo,
with
(2.1) u(r) >0 for all r > 0.
Put
a=—2— MW 1l=qa(n-2-a).



CLASSIFICATION OF POSITIVE SOLUTIONS OF QUASILINEAR ELLIPTIC EQUATIONS 5

Using the decay estimates obtained in [7] and [8] and the Pokhozhaev identity,
we can prove the following result.

LEMMA 2.0. Solutions of (2.0) are necessarily positive for all r > 0 if they
are positive near the origin if p > . On the other hand, when p < 1 they are
positive for all v > 0 if they are positive near infinity.

PROOF. We only sketch the proof for p > I. Let u be a solution of (2.0)
which is positive near the origin. It is obvious that  can be extended as long as

u is positive. If u never reaches zero at a finite 7g, then we are done. Otherwise,
let R < oo be the first zero of u. Then u is a positive solution of the equation

Au+uw? =0, z€ Bp\o,
U=0, .’I)G@BR.

On the other hand, by the estimates of [7], p. 381, one has

o a—1

u<er™®, [W| < er™

for 0 < r < R. Thus the standard Pokhozhaev identity applies since p>1l It
implies that u = 0, a contradiction. The proof is complete.
When p is in the range

n+2
P?él—m,

one can prove the following exact limit properties.

(2.2) p> Y

THEOREM 2.1. Let u be a solution of (2.0), and suppose that (2.2) is satisfied.
Then we have

(2.3) lim r*u =X, or limr" 2u=¢>0
r—oo r—00
for some constant ¢ > 0. Moreover,
(2.4) imr®u=X or limu=¢ >0
r—0 r—0

for some constant c¢; > 0.

To prove this result, we need some technical lemmas. Let u be a solution of
(2.0) and set 'U(T‘) = 'ro‘u(r), where o = 2/(p - 1)_

LEMMA 2.1. The function v satisfies

—-1-92 P )p-l
(2.5) e PV Y=o, 0 <7< oo,
r r2 r2

and

(2.6) |v(")('r)| < T—CT, 0<r < o0,
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for all non-negative integers T and some ¢ > 0, where (*) denotes the T-th deriv-

ative. Moreover, we have

2.7 v"%r € L0, 00), V%1% € L'(0,00).

PROOF. Equation (2.5) arrives by direct calculation. The proof of (2.6) is
equivalent to showing

[ (r)] < — 0<7<oco.

—_— 7"7'+C‘ b
For a proof, we refer the reader to [7], p. 381, and [8], p. 235. To prove (2.7):,
multiply (2.5) by v'r? and integrate from t > 0 to T > ¢ to obtain

T
=0.

v'2p2 T . Pt T

T -1,,2
APy
n—2-2 v +
+ ( a)/t g

2

(2.8)

t t t

It follows from (2.6) that there exists a positive constant ¢ such that
T
/ v?r <, foralT>t>0
¢

since n —2—2a # 0 by (2.2), and (2.7), follows. One may prove (2.7) similarly
by differentiating (2.5). The proof is complete.

LEMMA 2.3. We have

(2.9) lim v’ = lim rv’ =0, lim r%v” = lim %" = 0.
r—0 r—o00 r—0 T—00

PROOF. We only prove (2.9);. Suppose for contradiction that it is not true.
Then there exist a sequence {ri} and a constant ¢ > 0 such that

[v'(re)re) > c.

From (2.6), one obviously has

H

|(’U,21'2)I| S %

for some M > 0. Combining the above yields

11
|u"r? — ¥/ (%) ?r2| < M|r — ri| max (;, r_)
k

and so
c? c

v’ 2 2, re[l+eTing(+eml,  e=5m
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Choosing an infinite subsequence, if necessary, of {ry} so that the intervals above
are disjoint, it follows that

2 (1+E)T‘k
vr > /
/ Z (1+e)~ 1"'k

o0 (1+e)rs 2 . e
ZZ .= Zln(1+e)=oo.
( =

=c
ho1Je)in 2T k=1
This contradicts (2.7); and completes the proof.

LEMMA 2.3. There ezist two non-negative numbers Ay and Ao such that

(2.10) lim v = Ay, liII(l)’U = Ap.

T—00

ProoF. Consider the function

pPtl P12
p+1 2
By Lemmas 2.1 and 2.2, we have, for fixed # > 0,

a(r) =

I2T2 T

0 2 T

5 — 0, vir — ¢, as T — oo
¢

for some constant c¢. This implies, by (2.8), that a(r) must tend to a finite limit
as r — oo. In turn v approaches a finite limit since the limit set of v is connected.
Similarly, we conclude that v approaches a finite limit as 7 — 0. The lemma is
proved.

If \i =0 (i = 1,2) occurs in (2.10), equation (2.5) suggests that v tends to
zero at an algebraic rate. Indeed, since p > 1 and v tends to zero, v is expected
to satisfy asymptotically (near the origin or infinity respectively) the equation
n—-1-2a , Ml

o —

=0.
r r2

(2.5%) v+
Therefore v should have one of the two asymptotical behaviors:
vRT or vasp(m270),
We have the following lemma.
LEMMA 2.4. If Ay =0 in (2.10), then
(2.11) r]ibrgo ™ 2u(r) = ¢y,
Jor some positive constant ¢;. If Az = 0 in (2.10), then
(2.12) ll_lp u(r) = ca,

for some positive constant cs.
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PROOF. We only prove (2.12), the demonstration of (2.11) being the same.
By assumption, for any € > 0 there exists a positive number ¢ such that v
satisfies,
n—1- 2av, (W1 — e

- 2 >0, O<r<re.

(2.13) v+
The characteristic equation of (2.13) has the two characteristic values

n—2—4/(n—2)%—4e

e = =a+0(5),

2
- /(n—2)2 —
it (; 2) 4€=01+2—n+0(.r-:).

r r
and so

(2.14) [r"—l““o(f) (D - “71)1)] > 0.
Observe that, for £ small enough,

lim - 1-a+O0(e) (D = a—l)v =0

r—0 T

dg = & —

Rewrite (2.13)

by (2.6), since n — 1 — a > 1. It follows from (2.14) that
(D—%)vzo, o<r<re.
Integrating once from r to r¢ yields
v < cor®t = ¢,rotoe), 0<r<r,.
Thus for & sufficiently small,

n—1-2a , Ml
v_

= = 9(r)

(2'5”) 'U" +

with
’l}p
o(r) = %5 = ofD).
Now using the representation of solutions of (2.5”), we immediately infer that v
is bounded by %, and in turn u is bounded. By standard theory, we get (2.12).
PROOF OF THEOREM 2.1. If \; = 0 in (2.10), then (2.3)2 holds by Lemma
2.4. Tt remains to show that (2.3); is true if A; > 0. To do this, we first observe

by (2.9) that
lim rv' = lim %" = 0.
T—00 700

Therefore, from (2.5), A; satisfies
APy =0,
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that is, A\; = A since A; > 0. The same argument proves (2.4) and the proof is
complete.

3. A uniqueness result

In this section, we shall prove a uniqueness result for radial positive singular
solutions of (I) when p > I;. More precisely, we require that solutions be singular
at infinity for p <1, and at the origin forp > L.

Recall that a positive solution u has slow decay at infinity if

lim r®u(r) > 0,
T—00
and singular at the origin if
lim u(r) = oo.
r—0
If u has slow decay at infinity, we also say that u is singular at infinity. The

above definitions will be used through the rest of the paper.
By the results of the previous section, we have for such a singular solution

with p #{,

(3.1) lim r%u(r) = A, lim 7>t/ (r) = —a, ifly<p<l,
T—0o0 7—00

and

(3.2) liI.’% r®u(r) = A, lin% retlyl(r) = —al, ifp>L

THEOREM 3.1. Equation (I) admits exactly one radial positive solution,
Ulr)y=Ar"
satisfying (3.1) for 1y < p <1, and (3.2) forp > 1.

Consider first the case when p > [. Let u be a solution of (I) different from
U(r). We introduce the function

(3.3) w(r) =ru(r) —r*U(r) =r%u(r) — A =0, asr—0F
and show that w is identically zero. We require the following lemma.

LEMMA 3.1. The function w satisfies

n—1—2aw,+2(n—2—a)w+f(r) —o,
T r2 r2

(3.4) w" +

where

(35) f(r)=A+w(r))? — N —pI~lu(r) = /\”Z ( &l hY
k=2 ’

The proof of the lemma is straightforward, using (2.0), (2.4), (3.2), and the
relation & + 2 = ap.

p—k+1)! (w(r))"_
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ProOF oF THEOREM 3.1. By the above lemma, it suffices to show that
any solution of (3.4), (3.5) satisfying (3.3) is identically zero. For T' > 0 and
h € (0,T), multiply (3.4) by r*w’ and integrate from & to T to obtain

7'2’!11,2 T
h

(3.6) [ 5 +(n—2—a)w2]:+(n—2—2a)/ rw’2+ATf(r)w’=0.

By (3.5), one has

/’;Tf(i‘)w' = ,\P—lki; (P—Z!'F 2)! (wf\r))k h

i () ()]

k=3

T

It is also clear that

lim inf |rw’| = 0.
r—0+

For small T, by letting A — 0 (along some sequence) in (3.6) and using (3.3), it
follows that
T?w'? + 2(n — 2 — a)w?(T) < M|w(T)?,
since n — 2 — 2 > 0. Hence w(T") = 0 for all sufficiently small T', which implies
that w is identically zero for all »r > 0 by the uniqueness of the initial value
problem for ordinary differential equations. This finishes the proof for p > I.
When I; < p <1, we use the transformation

w(t) = ru(r) — r*U(r), r=1/t.

Then w satisfies

3+2a-n., 2n-2-a) f(t) ._4d
;v 7 vt =0 =g

where

oo k

—k+1)

56 = -+ wR)? — 37— pre-tu() = 2o 3 B E D (“’(t)) .
= k! A

The above equation is almost the same as (3.4), except for the coefficient of the

second term. On the other hand, one easily sees that the key ingredient in the

proof for the case p > [ is that the coefficient of the term w’/r is not less than 1

and of the term w/r? is positive. Fortunately, we have
3+42¢—n>1, and n—2—a>0

when [; < p €. Hence the proof above carries over immediately.

Finally, we have the following corollary.
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PROPOSITION 3.1 (Classification of positive radial solutions of (I)).

(o) If p < l1, then (I) admits no positive solution.

(i) If p <, then (I) admits ezactly one solution, U(r), with slow decay at
infinity and a family of positive solutions satisfying

(3.7 lim r%u = A lim r" 2y =¢
7—0 r—00

for all ¢ > 0. Moreover, (1) does not have any other positive solutions.
(ii) Ifp > I, then (I) admits exactly one solution, U(r), singular at the origin
and a family of positive solutions satisfying

(3.8) limu = ¢, lim ru = A

r—0 r—00

for all ¢ > 0. Moreover, (I) does not have any other positive solutions.
(iii) If p =1, then (I) admits a family of singular solutions, each of the form

(3.9) u(r) = U(r)h(r),

where h oscillates endlessly, both near the origin and at infinity, between fized
values A1 and Ay satisfying

0< A <1<z, B(A1) =b(N2),

with

In particular, Ay can take any value in (0, 1], thus determining the corresponding
value Ao; when A1 = Ay = 1, we get the ezact solution

u(r) =U(r).

All other positive solutions are regular at both the origin and infinity and have
the form

(3.10) o

——\ (n—2)/2
u(r) = (w) ) 6 = const. > 0.

PROOF. We first prove (i). By Lemmas 2.3 and 2.4, either (3.7); or (3.8);
holds at the origin. One immediately excludes (3.8); by using the Pokhozhaev
identity and the fact that p < I. On the other hand, by Theorem 3.1, (I) has
exactly one solution singular at infinity, which is obviously U(r). Using Lemmas
2.3 and 2.4 again, we obtain (3.7)2. The existence of solutions satisfying (3.7),
is obtained by a shooting argument from infinity (asymptotic integration, see
[12]).

The proof of (ii) is essentially the same as that of (i).
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To prove (iii), we need only consider the case when (3.10) fails. Then u is
singular at the origin, and we can set u(r) = U(r)h(r). Thus h(r) = v(r)/A, and
satisfies the equation

a1

h”+lh’+ (h? — k) =0, 0<r<oo,
r T2

see (2.5) and recall (2.8). In particular, by Lemma 2.1, h is bounded. Moreover,
as in (2.8), we have

1 nPtl  p?

§a2r2h'2 + par = const. = c.
Hence b(h) < c, and since h > 0 it is easy to see that necessarily ¢ < 0. At any
critical point rq of h we have

hP+l  R?

bh) =517 2

so h = A; or h = \; (suppose ¢ < 0), and h” > 0 when h = A; and h” < 0
when h = Ay. Thus h is oscillatory, between A; and A;. By changing variables
r — 1/t, we see that h is also oscillatory as 7 — 0.

[The case ¢ = 0 is special, because A; = 0. In this case, since b(h) ~ —h?/2
for small h, we have h' ~ tah/r as h — 0, so in turn by integration h decays
algebraically (r*) to 0 as r — 0. Thus u(r) = h(r)U(r) is bounded at the origin,
and so regular there. But this is just the case given in (3.10), completing the
proof.]

REMARK. The results (i) and (ii) are dual, in the sense that the classification

of radial solutions of (I) in either the case l; < p <, or the case p > [, yields a
complete classification for the other case. Specifically, the change of variables

(3.11) w(t) =r"2u(r),  r=(u/t)"
— _2—_ >
N—(n_2)p_n, D 1,
transforms (2.1) into
(3.12) 11'1+m—t——11b+w”=0, 0<t< oo,
where
(3.13) m—2=(n—2)u

The relation (3.13) can be rewritten

n+2 m+ 2

n_g PTP T T
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showing that when p is subcritical for (2.1) it is supercritical for (3.12). Thus
a classification for p € (I1,) produces through the transform (3.11) and the
identification m — n, ¢ — r a classification for p € (I, 00).

For example, the limit conditions (3.7) respectively transform into

lim t%w = X, limw=c¢,
t—oo t—0

where A = a(m — 2 — @), which is just (3.8) with m in place of n, and ¢ instead
of r.
4. Extensions to quasilinear equations

In this section, we generalize the above results to equations of quasilinear
type. We particularly consider the model equation of Chipot and Weissler

(11) Au+uP — |[Vul|? =0, z € R™\ {0},
and the radial version

-1
(4.1) v+ nTu’ +uP — |u'|? =0, 0<r<oo.

We first consider solutions singular at infinity. It was proved in [10] that
positive solutions of (4.1) decay no slower than r=2/("=1) at infinity when ¢ >
2p/(p+1) and p > 1. On the other hand, we have (see [10]), for the same (p, q)
value,

LEMMA 4.1. Let u be a positive solution of (4.1). Then u' is ultimately
negative and

u=0(r=%), v =0(r—e1), as r — oo.

When p and g are in the range

2p n n+2
. — lh=——, l=——
(4.2) 9> Prh=o—5 pEl=o—
the following stronger limit property holds, where as before
2

MWl=o(n—2-a).

p-1
THEOREM 4.1. Let u be a solution of (4.1). Suppose that (4.2) is satisfied.
Then either

(4.3) lim uwr® = A

or

(4.4) lim 7" 2u(r)=c>0
T—00

for some constant ¢ > 0.
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To prove this result, we need some technical lemmas. Let u be a solution of
(4.1) and set v(r) = r*u(r).

LEMMA 4.2. The function v satisfies

n-1-2a , v MNly |av-—rv|?

"
(45) v+ —T‘—U + T'_2 - ) (atl—a =0, > 0.
Moreover, we have
(4.6) v"2r € L*(0, 00), [lav — 7|2 — (ew)?v’ € L}(0, 00).

PROOF. The proof of (4.5) is by direct calculation. To prove (4.6); we mul-
tiply (4.5) by v'r? and integrate from 0 to R to obtain

4.7 (n—2-2a) /R v'%r
0

/R lov—rv'|%  v2R?  oPtY(R)  XTLP(R)
0

rlatlig—a=2 7 "2 p+1 7 O

By Lemma 4.1, all non-integral terms are bounded on (0, co). Also it is easy to
check that

lav — rv/ |2/ frot 2 (et = O(p= (et D@1y a5 — co.

It follows that o
/ law — v’ |0 |rot 2 (et < o,
0

o0
/ v"?r < o0,
0

since n — 2 — 2a # 0. This completes the proof of (4.6);.
To prove (4.6)2, we see from the mean value theorem that

Hence, from (4.7),

[(ow — rv")7 — (aw)]0’ = —g((r)rv”?,
where ¢ is between (av — 7v')9"! and (awv)?~!, and hence bounded. Therefore
[[(av — rv") — (aw)?v'| < Mrv™
for some constant M > 0. Thus (4.6); follows from (4.6); and the proof of the
lemma is complete.

LEMMA 4.3. There ezists a non-negative number X such that

(4.8) lim v =X

PROOF. First, we have (cf. Lemma 2.3)

(4.9) lim v’ = 0.

T—CO
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Now consider the function
pPtl P12

a(r) =

p+1 2
By (4.6) and (4.9), we have
o2R2 R R
7 0, / v -, / (av — rv')T'ret2=(atlle _, o
0 0

as R — oo for some constants ¢, and c;. From (4.7), it follows that a(r) tends
to a finite limit as r — co. Now we infer that v must approach a finite limit
since the limit set of v is connected.

LEMMA 4.4. If X =0, then v' < 0 ultimately.

PROOF. Suppose not. Then either v > 0 ultimately or v’ changes sign
infinitely many times. The first obviously cannot happen for then v would not
go to zero at all. Suppose that the second occurs. Then there is a sequence
{r+}, which tends to infinity, such that v assumes local maximal values at each
r. Therefore

kli)rglo v(rg) =0, v'(rg) =0, v"(r) < 0.
It follows from (4.5) that v(rx)?~! > AP~ which is a contradiction.
LEMMA 4.5. Suppose that A=0. Then necessarily
(4.10) ™ 2u(r) <e, ™/ (r)| < c
for some constant ¢ > 0.

PROOF. For k = 2(n — 1 — §), one has (cf. [10])
a0 = Pt {0) + ) - ri)p )

where 9 1 ]
n— n— _ 1
3 p+1>0’ H(r)=-u"+

p+1
2 p+1u .

5=

By Lemma 4.4,
au=7r"%" —ru <7

for r large. It follows that
uPT! = o272 (p2/ (PPl < a2 |u!|2oP L,
Therefore
[P *H(r)]' < r*~u(r) {6+ o %P1} <0
for r sufficiently large, since v goes to zero as v — co. It follows that r*H (r) is

ultimately decreasing, and in turn

(4.11) |u'] < er=k/?, u < erl=F/2,
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Now for k = 2(n — 1), using (4.11) we obtain

[FEH(r)]) =1 {p—f_ ] PH1(r) — 7'|u’(r)|q+1} < p—f_ 1'r'e_lu“""l(r)

< er2n=3—(n-DE+)+(-1-F/2)(p+1)  op-1-6(p+1),

where § > 0. Therefore r2"~2H(r) is bounded, which yields (4.10);. Finally,
(4.10); immediately follows from (4.10)3.

LEMMA 4.6. Suppose that A =0 in (4.8). Then

(4.12) lim r"2u(r) =,

T—QO0

for some positive constant c.

ProOF. From Lemma 4.5, [¢/|97! < cr~1=% where § = ¢(n — 1) —n > 0.
Hence

(4.13) / [/|77! < oo.
0
From (4.1), one has

_ T, f19—1 4 _ T,/ 1g—1
(u’r" lefo 1wl ) = —uPrt~ledo WP <,

Hence the function w/'r"*~lefs 1¥I°™" is negative, decreasing and bounded below.
It follows that

. — Tuf|9t
lim u'r*leo 17 = ¢

T—00

for some ¢ > 0, and in turn

(4.14) Tli,uo%> wrtl=—¢

for some ¢; > 0 by (4.13). Integrating (4.14) yields (4.12).
PROOF OF THEOREM 4.1. If A = 0 in (4.8), then (4.4) holds by Lemma 4.6.
It remains to show that (4.3) is true if A > 0. To do this, we first observe that

lim r*tly’ = —a
T—00

since rv’ = ro*+ly’ + ar®*y — 0 as r — oo. From (4.1), we see that 7**2y” has
a finite limit as » — oo. Using L’Hospital’s rule, we then get

lim r*t%” = —(@+1) lim r*"'u = a(a + 1)A
700 T—00

Putting the above two limits into (4.5), we immediately obtain (4.3).
If solutions have a singularity at the origin, we have the following correspond-

ing result.
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THEOREM 4.2. Let u be a solution of (4.1), and suppose that

2p n n+2
i ="=
<317 PPLTw pFl=_——,
Then either
(4.15) lim ur® = A
r—0
or
(4.16) 1in(1] w(r)=c>0
T—

for some constant ¢ > 0.
Finally, as in Section 3, we derive the following uniqueness result.

THEOREM 4.3. Ifl; <p <! and ¢ > 2p/(p + 1), then equation (II) admits
at most one radial positive solution with slow decay at infinity. If p > | and
q < 2p/(p+ 1), then eguation (II) admits at most one radial positive solution
with a singularity at the origin.

REMARK. In contrast to the case for the Emden equation (I), there exist
solutions of (II) when !; < p <! and ¢ > 2p/(p + 1) which have fast decay at
infinity but do not have the singular behavior (3.7); at the origin. An explicit
example is the function u(r) = [(n — 2)r~!|("~2 when ¢ = (n ~ 1)p/(n - 2).

We only prove the first case of the theorem, i.e., I; < p <land ¢ > 2p/(p+1).
Let u be a solution of (4.1) with slow decay at infinity and set

(4.17) g(r)=v(r) - A=r"%(r)—=A—>0 asr— co.

LEMMA 4.7. We have

(4.18)
&+ (n—1-2a)? 4 2(n—2—a)v n flr) |a17+:z2):6—r17/'q o, rs0

r r2 r2

where § = (a +1)g— o — 2 and

1) = A+ 3 — ¥ —pa¥la(r) = 2 Y L2 X

k=2

= (p—k+1)! (5(r)>’°_

LEMMA 4.8. For any e € (0,6), we have

(4.19) v=0(r"%), 7 =0(r 1), as r — oo.
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PROOF. For T > 0 and ¢ € (0, T), multiply (4.18) by r2%’ and integrate from
t to T to obtain
212

(4.20) [T Y

T T
+(n—2—a)’52]t +(n—2—2a)/ 5’
i

T T
+/ f(r)v' - / lo? + oA — r&'|%'r % = 0.
t t
By (4.9) and (4.17), it is easy to see that
T25'%(T) — 0, 72(T) — 0, as T — oo,

[ s = 52k (00

and

i

k=3
TR SUE S 10 P

It follows by letting 7' — oo in (4.20) that

00
25?2 +2(n—2 - )7 < M|7® + '/ lat + o) — rt’|98'r°
¢

1

since n — 2 — 2a < 0. It follows that for large ¢,

o0
(4.21) 272 4+2n—-2-a)? <M ‘ / la + aX — ro'|9%'r 8|
t
On the other hand, by (4.9) and (4.17) again, we have

T T
/ |l + aX —ro'|[97'r 8| < M/ =81 < Mt—8.
¢ ¢

Hence by (4.21),
'] + [v] < Mr=%/2,

Therefore

T T
t t

and so by (4.21),
| + Jv] < Mr—3%/4,
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Thus for any m > 0, using a simple iteration of m-step in (4.21) yields
|| + Jv] < My=(@T-DE/27

and (4.19) follows by taking m large.
We are ready to prove the theorem. Let 1 and uy be two different solutions
of (II). We introduce the function

w(r) = r%u(r) — rus(r) = 7 — Oy

and show that w is identically zero.

PROOF OF THEOREM 4.3. Clearly w satisfies
(n—1- 20)w’ n 2(n—2— a)w " fi(r) —2 f2(1")

. 2 174
(4.22) w' + " 3 -
_ lot + oA —r5]7 — [avs + ad — r5})e
- r2—6 )
where

[fi(r) — fa(r)| < ,\pZ (P—’/:!+ 1)

() - ()

< Mlwl|[v; + 2| < Mr~¢|w|

for any € € (0, 6), and
llaty + aX — r51]? - [z + aX — rog)?] < M(jw| + rlu’]).
For T'> 0 and ¢ € (0,T'), multiply (4.22) by r?w’ and integrate from ¢ to T to

obtain
2,,,/2

(4.23) [T;" +(n—2—a)w2]j+(n—2—2a> / "ty / A6 -l

T
—/ r0av; + e — rT}]? - [abs + ) — 5|9 w’ = 0.
t

We have the following estimates:

T T
< M/ [ww'|r~¢ < M/ r  w? + w'?r?,
t t

T
/t [F1(r) — Fa(Ple!

and

T
<M / r w? + w2,
t

T
/ r~[lavy + aX — r#}]9 — [Ty + oA — rop)%w’
¢

For large t, it follows, by letting T' — oo in (4.23) and using Lemma 4.8, that

oo
2w? +2(n-2—-a)u? < M/ r= Hw? + w'?r?),
¢



20 JaMEs SERRIN — HENGHUI ZoU

since n — 2 — 2a < 0. Hence w(r) = 0 for all sufficiently large r by the Gronwall
inequality. Thus w is identically zero for all r > 0 and the proof is complete.
5. Further examples

As mentioned in the introduction, the arguments we used can be applied
to more general functions f. We shall give two examples to demonstrate the
generality of the methods and leave the proofs to the reader.

First consider the case when

fru,[Vu) =v?+u?, L <p<yg,

and so (1.0) takes the form

(11I) Au+uP +u? =0, zeR*\ {0}, h<p<ayg
Put
2 2 _
a1=5_—1, a2:q—_1; )\flzai(n—2—ai), ’l:=1,2

(note that o > a2). Then we have the following results.

PROPOSITION 5.1 (Classification of positive radial solutions of (III)).

(o) If p < 1y, then (III) admits no positive solution.

(i) If g < 1, then (III) admits ezactly one solution with slow decay at infinity.
This solution has the following exact limits:

lim r®'u = Ag, lim 7%2u = Ag.
r—00 r—0

Moreover, (II1) admits a family. of positive solutions with fast decay at infinity
satisfying
-2

lim r" “u=c, lim r*2u = Ay
r—00 r—0

for all ¢ > 0. Finally, (III) does not have any other positive solutions.
(i) +f g = I, then (III) admits exactly one solution with slow decay at infinity.
This solution has the exact limit

lim 7%u = A;.
7—00

Moreover, (III) admits a family of positive solutions with fast decay at infinity

satisfying
lim 7" 2u=c¢

T—00

for all ¢ > 0. Moreover, (III) does not have any other positive solutions.
All solutions are singular at the origin, and exactly one solution has the ezact

limit (n-2)/2
lim (n=2)/2, — (”__—2) ,

r—0 2
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Other solutions must have the form

w)=(%52) " wo,

where h oscillates endlessly near the origin between two sequences {114} and
{2} satisfying 0 < py; < po; and

lim py 5 = p, lim ps; = s,
00 — 00
where yy and po are fized values satisfying
0<p <1< ps, b(p1) = bu2),

with - )
h h
h)=——~—.
b(h) I+1 2
In particular, py can take any value in (0, 1), thus determining the corresponding

value g,
(iii) If p > I, then (III) admits ezactly one solution singular at the origin.

This solution has the ezact limits

lim 7%y = g, lim r®ty = A;.
r—0 00

Moreover, (III) admits a family of positive solutions reqular at the origin satis-

fying

lim v = ¢, lim r*u =X,
r—0 r—00

Jor all ¢ > 0. Finally, (III) does not have any other positive solutions.
(iv) If p = I, then (III) admits exzactly one solution singular at the origin.
This solution has the ezact limit

lim %2y = A,.
r—0

Moreover, (III) admits a family of positive solutions regular at the origin satis-
fying
limu=c

r—0
for all ¢ > 0. Finally, (III) does not have any other positive solutions.
In addition, all solutions have slow decay at infinity, and exactly one solution

has the ezact limit
(n—2)/2
lim (=272, — (”_‘2) ,

—0Q 2

Other solutions necessarily have the form

u(r) = (n2_r2)(n—2)/2h(r),




22 JAMES SERRIN — HENGHUI ZoU

where h oscillates endlessly near infinity between two sequences {p1,:} and {p2,:}

satisfying 0 < py; < pa; and
lm gy 5 = pa, lim p; = pa,
—00 2—00
where py and po are fized values satisfying
0<pr <1l<pa,  blp1)=0blus),
with

hl+1 h2
W= 7

In particular, u; can take any value in (0, 1), thus determining the corresponding

value po.
(v) If p < 1 < g, then (III) admits at most one solution with slow decay at
infinity. If so, then this solution has the eract limit

(5.1) lim 7%y = Ay

T™—00

(II1) also admits at most one solution singular at the origin. If it does, then this
solution has the exact limit

(5.2) lim 7*2u = A,
T—

REMARKS. 1. In case (v) the situation is complicated. The only known fact
is that (III) admits a unique positive slow decay (regular at the origin) solution
for some (p,q). When ¢ =2p — 1 and p > n/(n — 2) = [;, in particular, there is
such a solution, having the explicit form

% g \YeD
w0 = (525 5 m)

_(n=2)p—m
p—1
On the other hand, it is unknown if (IIT) has any positive solution at all for
other (p,q) values. Finally, it is not even known whether there are any fast

with

decay solutions.

The situation for (p,q) in the parameter domain 1 < p < g is illustrated
in Figure. Recall that in the region (i) there is a single positive slow decay
solution and a family of singular positive fast decay solutions, while in (iii) there
is a unique positive singular solution and a family of regular positive slow decay
solutions. On the other hand, for (p,q) on the line ¢ = 2p — 1 in (v) there is a
unique positive (regular) slow decay solution. This being the case, it is tempting
to conjecture that for each (p,q) in the region (v) there exist a unique positive
(regular) slow decay solution and a unique positive (singular) fast decay solution.
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2. For oscillatory solutions, we refer the reader to [10] in which more general
cases were discussed.

3. It is always possible to obtain local existence of positive solutions at
infinity or at the origin by using asymptotic integration (see also [12]). Global
existence on the entire interval (0, c0) is obvious in cases (i)-(iv) (local existence
plus an application of the Pokhozhaev identity). However, this seems a much
harder problem in case (v) (cf. Remark 1). '

4. It is interesting to notice the different outcomes for equations (I), (II)
and (III). The asymptotic behavior at a singularity of solutions of (IIT) can be
viewed as the effect of a perturbation to the Lane-Emden equation (I). If, say,
the origin is a singularity, then the term u? is dominant and the term u? is thus
a small perturbation. Therefore, the outcome ought to be essentially the same
as that for (I) with p replaced by ¢. At infinity, the situation is just reversed.
The term »? is dominant and the term u? is a small perturbation. Similarly
the presence of the gradient term —|Vu|? in the Chipot-Weissler equation is the
source of major differences. One obvious fact is that (I) does not have singular
solutions with fast growth at the origin but (II) has.

The second case we shall discuss is when

f(r,u, |Vu|) = r"uP, p>1, 0> -2
so that (1.0) takes the form
(Iv) Au+ru? =0, zeR"\ {0}, p>1.

We introduce the following modified definitions for the numbers {4, I, & and A
(see (1.1) and (1.2)),

+ +2+42 2+
GH =175 I=TITg o espTp M=ake-a)
and we set
U(r) = Ar™c.

Then we have the following proposition.

PROPOSITION 5.2 (Classification of positive radial solutions of (IV)). The
solutions of (IV) have ezactly the classification given earlier in Proposition 3.1
for solutions of (I), with the values l;, |, a and A now given by (5.1). In place
of (3.10), moreover, we have

—————\ (n=2)/(2+0)
u(r) = (6 (n+0)ln - 2)) ; 6 = const. > 0.

62 + peto

This can be proved by the same procedure as before, but in fact because
of the special form of (IV) an easier proof is available. Making the change of
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variable 5
— _ 2 L(2+0)/2
Y 2+ O'T '
equation (IV) becomes in the radial case
f— d
it "Ly =0,

= -@ s
where n/ = 2(n + 0)/(2 + ¢). We can then apply Proposition 3.1 directly, once
we notice that

n  n+o n+2 n+2+20
-2 n-2 n—-2_  n-=-2 '

and that

2 2/(p—1)
y2/(P—1) = p(2t+o)/(p-1)
240

REMARK. The methods above also allow us to treat, under appropriate con-
ditions, the function
k 1
Fryu, |Vul) =Y rP =Y | VulY,
i=1 j=1
where k and [ are positive integers, 0;,v; € R, and p;, g; are positive numbers.
One also could treat general forms of f under suitable assumptions, for instance,

[= uf +g(u’)7

where g(u) is a perturbation satisfying suitable conditions (not necessarily a pure

power).
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