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0. Introduction

In this paper we study periodic solutions of a family of autonomous differen-

tial equations

w'(t) = ¢(u(t), a)
where a € R, U C R™ is an open subset and, the function ¢ : U x R — R™, is
assumed to be of class C' and to satisfy some natural conditions.

This work was inspired by a paper by Mallet-Paret and Yorke [15]. Our
main results are contained in Theorems 1.3, 1.5 and 1.8. The major difference
between Mallet-Paret and Yorke’s result and our Theorem 1.5 is that we discuss
the general case, and not only some generic one. This is possible owing to purely
topological methods of proof (see also Fiedler [7]for a complete review of previous
works).

The principal tools used in the present paper are the S$'-equivariant degree
(defined in [5]) and the complementary function method (introduced by Ize [10],
[11]).

Let us briefly illustrate the geometric essence of the method, using the clas-
sical Brouwer degree. Assume that @ C R"*! is an open bounded set and
f :Q — R" a continuous map. Further, assume U,, U_ are disjoint open
subsets of O such that f~1(0) NN C U, UU_. Wecall : © — R a com-
plementing function if 8(z) < 0 for z € U_ and 6(z) > 0 for z € U,. Setting
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F(z) = (f(z),8(z)), we obtain a continuous map F : @ — R™*! with F # 0 on
0. Therefore the classical Brouwer degree deg(F,(?) is defined. On the other
hand, the following two quantities may be associated with f: the number of
zeros of f “entering {2 through U_” and the number of zeros of f “leaving {2
through U,.” It turns out that the two quantities are equal to deg(F,(2), which
fact plays a key role in the proof of the classical theorems of bifurcation theory.

In our paper we replace the classical Leray-Schauder degree by the S'-equi-
variant degree and a version of the complementing function method. In this
way, for bifurcations of periodic solutions we obtain the analogues of two classi-
cal theorems; the (local) Krasnoselskii theorem—Theorem 1.3, and the (global)
Rabinowitz theorem—Theorem 1.5. In the first case, it yields a new proof of the
Hopf theorem in the version of Chow, Mallet-Paret and Yorke [2]. In the second
case, as already noted, we derive the main theorem of [2], but in general case.
It states that the sum of local invariants (of bifurcation of periodic solutions)
is equal to zero, where the summation is over all centers lying on the bounded
component branch of periodic solutions.

Further, we apply Theorem 1.3 to the equation

u'(t) = ¢(u(t),a), ¥:U—-R",

admitting & first integral G : R™ — R, by perturbing the equation with the
gradient of G (Th. 1.8). The last theorem has a particularly simple formulation
for a Hamiltonian system

u'(t) = J grad H(u(t))

whose energy function H is a Morse function (Th. 1.9).

The organization of the paper is as follows. First, by replacing the classical
Brouwer degree by the finite-dimensional S$*-degree we obtain finite-dimensional
versions of the main theorems (Thms. 2.2 and 2.3). These versions have natural
generalizations to the Hilbert space setting (Theorems 3.4 and 3.5). In Section 5
we prove the main results of the paper by applying Theorems 3.4 and 3.5 to
S1-equivariant maps determined by a given family of differential equations. The
paper also contains a detailed proof of equality of two commonly used invariants:
the crossing number and the homotopy obstruction ~; (Sections 4 and 6).

1. The formulation of results

Assume that U is an open subset of R™ x R and ¢ : U — R™ is a C1-map.
We investigate periodic solutions of the equation

(%) u'(t) = (u(t), a).
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In this paper we use the following terminology:

o (zo,aq) is a stationary point of ¢ if (xg,ap) =0,

¢ (z0,a0) is a nonsingular stationary point of ¢ if (2o, a0) = 0 and
Dzp(zo,a0) : R™ — R™ (the derivative with respect to z) is a linear
isomorphism,

® (z9,a0) is a center for v if it is a nonsingular stationary point of ¢ and
o(Dyp(z0,a0)) NiR # @, where o(L) denotes the spectrum of a linear
map L.

® (z9,a0) is an isolated center for ¢ if there exists a neighbourhood of
(%0, a0) in U in which (zo, ap) is the only center.

We say the (z,a) € U is a nonsingular (or nontrivial) periodic point of (%)
if ¢(z,a) # 0 and there exists a solution u(t) of () such that u(0) = u(p) = z
for some p > 0. In this case we call p a period of (z,a). A period is called the
minimal period of (x,a) if u(t) # u(0) for all t € (0,p). Clearly the minimal
period always exists. Moreover, if p is the minimal period then any other period
is of the form kp for some k£ € N. We say that a stationary point (z,ap) is
a bifurcation point for (x) if it belongs to the closure of the set of nontrivial
periodic points of (x).

Together with U, which is the phase space for (x), we consider U x (0, c0)
which we call the Fuller space of (x) (cf. [8]). We say that (x, ag, pg) € U x (0, 00)
is a Fuller center for (x) if (zo,a0) is a center for (*) and there exists 8 > 0
and k € N such that i3 € a(D;p(xo,a0)) and pp = 2knB~1. We say that
(z,a,p) € U x (0,00) is a nonstationary (or nontrivial) periodic point of (x) if
(z,a) is a nonstationary periodic point for (*) and p is a period of (z,a). Finally,
we call a stationary point (Zo, ao,po) € U x (0,00) a bifurcation point for (x) if
it belongs to the closure of all nonstationary periodic points of (%) in the Fuller
space U x (0, c0).

As an easy consequence of the Implicit Function Theorem, one gets the follow-
ing statement which gives a necessary condition for (zp, ag, po) to be a bifurcation
point.

PROPOSITION 1.1. Assume that (z9,aq) is a stationary point for (x). If
(%0,@0,p0) is not a Fuller center then (zo,ao,po) is not a bifurcation point.

For the proof of 1.1 see, e.g. [1], [2], [16]. Note that Proposition 1.1 gives a
necessary condition for bifurcation in the Fuller space, but not in the phase space.
To give an example, consider the following perturbed Hamiltonian system:

w'(t) = —Hy(u(t), v(t)) + a Hz(u(t), v(t)),
v'(t) = +Hz(u(t), v(t)) + a Hy(u(t), u(t)),
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where H : R? — R is the energy function H(z,y) = (z2 — 1)(y% — 1) and
H,, H, are the partial derivatives of H. By a general argument ( see the proof
of Theorem 1.8 ) if ((z,y),a) is a nontrivial periodic point of this system then
a = 0. For ¢ =0 it is not difficult to check that

((0’0)10)’ ((1,1),0), ((1, —1)10), ((—1,1),0), ((_11_1)10)

are all stationary points of this system with only ((0,0),0) being a center. More-
over, all those points are bifurcation points in the phase space R? x R. On the
other hand, only ((0,0), kn), k € N, is the bifurcation point in the Fuller space
(R? x R) x (0, 00).

Assume now that (o, ap) is an isolated center for (*). Then there exist § > 0
and a continuous map 7 : [ag — 8, ap + 6] — R™ such that

(i) n(ao) = zo,
(ii) (n(a),a) € U and ¢(n(a),a) =0 for all a € [ag — 6, ag + 4],
(iii) o(Dzp(n(a),a)) NiR =@ for all a # 0.

Define A : [-1,1] — GL(m,R) by A(a) = Dye(n(ap + ab),ao + ad). We call
A a characteristic map for the center (zg,ap). Suppose further that 8 > 0
and i3 € o(A(0)) (where A(0) = D,p(zg,a0)). We let c(zg,a0,%3) denote the
algebraic number of eigenvalues of A(a) crossing {R through i3 at & = 0. We
give a rigorous definition of the crossing number in Section 4.

DEFINITION 1.2. Assume that (%o,ag) is an isolated center for (*). For
p € (0,00) and k € N we let

C(.'Eo, ag, 2k7l"ip_1), if 2k1l"ip_1 € O'(Dz(p(.'b'o, aO))a
(%0, a0, p) =

0, otherwise.

We have (cf. [2], [11], [16]).

THEOREM 1.3. Assume that (zg, ag) is an isolated center for (x) and po > 0.
If there exists k € N such that ri(zo,a0,00) # 0 then (zo,a0,p0) is a bifurca-
tion point in the Fuller space U x (0,00). Moreover, there exists a sequence
{(zn,an,pn)} converging to (xo, a0, po) such that po k™! is an integer multiple of
the minimal period of (z,,a,).

We will present a proof of the above version of the Hopf Bifurcation Theorem
which is analogous to the proof of the Krasnoselski’s theorem ([14], [18]) with the
Leray-Schauder degree replaced by the S'-degree. Before we formulate our main
result, which is an S!-degree analogue of the Rabinowitz Global Bifurcation
Theorem ([10] [18] [20]), we need some notation. Suppose that (zp,a0) is an
isolated center for (x) and (zo, ag,po) is a bifurcation point in the Fuller space.
Let S(p) denote the closure of the set of all nontrivial periodic points in the
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Fuller space. Thus (zo,aq,po) belongs to S(p). Let C(zo,a0,p0) denote the
connected component of (zg, ag,po) in S(p).

DEFINITION 1.4. For a given center (zp,ag) we let
€(zo,a0) = sgndet Dzp(xo, ag).
We define the oriented k** crossing number at (2o, ao) by

wi(zo, 20, po) = (o, ao)rk (0, @0, Po)-

THEOREM 1.5. Assume that all stationary points of (*) are nonsingular and
all centers of (%) are isolated. If (zo,a0) is a center for (x), if (zo,a0,p0) is a
bifurcation point and if C(xo, a0, po) is bounded and CNOU = then:

a) the number of bifurcation points belonging to C(xo,a0,po) is finite,

b) if {(x0,a0,P0), (£1,01,P1),...,(Zq, Bq,Pq)} denotes the set of all bifurca-
tion points of (*) in C(zo,a0,p0) then for every k € N

wik(To, a0, po) + wr(1,01,p1) + - - - + wi(zy, aq,Pq) = 0.

Assume now that Up is an open subset of R™ and 9 : Uy — R™ is a Cl-map.
Consider the equation

(%) w'(t) = P(u(t))-

Assume further that G : Up — R is a first integral for (x*) of class C2. We
use the following terminology: xo € Up is a stationary point if ¢(zg) = 0, it is a
nonsingular stationary point if ¢h(zo) = 0 and De(zo) is an isomorphism. We say
that zo is a center if it is nonsingular stationary point and o (D(zo))NiR # 0, it
is an isolated center if there exists a neighbourhood of g in Uy in which zg is the
only center. As before, together with the phase space Uy we consider the Fuller
space Up x (0,00). We repeat verbatim definitions of Fuller center, nontrivial
periodic point and bifurcation point for (x*). Embedding Uy = Up x {0} into
U = Up x R we can consider the system (#*) as a system defined on U with
#(z,a) = ¢(x). We leave to the reader a proof of the following lemma.

LEMMA 1.6. If zo is a nonsingular stationary point of (x+) then zo is a
critical point of G.

Suppose that zo is a center of (¥x), L = Dg9(xp). Let Ly C R™ be the
generalized eigenspace of L corresponding to ik3 (Lx = {0} if k8 ¢ o(L))
and S : R™ — R™ a selfadjoint linear operator associated with the Hessian
Gz = D®*G(zo) : R™ x R™ — R™. Proposition 1 of [17] states that S(L) C Ly
, the signature sign Gz |, is an even integer and if S|z, is nondegenerate then

271 sign Gy |1, = ri(z0,0,2187Y),
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where 71, is the k** crossing number of the system
(L.7) u'(t) = P(u(f)) + a grad G(u(t))

The last leads to a local bifurcation theorem ([17] Th. 1) which global exten-
sion is the following.

THEOREM 1.8. Assume that all stationary points of (xx) are nonsingular and
all centers of it are isolated. Assume next that a C2-first integral G of (x¥) is a
Morse function with all critical points being stationary points of . Let S be the
closure of all nontrivial periodic points of (xx) in the Fuller space Up x (0, c0).

Then each bounded component C of S such that CNAU, x (0, 00) = @ contains
only a finite number of distinct centers (Zo,po), - - -, (Zq,Pq) and for every k € N

g

Zs(w_,-) sign G2(xj)|L,,_,~ =0,

i=0
where (z;) = sgn det Dyyp(z;), G2 = D?G(z;), and Ly ; is the generalized
eigenspace corresponding to 21rkpj'1i at ;.

Finally we have to emphasize that Theorem 1.8 extends easily to the case
of an autonomous system on an open subset of C2-manifold. This allows us to
formulate a version of Theorem 1.8 for the Hamiltonian system.

Suppose that M2™ is a symplectic manifold with the structure operator J :
TM* — TM. Assume that H : M — R is a Morse function. We consider the
Hamiltonian system

u'(t) =J dH(t)

PROPOSITION 1.9. Suppose we are given a Hamillonian system as above.
Then each bounded component C of the closure of all nontrivial periodic points of
this system contains only a finite number of distinct centers (zo,po), - - -, (Zq, Pq)-
Moreover, for every k € N, we have

g
Z sgn det Ha(z;) - sign Hz(”’i)lLk,,- = 0.
0
where Ly j is the generalized eigenspace of JH, (z;) corresponding to ikB;) and
P = 21rﬂj_1.

2. Bifurcations in finite-dimensional representations of S!

If X,Y are topological spaces we let [X,Y] denote the set of all homotopy
classes of continuous maps from X into Y. If f : X — Y is a continuous map
then [f] denotes its homotopy class.
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Suppose now that a : S* — GL(m, C) is continuous and let o* : §! — C* =
C\{0} be defined by a*(z) = det a(z). Since C* is homotopy equivalent to §!
we have natural identification

[S%,C* =[S%, 8 =Z.
The map [a] — [a*] defines a bijection
vV :[SY, GL(m,C)] — Z.

Note also that [S!, GL(m, C)] may be identified in a natural way with the fun-
damental group m;(GL(m, C)). In this sense V is a group isomorphism.
Throughout the paper we let

G=S5"={z€Clz|=1}.

For v € N we identify the group Z, = Z/vZ with the subgroup of G consisting
of 1% roots of unity.

First we recall some basic properties of linear representations of G. Suppose
that V is a finite-dimensional, nontrivial, isotypical real representation of G,
i.e. there exists v € N such that G, = Z, for all x € V\{0} (here and in
what follows G, denotes the isotropy group of z). Set £ = exp(2~ v~ 1mi). The
formula i*z = {z defines a multiplication of elements of V by complex numbers,
therefore V becomes a linear space over C. Moreover, an R-linear map of V into
V is G-equivariant if and only if it is C-linear with respect to this structure.
Therefore the group of all G-equivariant R-linear automorphisms of V, denoted
by GLg(V'), coincides with GL¢(V'), the group of all C-linear automorphisms of
V. The following well-known fact plays a crucial role in our considerations.

PROPOSITION 2.1. Assume that V is a finite-dimensional nontrivial isotyp-
ical representation of G = S*. Then there ezists a canonical group isomorphism

V:[SYGLg(V)] -2
such that

(a) if dimp V =2 and ¢(g)(v) =g *v, v €V, g € G, then V([¢)]) = 1;
(b)) fV=VieV; and ¢; : G — GLg(Vj), j = 1,2, is a continuous map,
then V([h1 @ 92]) = V([$1]) V([¢2]). O

Throughout the rest of this section we fix V, a finite-dimensional real or-
thogonal representation of G. Recall that there is an orthogonal direct sum
decomposition

V=VeVi®ed- oV,
where G acts trivially on Vp and G, = Z; for z € V;\{0}, i = 1,...,k, (ie. the
V; are isotypical factors of V'). Note that with this convention it may happen
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that V; = {0} for some j. In what follows we denote points of V & R? by (z, A)
and define an action of G on V & R? by g(z, A) = (gz, A).
Let f : V®R? — V be a G-equivariant C1-map. We investigate the equation

(*) flz,A)=0

In what follows we assume that there exists a closed 2-dimensional submani-
fold N C V, @ R? satisfying the following conditions:

(A) N c f71(0);

(B) if (o, Ao) € N then there exists an open neighbourhood U} of Ag in R?,
an open neighbourhood Uy of o in Vg and a C'-map p : Uy — V; such
that

NOUp x Ux) = {(((A), A) : A € Up}.

In the sequel we refer to N (resp., f~1(0)\N) as the family of trivial (resp.,
nontrivial) solutions of (x). A point (z,\) € N is called a bifurcation point
of () if it belongs to the closure of the set of all nontrivial solutions. For
(z0, X0) € V & R? we denote by Dy f(zo,Ao) : V — V the derivative of f with
respect to z. We say that (zo, Ao) is V-regular if D f(zo, Ao) is an isomorphism,;
otherwise (zo,Ao) is V-singular. We say that (zo,Ao) € N is an isolated V-
singular point if it is V-singular and in some neighbourhood of (zg, Ao) in N
there are no other V-singular points.

Assume now that (zo, A¢) is an isolated V-singular point in N. Identifying
R? with C and taking a sufficiently small p > 0 we define & : S* — N by setting

a(z) = (u(ro + p2), do + p2),

where z denotes the map of condition (B). The formula ¢(2) = D f(a(z)) defines
a continuous mapping % : S — GLg(V). Therefore

Y=1% @Y1 D ®Yr,

where 9, : S — GLg(Vj), 4 =0,1,...,k.

Let € = sgn det 1p(z) (this definition makes sense, since sgn det 1o(z) does
not depend on z).

Finally, we let for j = 1,...,k,

v (0, Ao) = eV([¥5])-

THEOREM 2.2. Suppose that f : V @ R? — V is an equivariant C'-map
with N satisfying (A) and (B). If (zo,Ao) € N is an isolated V -singular point
and there exists j such that v;(Zo, Ao) # 0 then (Zo, Xo) is a bifurcation point.
Moreover, there erists a sequence (Zn, An) — (Zo, Ao) of nontrivial solutions of
(x) such that the isotropy group of T, contains Z;.
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THEOREM 2.3. Suppose that f : V @R? — V is an equivariant C1-map with
N satisfying (A) and (B). Suppose further that every V-singular point in N is
isolated in N. Let S(f) denote the closure of the set of all nontrivial solutions
of (x). Then for each bounded connected component C of S(f) the set CN N is
finite. Moreover, if CNN = {(z1,\1),...,(Zq, Ag)} then for j =1,...,k,

'Yj(fvl,’\l) +oe +7j(zq7’\q) =0.

Before starting the proof of Theorems 2.2 and 2.3 we will need some technical
results. Our proof uses the complementing function method (developed by Ize in
[10]) and the S'-equivariant degree introduced in [5]. Recall that if U is an open,
bounded, invariant subset of V & R? and F : (U,0U) — (V @ R,V & R\{0})
an equivariant map then there is defined the G-equivariant degree of F with
respect to U, Deg(F,U) = {degy(F,U)}, where H runs through the family of
all closed subgroups of G, degy(F,U) € Z; for H = G and deggz(F,U) € Z
for H # G. The basic property of Deg is that Deg(F,U) # 0 implies that the
equation F(z, ) = 0 has a solution in U; more precisely, degy (F, U) # 0 implies
F~1(0)NUH # 0. Further, the S'-equivariant degree has the following standard
properties:(see [5]for details)

(i) additivity with respect to U;
(ii) homotopy invariance with respect to equivariant homotopies;
(iii) contraction property.

Moreover, if F is of class C* and if 0 is a regular value of F', we have some formulas
which express Deg in terms of the derivative of F' ([5], Theorem 4.9). Since one
particular formula plays a crucial role in our considerations, we will give more
details. We start with some notation. Suppose that W is a finite dimensional
linear space and A: W ® R — W is a linear map such that A(W & R)=W.

Suppose further that v € ker A, v # 0. Let B: W @R - W @ R denote a
linear isomorphism such that B(w,t) = (A(w, t),{(w,t)), where £ : WO R —» R
is linear and £(v) = 1. Set

+1 if B preserves the orientation;

—1 if B reverses the orientation.

i) =

PROPOSITION 2.4. Assume that U is an open, bounded, invariant subset of
VoR? and F : (U,0U) — (VOR,V ®R\{0}) an equivariant C*-map such that
0 is a regular value of F, M = F~1(0) is connected and M C Vo, ® R2. Assume
further that  : 81 — M is a C-diffeomorphism and let v = 7'(1). Define
a; : 81 — GLe(V;), 1 < j <k by (e;(2))(w) = DF(n(2))(w), w € Vj. Then
Jfor H = Z;,

degy (F,U) = —sgn(DF(n(1),7'(1))V([ay]).
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For (9, Xo) € N and r,p > 0 we let
By (20, Mo;7; p) = {(2,X) € V@R |A = Ao| < p, |z — p(N)| < 7}.

DEFINITION 2.5. Suppose f, N are as in Theorem 2.2. Let r,p > 0. We say
that U € V ® R? is a special neighbourhood of (2o, Ao) determined by r, p if

(a) U = Bn(zo, Mo;7,p), UNN € int N;
(b) (z,A) €T, z # u(A), |A — Ao| = p imply f(=z,7) # 0;
(¢) (zo,Ao) is the only V-singular point in U.

The existence of a special neighbourhood follows from the Implicit Function
Theorem.

DEFINITION 2.6. Suppose that U = By(zg, Ao;7, p) is a special neighbour-
hood of an isolated V-singular point (zg, o) of f. We say that a continuous
G-invariant function 8 : U — R is a complementing function if

(a) 8(u(A),A) = —|A — X¢| for all X € Uja;
(b) 8(z,A) =rif |z — pu(A)| =r.

Note that if § is a complementing function then the map ® = (f,#) maps (U,0U)
into (V @ R,V & R\{0}), therefore Deg(®,U) is well defined.

LEMMA 2.7. Assume & = (f,01), P2 = (f,02), where 01,02 are comple-
menting functions. Then

Deg(®1,U) = Deg(®2,U).

ProoOF. The homotopy
H((:L‘, A)at) = (f(m’A)a (1 - t)gl(ma ’\) + tez(.'ll, ’\))

does not vanish on 8U and the statement follows from the homotopy invariance
of Deg. a

As before we assume that U = By(zo, Ao; 7, p) is a special neighbourhood of
(20, Ao). Define 8y : U — R by 8o(z, A) = (271p)% — |A — Ag|?; we call fp the Ize
Sfunction.

LEMMA 2.8. Assume that U = Bn(xo, Ao;7,p) is a special neighbourhood of
(z0, Xo), O is an arbitrary complementing function and 6y is the Ize function. Set
® = (f,0), ®o = (f,60). Then there exists ro, 0 < ro < 7, such that Deg(®o, Up)
18 defined

Deg(®, U) = Deg(2o, Uo),
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where Uy = Bn(Zo, Ao; 7o, p)-

PROOF. Using once more the Implicit Function Theorem, we can choose
ro < r such that (z,)) € Ug, « # u(}) and |A — Xo| > 27%p imply f(z, ) # 0.
We now choose a complementing function 6 : U — R such that

Oz, \)=r ifro <|z—p(A)| <.
For ((z, A),t) € Ug x [0,1] set
H((.’B, '\)’t) = (f(-’l?, )‘)1 te(.’l), A) + (1 - t)OO(Ia ’\))

Clearly H is a homotopy between the restrictions of ® and ®; to Uy. Thus

Deg(®,Up) = Deg(®o,Up). Since Deg(®,U) = Deg(®,Uy) the proof is com-

pleted. 0
Our next result is a natural analog of the Ize lemma ([10], see also [18]).

LEMMA 2.9. Assume that U = By(zg, Ao; T, p) is a special neighbourhood of
(%0, A0), 0 is a complementing function and let ® = (f,6). Then

degy (®,U) = Tj($0,/\0)7
where H = Z;.

PrOOF. The statement follows from Proposition 2.4 applied to ®, from
Lemma 2.8. The only new point is that we need to compute the sign of the
function (D®§ (n(1)), 7’(1)) with n = p : St — N, a C'-parametrization of the
zero set of ®y. It is easily seen that

sgn(D®F (1(1)), /(1)) = — sgn Do (u(1), #'(1)),
which yields
degg (®o,U) = sgn Do f((1))V([#5]) = vj(w0, Ao),  for H = Z;.
O
PROOF OF THEOREM 2.2. Suppose that the conclusion is not valid. Then
there exists a special neighbourhood U of (zq, o) such that U contains only

trivial solutions of (). Let 6 : U — R be a complementing function. Define
x:U x[0,1] = R by

X(Z'J’\at) = (1 - t)H(x,A) —tp
and H : (U x [0,1]),8U x [0,1]) — (V @R,V & R\{0}) by
H(z, A\ t) = (f(z, ), x(z, A\, 1)).

Clearly H(z,A,0) = ®(x, A) and H(z, A, 1) # 0 for all (z,) € U. Therefore, by
the homotopy invariance of Deg, degy(®,U) =0 for H = Z;, j = 1,2,...,k.
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This contradiction proves the first part of our theorem. To obtain the second
part we apply the first part to the restricted map

o . (T, 0UH) —» (VH o R, VE @ R\{0}).
Thus the proof of Theorem 2.2 is complete. O

LEMMA 2.10. Let X be a closed invariant subset of VO R? and Y a bounded
connected component of X. If U is an open subset of V & R? such thatY C U
then there exists an open invariant bounded subset Uy of V & R? such that Y C
U, C U, Uy is compact and OUy N X = 0.

PRrROOF. The lemma is an equivariant version of the classical result and can
be easily deduced from its nonequivariant counterpart. O

ProoF oF THEOREM 2.3. Choose r, p such that

(a.1) for i = 1,...,q, Bi = Bn(zi,Xi;7,p) is a special neighbourhood of

(i, Ai);

(a.2) B;NB; =0 for i # j.
Let B = B; U---U B;. Choose a bounded open subset ; C V & R? such
that C\B C Q; and Q3 NN = 0. Let Q3 = BUQy; then C C Q,. Applying
Lemma 2.10 we find an open invariant subset 2 of V ®R? such that C C 2 C Q2
and 80 N S(f) = #. Clearly Q is bounded. Applying the Implicit Function
Theorem we may choose rp and pg so small that for i =1,2,...,gq,

(bl)0<rog<r, 0<pg <p;

(b2) BN(xia AH 70, Po) - Qy

(0.3) S(f) N Bn(zi, Ai; o, p) € Br (i, i3 To, po);

(b.4) U; = Bn(zi, Ai; 7o, p) i8 a special neighbourhood of (z;, A;).
Set U=U,U---UU,. Let 8 : QUTU — R be a continuous equivariant (i.e.
constant on orbits) function such that

(c1) 6(z,A) = —|A = X\ if (z,X) e NN U

(c.2) O0(z,)) = 7o if (z,A) € Q\U (cf. Def. 2.6).
Define @ : QUU — V @R by &(z,)) = (f(z,A),0(z, A)). Note first that (c.1)
implies ®~1(0) = f~1(0) N 9~1(0) C S(f). Since I N S(f) = O, Deg(®, ) is
defined. Define a homotopy H : (2 x [0,1],02 x [0,1]) — (V &R,V & R\{0}) by

H(.’I:, A, t) = (f(.’B, ’\)’ X(-'l"a A, t))1
where x(z,A,t) = (1 — t)0(z, A) — tp. Clearly

H(z,\,0)=®(z,\) and H(z,\1)#0, for all (z,)A) € .
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Therefore, by the homotopy invariance of Deg, Deg(®,2) = 0. On the other
hand, (b.2) and (b.3) imply ®1(0) C S(f) N U C S(f) N Q. Therefore

Deg(®,Q) = Deg(®,2NTU) = Deg(®,U) = 0.
By the definition of U,
Deg(®,U) = Deg(®,U1) + - - - + Deg(®,U,) = 0.
Thus, taking H = Z;, and using (b.4) together with Lemma 2.9, we obtain
Vi(®1, A1) + <+ +95(Tq, Ag) = degy(®,Ur) + - -+ + degg (®,U,) =0

and the proof is complete. a

3. Bifurcations in infinite-dimensional representations of S}

In this section we give an infinite-dimensional extension of the results of
the preceding section. First we introduce notation and recall some basic facts
concerning Hilbert representations of S.

We say that a real (resp. complex) Hilbert space E is a real (resp. complez)
representation of G = S* if there is given a continuous map u: G x E — E such
that:

(a) gz = p(g, z) defines a linear automorphism for every g € G;

(b) tzx=zforall g € G;

(c) 91(92z) = (g192)z for all z € E, g1,92 € G.

If E is a Hilbert space (real or complex) we let GL.(E) denote the group of
all linear automorphisms of E which are of the form I + A, where I denotes the
identity and A is compact. Let V' denote a finite-dimensional linear subspace
of E. For A € GL(V) (= the group of all linear automorphisms of V') define A

by A(z +y) = A(z) +y, where z € V and y € V1. Clearly A € GL.(E). The
following fact is a direct consequence of the work of Palais [19].

PROPOSITION 3.1. For a complex Hilbert space E, the assignment A — A
induces a bijection
[SY, GL(V)] — [8*, GL.(E))].

This result, together with the classical description of [S', GL(V)] (discussed
at the beginning of Section 2) yields

PROPOSITION 3.2. For a complex Hilbert space E, there exists a bijection

V :[S',GL.(E)] — Z.
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Suppose now that E is a real orthogonal Hilbert representation of S1. Sup-
pose further that E is nontrivial and isotypic, i.e. there exists n € N such that
Gy = Z/nZ for all x € E\{0}. Set

GLE(E) = {A € GL(E); A(gz) = gA(z); forallz € E, g € G}.

Then as in the preceding section, we define the »-multiplication, z*z, for z € G,
z € E. Let E¢ denote the resulting complex space. As in the finite-dimensional

case, we have
GLS(E) = GL.(Ec).

PROPOSITION 3.3. For an isotypic nontrivial representation there exisis a

canonical bijection
v :[SY, GLE(E)] - Z.

In the remainder of this section we assume that E is a real orthogonal rep-
resentation of G = S!. Moreover, we assume that EC is finite-dimensional. We
have the G-invariant decomposition

E=E()®E1Q9--'G)En®...

where Eq = EC (ie. G acts trivially on Eg) and for £ > 0, Ej denotes the
Zy-isotypic factor of E.

We also assume that £ is an open invariant subset of E®@R? and f: 2 — E
is an equivariant C'-map such that f(z,A) = z + ¢(z,A), where ¢ : @ —» E
is completely continuous ( i.e. maps bounded subsets of E & R? into relatively
compact subsets of E ). We investigate the equation

(%) f(z,A)=0.
In what follows we assume two conditions:
(A) there exists a 2-dimensional closed submanifold N C E® & R? such that
N c f7H0);
(B) if (zg,Xo) € N then there exists an open neighbourhood U of Ap in

R2, an open neighbourhood U of (zo, o) in E€ & R? and a C'-map
p: Uy — EC @ R? such that

NNU={(z,)) € ES ®R? z = pu(A), A € Up}.

We repeat verbatim the definitions of trivial solution, nontrivial solution and
bifurcation point. Similarly, following the pattern of Section 2, we say that
(z0, Ao) is E-regular if D;(zo, Ao) is an isomorphism; otherwise it is E-singular.

Assume now that (zo, Ag) is an E-singular point isolated in N. Identifying
R? with C and taking a sufficiently small p define a : S — N by

a(z) = (u(Ao + pz), Ao + p2),
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where p denotes that map appearing in (B). Define
¥: 8" — GLE(E)
by ¥(2) = D; f(a(z)). Therefore
V=900 @1 D OYPa®--,

where ; : S1 — GLf(EJ-) for j = 0,1,...,n,.... Let ¢ = sgndetp(2).
Finally, for & > 0 let
Ye(Zo, Ao) = eV ([tk])-

THEOREM 3.4. Suppose that f : Q — E is an equivariant C'-map such that
f(z,A) =z + p(z,A), where ¢ is completely continuous, with N satisfying (A)
and (B). If (o, Xo) is an E-singular point isolated in N and there ezists k such
that v, (zo, Ao) # 0, then (xo, Ag) s a bifurcation point. Moreover, there exists a
sequence (Tn, An) — (To, Ao) of nontrivial solutions of (*) such that the isotropy
group of z,, contains Zy, for all n.

THEOREM 3.5. Suppose that f : @ — E is an equivariant C'-map such that
f(z,A) = z + p(z, ), where ¢ is completely continuous, with N satisfying (A)
and (B). Suppose further that every E-singular point in N is isolated. Let S(f)
denote the closure of the set of all nontrivial solutions of (*). If C is a bounded
connected component of S(f), then CNN is finite. Moreover, if CNOQ =0 and
CNN = {(z1,A1),...,(xg, Ag)}, then for every k € N

7k(z1’A1) + 7k($21A2) +oo+ ’Yk(-'”q”\q) =0

It is evident that one can obtain the proofs of Theorems 3.4 and 3.5 general-
izing to the case of Hilbert spaces the proofs of Theorem 2.2 and 2.3, provided
we have an infinite-dimensional version of Proposition 2.9 which represents the
main geometric ingredient of these proofs. Since Proposition 2.9 is a direct con-
sequence of Proposition 2.4, we need an infinite-dimensional generalization of
this theorem. We start with an elementary but useful observation.

LEMMA 3.6. Suppose X is a compact metric space and £ : X — GLE(E)
i3 a continuous map. Then there exists a finite-dimensional G-invariant linear
subspace V C E such that Ey C V and a continuous map v : X — GLE (E) such
that

P(z)(v + w) = ¥(z)(v) + w, forallz e X,veViwe Vi,
and v is homotopic to €.

PRrOOF. Set &(z) = I — Az, with A, completely continuous. Since X is
compact, there exists ¢ > 0 such that |B — Az|| < € implies ] — B € GLE(E)
provided B is a completely continuous equivariant linear operator.
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Fix ¢ > 0 and =z € X. Since A; is equivariant and completely continuous,
there exists a finite dimensional G—invariant linear subspace V, of £ and an
open neighbourhood U, of z in X such that

14y — Py, Ayl <e,

for every y € U,, where Py is the orthogonal (equivariant) projection onto an
invariant subspace V (cf. [5]).
Observe that for every v € E we have ||v — Pw(v)|| <|lv — P(v)||if V C W.
Using the above and the compactness of X we choose {Uy,Us,...,Ux}—an
open covering of X, and {3, V2,..., Vi }—a collection of finite dimensional linear
subspaces of F such that for every y € U;,

14, — PrAyll <
Take W = Vi + -+ + V; and define an equivariant homotopy

&(z)=T—[(1—t)As + PwA,].

Since ||&:(z) — €(z)|| <€, &(z) € GLE(E) for every t € [0,1]. Denote & by 0.

Define another homotopy x by x(z,t) = I — [(1 —t)PA, + tPA;P] and set
¥(z) = I-PA,P. Then x : GLE(E)x[0,1] — GLE(E) is a homotopy connecting
1o to ¢ = x{(z, 1), and ¢ has the required property.

In what follows we use an infinite-dimensional version of the S-degree. This
extends the finite-dimensional degree in the same way as the Leray-Schauder
degree extends the Brouwer degree (cf. [5]).

PROPOSITION 3.7. Assume that U is an open, bounded, invariant subset of
E®R? and F;(U,0U) - (E®R, E®R\{0}) an egquivariant C* map such that

(a) F(z,A) =z — &(x, ), where ® is completely continuous;

(b) 0 is a regular value of F;

(¢) M = F~1(0) is connected and M C Ey ® R%.
Assume further that n : S* — M is a C'-diffeomorphism. For j € N define
a; : 8t — GLa(Vj), by

(aj(2))(v) = DF(n(2))(v), veV;
Let Fy : UN(Ey ®R?) — Eq ® R denote the restriction of F. Then for H = Z;
degy(F,U) = —sgn(DFo(n(1)),n' (1)) V([ay]).

PROOF. For (z,)) € U N (Eo ® R?) let B(z, A) : (Eo)* — (Eo)* denote the
restriction of D,F(z,)). Choose an open invariant subset Up of Ey ® R? such
that

X=U,cUN(E,®R?
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and B(z, A) is an isomorphism for all (z,A) € X. For £ > 0 set
Ul)={(z,)) EEOR}z=v+w, ve Uy we (E)*, [[w] < €e}.
Choose €g such that ¥ = U(eo) C U. Define H: Y x [0,1] - E®R by
H(z,\t) =1 —-t)F(z,) + t(F(v,A) + B(v, A)(w)),
where z = v+ w, v € X, w € (Ep)t. Choose €; > 0 such that
HY0)nT(er) x [0,1] = M x [0,1]
and define F; : U(e;) = E ® R by Fi(z,)) = H(z, A, 1). Then
() Deg(F,U) = Deg(F1,U(£1)).

Set Y1 =U(e1) N(E®R?) =U = X and let B : ¥; — GLE((Ep)L) denote
the restriction of B. By Lemma 3.6 there exists a finite dimensional equivariant
subspace V C (Ep)* and a homotopy K :Y; x [0,1] — GLf((Eo)J') such that

K(z,),0) = By(z,A), for all (z,)\) € Y1,
K(z,)\,1)(v+w) = K(z,\1)(v) + w, for all (z,A\) €Y1, veV, we V.
Define Fy : U(e;) = E® R by
Fy(z,)) = F(v,\) + K(v, A\, 1)(w),
where z = v+ w, v € Eg ® R?, w € (Ep)*. Then
(8) Deg(F1,U(e1)) = Deg(Fy, U(ey)).

4. Characteristic maps

We now define a characteristic map of an isolated center. Since this notion
is fundamental for our considerations, we collect here the necessary definitions
and some basic properties. We say that a continuous map

A:[-1,1] = GL(m,R)

is a characteristic map if 7(A(a)) NiR = @ for a € [-1,0) U (0, 1]. We denote by
A(m, R) the space of all characteristic maps. We say that a continuous map

H :[-1,1] x [0,1] — GL(m,R)

is a homotopy in A(m,R) if H(-,t) € A(m,R) for all ¢ € [0,1] and there exists a
finite subset A C iR such that o(H(0,t))NiR C A for all £ € [0, 1]. Evidently this
defines an equivalence relation in A(m,R) : Ao, A1 € A(m,R) are homotopic in
A(m, R) if there exists H, a homotopy in A(m,R), such that A; = H(,j), j =
0,1. We say that A € A(m,R) is a trivial characteristic map if o(A(0)) NiR = @.
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For given A € A(my,R), B € A(my,R) we define A® B € A(m; + m2,R) by
(A ® B)(a) = A(a) ® B(a).

Analogously, we define the space A(m,C) of continuous maps A : [-1,1] —
A(m,C) and the homotopy in A(m,C). Note that the complexification embeds
A(m,R) into A(m,C). More precisely, for a given A € A(m,R) we define A° €
A(m, C) by A°(a) equal the complexification of A(a). Moreover, if A is homotopic
to B in A(m, R) then A° is homotopic to B¢ in A(m,C) and the complexification
of a trivial characteristic map is a trivial characteristic map.

In the remainder of this section we use the following notation: for a linear
map L : R™ — R™ and X € o(L) we let u(A, L) denote the algebraic multiplicity
of X: if A ¢ o(L) then we put p(A,L) = 0. For a subset A C C we let u(A, L),
be the sum of u(A,L) over all A € L. For r > 0 and 8 > 0 we let

D,(iB) = {z € C;|z — iB| < p},
Sp(iB) = {z € C; |z —iB| = p},
B} (if) = {z € C;|z — i8] < p, Rez > 0}.

Assume now that A € A(m,R), 8> 0 and if € 0(A(0)). Choose € > 0 such
that o(A(0)) N D.(i8) = {iB}. Then there exists § > 0 such that o(A(a)) N
S (i) = 0 for all a € [-6,6].

DEFINITION 4.1. Set
o(4,iB) = w(BZ (iB), A(6)) — u(BZ (iB), A(=6)).
We call ¢(A,i8) the crossing number of A through i3.

THEOREM 4.2. Assume that A € A(m,R) and
O'(A(O)) n {ZR} = {:l:iﬂ:[, iiﬂz, caay :tiﬂk},

where 0 < By < ---B. Let rj = ¢(A,iB;), 7 =1,...,k. Then A° is homotopic
in A(m,C) to Ag® AL & --- ® Ag, where

(a) Ag is a trivial charactleristic map;
(b) forj=1,...,k, Aj € A(2|ry],C),
Aj=A;10 Ajp, where Aj1,Aja € A(|r;],C),
Aj1(a) = (iB; + (sgn r5)a)]
Aja(a) = (—iB; + (sgn 7;)a)l.
(I denotes the identity in GL(|r;|,C)).

We postpone the proof of this theorem to the Appendix.
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DEFINITION 4.3. Assume that A € A(m, C) and i8 € 6(A(0)), 8 > 0. Define
€p,a 1 St — GL(m,C) by &,4(a,p) = 2mil — (pp + po)A(pa), where (a,p) €
§%, po =2xB~! and p is sufficiently small. For A € A(m,R) and i8 € a(A(0))
we set £g.4 = £p, A=

Recall, that we have defined in Section 2 the homomorphism

V : [8',GL(m,C)] — Z.
As a direct consequence of the definition of {3 4 we have
REMARK 4.4.
(a) Suppose that A, B € A(m,R) (resp. A,B € A(m,C)) are homotopic in
A(m,R) (resp. A(m,C)) and i3 € 0(A(0)),8 > 0. Then
V([¢5.4]) = V([¢s.5])-

(b) Suppose that A € A(m1,R), B € A(ma, R) (respectively, A € A(m;,C),
B € A(my,C)) and 8 > 0. Then

V([¢s.408]) = V([€0.a]) + V([é5,8])-

The following proposition establishes an important link between the crossing
number and [S1, GL(m, C)].

PROPOSITION 4.5. Assume that A € A(m,R) and i € o(A(0)), B8 > 0.
Then V([€,4]) = c(4,i0).

PrOOF. From Theorem 4.2 and Remark 4.4 it follows that it is sufficient to
prove the following two cases of 4.5:
Case 1: A°€ A(2,C), A°= A1 ® Az, Ai(a) = (iB+a)], As(a) = (—if+ a)l.
Case 2: A° € A(2,C), A° = A1 ® Az, Ai(a) = (if — a)I, Az(a) = (—if —a)l.

Consider Case 1. First observe that i3 ¢ 0(A3(0)) implies

V([€s.4°]) = V([£p,4,])-
Next, set D, = D,(0,p0) = {(a,p) € R%0® + [p— po|* = p?}, S, = 8D, and
consider the map
§: (Dp, Sp) — (L(C), GL(1,C)) = (C,C\{0}) = (R*, R?\{0})

defined by £(a,p) = 2mil — pA;(a). Clearly V([£s,4<]) equals to the degree of £.

Since 0 is a regular value of £, we have

degree of £ = sgndet D£(0, pg) = sgndet [%0 g] =1.

This completes the proof of Case 1. The proof of Case 2 is analogous. O
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5. Proofs of the main theorem
Throughout this section we assume:
(a) U is an open subset of R™ x R and ¢ : U — R™ is a C'-map;
(b) every stationary point of ¢ is nonsingular.

Recall that we investigate periodic solutions of the equation

(%) v'(t) = p(v(t), a).
Substituting u(t) = v(pt) we get the equation
(%) ' (t) = pp(u(t), a).

Evidently u(t) is a 1-periodic solution of (**) if and only if v(t) is a p-periodic
solution of (x). Set
E =WY3(S1,R™), F = W% (81, R™).
We think of elements of these Sobolev spaces as classes of periodic functions
u : [0,1] » R™. The argument shift defines an action of G = S' on E and F.
Moreover, the map
T:-E—-F

defined by T(u) = v’ + u, is an equivariant isomorphism. We denote by Eg the
subspace of E consisting of constant functions. For a natural ¥ we denote by E;
the subspace of E spanned by functions

(cos 2wkt)ey, (sin2wkt)ey, . .., (cos 2mkt)em, (sin2mkt)en,

where ey, . .., &, denotes the standard basis of R™. Clearly Ey is the Zg-isogenic
factor of E and F. Moreover, T(Ey) = Ej.
We have the following direct sum decompositions of Hilbert representations

of G=5!
E=FEyoE, & --®E,®--,

F=FE®E,® - -OE;®--.
We let
Qo = {(u,a) € E@R; (u(t),a) € U; for all t € [0,1]}.
Obviously ) is an open subset of E @ R. We set
Q= x (0,00) C E® R

Define
F:Q—F by f('u'aa’p) = —p(p('u,('),a),
Ny = {(z,a) € U;p(z,a) =0}, N = Ng x (0,00).
In what follows we identify elements of Fy (i.e. constant functions) with
points of R™. Evidently N and f satisfy conditions (A) and (B) of Section 3.
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Note that if (u,a,p) € f71(0) then u is of class C! (by the regularization the-
orem). By definition (zg,ao,po) is a Fuller center if and only if there exists
i} € a(Dzp(x0,00)) and k € N such that pp = 2rkB~1. This is equivalent to
the fact that the equation

u'(t) — poDop(zg, a0) (u(t)) = 0

has a nontrivial solution of period 1. Thus (zo,ao-po) is a Fuller center if and only
if it is an E-singular point for f. We summarize these and other observations as
follows:

REMARK 5.1.
(1) If a sequence {(un,@n,pn)} of points in f~1(0) converges to (ug, ao, pg)

then the sequence {(un(0), @n,pn)} converges to (uo, a,po) in the Fuller
space U x R x (0, 00).

(2) A stationary point (o, a-po) of (*) is a center (resp. an isolated center) if
and only if (uo, agpo), where ug(t) = x; for all ¢ € [0,1], is an E-singular
point (resp. an isolated E-singular point) for f.

(3) Let S(f) denote the closure of the set of all nontrivial zeros of f. If C is a
connected component of S(f), then the assignment (u,a,p) — (u(0),a,p)
maps S(f) (resp. C) onto the closure of the set of all nontrivial periodic
points in the Fuller space (resp. onto a component of it). Moreover, C
is bounded if and only if its image in the Fuller space is bounded.

(4) If (u,a,p) € EH N f~1(0), where H = Zj, then (u(0),a) is periodic with
period pk~! and pk~! is a multiple of the minimal period of (u(0),a).

Assume now that (zg, ag) is an isolated center for ¢. Since we have assumed
(b), there exists § > 0 and a C'-map

n: [ag — 6,a0 + 6] = R™

such that n(ze) = 7o, @(n(a),a) = 0 for all a € [ag — 6,a0 + 6] and the map
A: [-1,1] = GL(m,R), defined b y A(a) = Dzp(ao + a) belongs to A(m, R).
In what follows we call A a characteristic map for (zo, ao).

PROPOSITION 5.2. Suppose that (o, ao) is an isolated center for ¢, and
if € o(Dyp(z0,00)), B>0.
Then (zo, ag, 2 371) is an E-singular point of f and for every k € N
¥ (f, To, @0, 287 Y) = (—1)™wi (x0, ao, 278~ 1)

(¢f. Definition 4.1 and the definition of yx in Section 3).
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Proor. First recall that the complex structure in Ej is given by ¢ x ¢; =
—8j, i*8; = c¢j, where cj(t) = (cos2nkt)e;, s;(t) = (sin2wkt)e;, j=1,...,m,
and ey, ..., e, denotes the standard base of R™.

By the definition of vx(f, Zo, a0, o) = eV ([¥&]), where € = sgn(L),L : Eg —
Ey, L = the restriction of T~ D, f(xo, a0, P0), %% : S* — GLg(Eg) is defined
by ¥x(a,p) = the restriction of 71D, f(n(a), a,p) to Ej and we make the iden-
tification

S' = {(a,p) € R? : |a — ao|* + |p — po|* = p?}
with p sufficiently small.

Since T : Ey — E) is a G-isomorphism, thus a C-linear isomorphism, the
homotopy class of ¥ equals the homotopy class of the map

(a,p) — D, f(n(a), av?)'Ek .

Thus without loss of generality we may assume that
¥r(a, p)(u) = v’ — pDp(n(a), a)(w),
when restricted to Fy. It is easy to see that
¥i(a,p) = 2wkil — pA®(a).
Thus 43, is homotopic to ui, where
px(a,p) = 2mil — p(k~ A%(a)).

Since o(k~1A(0)) = k~10(A(0)), the homotopy class of uy is trivial if ik3 ¢
o(A(0)) and equals the homotopy class of the map &g ;-1 4 if ikB € o (A(0)) (cf.
Def. 4.3). Finally, ¢ = sgn(det(—poDz¢(Zo,a0))) = (—1)™ sgndet Dz (o, ap).
On the other hand
wi (2o, a0, po) = sgndet Dz (o, ao)Tk(T0, a0, Po),
where
r&(Z0, @0, Po) = (%o, a0,27k(po) 1), po =278,
by the definition. Note that c(A4,ikB) = c(k~'A4,i0). Thus the statement follows
from Proposition 4.5 applied to the characteristic map k! A. O
REMARK 5.3. The statement of Proposition 5.2 is equivalent to

Ye(f» To, @0, po) = (—1)"w1(Z0, a0, pok~").
ProoOF OF THEOREMS 1.3 AND 1.5. In view of Remark 5.1 the statements
follow from Proposition 5.2 and Theorems 3.4 and 3.5. O

PrROOF OF THEOREMS 1.8 AND 1.9. Let us consider the perturbed sys-
tem (1.7)
/() = (u(t)) + agrad G(u(t)).
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Differentiating G along trajectories of (1.7) and assuming that grad G(z) # 0
outside the zero set of v, we get the following fact (cf. [17]). O

LEMMA 5.4. (u(t),a) is a nontrivial periodic solution of (1.7) only ifa =0
and u(t) is a periodic solution of (x+). Consequently, (z,a,p) is a periodic point
of (1.7) only if a = 0 and (z,p) is a nontrivial periodic point of (x).

. This shows that to prove Theorem 1.8 it is sufficient to derive wy(zg, 0, pg)
at every center (zg,po), po = 2137, i € 6(Dyt(xo)) of the system (1.7).

Let S be a selfadjoint linear operator corresponding to G2 = D2G(zy) in
some scalar product “associated” with D 9 (zo) (cf. [17]). In [17]it is proved that
under these assumptions S preserves the generalized eigenspace Ly of D,1(zq)
at ik3, and

rk(%o, 0, po) = § sign Ga(zo)ly, -
The statement of Theorem 1.8 follows from the above and Theorem 1.5. a

Finally we claim that Theorems 1.5 and 1.8 extend naturally to the case of
system u'(t) = ¢(u(t),a), (or v'(t) = ¥(u(t)) with a first integral) where ¢ is
a tangent vector field on an open subset of a manifold. This can be done by
embedding the manifold into the Euclidean space and by extending naturally
the field into the normal direction (cf. [8]). By this argument, the statement of
Theorem 1.9 follows from Theorem 1.5.

REMARK 5.5. Theorem 1.8 is still valid if we assume only that the matrix
G2 = D2G(zo) is nondegenerate only at those zeros of 9 which are centers of
the system ().

6. Appendix

We are left with the task of proving Theorem 4.2. The proof is based on an
approach given in [9].

We start with two simple but useful observations. First assume that 4 €
GL(m,C) and ¢(A) NiR = . Thus there exists a direct sum decomposition
C™ =V, ® V; such that

(A1) ={z€C; Rez <0}, 0(A;) ={2€C; Rez > 0},
where A; (resp. Aj) denotes the restriction of A to Vi (resp. V). Let k =
dimg V3.
LEMMA 6.1. Suppose that A satisfies the above assumpt tons. Then there
erists a continuous map 7 : [0,1] — GL(m, C) such that:
a) n(0) = A;
b) o(n(t) NiR) =0 fort €[0,1];
¢) 7(1) = B, @ By, where By = —I € GL(k,C), B; =1 € GL(m -k, C).
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Note that & is uniquely determined by A.
ProoF. Choose C € GL(m, C) such that

C(V1) =CF x {0} c C™, C(Va) = {0} x C™~F,
Since GL(m, C) is connected, there exists a continuous map
p:[0,1] —» GL(m,C)
such that x(0) = I and p(1) = C. Define n, : [0,1] = GL(m,C) by
m(t) = u(t)Au(t) ™"

Clearly
m(0)=A and n1(1) =C1 & Cy,

where C; € GL(k,C), C; € GL(m — k,C),0(C1) = 0(A1) and ¢(C3) = o(43).
Define 7 : [0,1] — GL(m, C) by n2(t) = (1 — t)m(1) + #(By & Bs). Set

71(2t), for 0<t<1/2;

n(t) = {

(2t —1), forl/2<t<1.
Since B; and B are the scalar matrices, they commute with C; and C3 . There-
fore n has all the desired properties. a

Suppose now that A € A(m,C) and there exists a direct sum decomposition

C™ =V, © V3 such that for all a € [—1,1], V4, V2 are linear invariant subspaces
for A(a). For j = 1,2 let A;: [-1,1] — GL(V;) denote the restriction of A.

LEMMA 6.2. Suppose that A satisfies the above assumptions. Then there
exists B € A(m,C) such that

(1) A is homotopic in A(m,C) to B;
(2) B = By & By where B; € A(m;,C), m; =dimVj;, j =1,2;
(8) o(B;(0)) = 6(A4;(0)) for j =1,2.

ProOF. Choose C € GL(m, C) such that
C(V1) =C™ x {0} c C™, C(Va) = {0} x C™.

Since GL(m, C) is connected there exists a continuous map I' : [0,1] — GL(m, C)
such that I'(0) = I and I'(1) = C. Define

H:[-1,1] x [0,1] = GL(m,C)
by H(a,t) = I'(t)A(a)(T'(t))~1. Evidently H is a homotopy in A(m,C) and
B = H(-,1) is the desired map. O

REMARK. Note that if 4;, A2 € A(2m,C) then A; & A; is homotopic to
Az @ A; in A(m,C).
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ProOF OF THEOREM 4.2. We prove Theorem 4.2 in a few steps, replac-
ing in each step one characteristic map by another characteristic map which is
homotopic in A(m,C).

Step 1. We assume that A € A(m,C) and
o(A) MR = {ify, ..., iB}.
Since the spectral decomposition is upper semicontinuous there exist § > 0 and
continuous mappings
Py, P, Ps,...,P : [-6,8] - L(C™)
such that for all ¢ € [-§,6] and j =0,1,...,k.
(¢1) Pj(a) is a linear projection commuting with A(a);
(62) C™ = Vo(a) ® Vi(a) @ - -- ® Vi(a), where V;(a) = Pj(a)(C™);
(03) 0(A40(0)) NiR =@ and o(A;(0)) NiR = {iB;} for § > 1;
(04) o(A;(a)) NiR = 0 for a # 0, where 4;(a) = A(a)yy; .
Define I : [-6,8] — GL(m,C) by
['(a) = Po(0)Po(a) + P1(0)Pi(a) + - - - + Pi(0) Pi(a).
Define H,K : [-1,1] x [0,1] — GL(m,C) by
H{a,t) = A((1 — t)a + téa),
K(a,t) = T'(tba)A(ba)(T(tba)) 2.

It is easy to check that H and K are homotopies in A(m,C) and H(-,0) = A.
Let B = K(-,1). Then the linear subspaces V5(0), V1(0),..., Vi (0) are invariant
for B(a) for all a € [-1,1]. Then Lemma 6.2 yields that there exists C € A(m, C)
such that C is homotopic in A(m,C) to Band C=Co @ C1 & - & C, C; €
A(m;,C), m; = dimV;(0), j =0,1,...,k. Moreover Cj is a trivial element of
A(mo,C) and 0(C;(0)) = {iB;} for j =1,... k.

Step 2. In view of Step 1 we may assume that A € A(m,C) and
a(A(0)) NiR = {A}, A=i8, >0.
Define B : [-1,1] = L(C™) by
B(a) = A(a) — AL
Note that o(B(a)) NiR = @ for a # 0. Define H : [-1,1] x [0,1] —» GL(m, C) by
H(a,t) = A+ [1 — (1 — |a|)]B(a).

Therefore,
o(H(a,t)) = A+ [1 - £(1 — |a])o(B(a)).
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Thus H is a homotopy in A(m,C), H(-,0) = A, and H(a,1) = Al + |a|B(a).
Next define K : [-1,1] x [0,1] — GL(m,C) by

M +|a|B(a) for |a| > ¢;
K(a,t) =4 A +|a|B(—t) for —t<a<0;
M+ |a|B(t) for0<a<t.

Clearly K is a homotopy in A(m,C) and K(-,0) = H(-,1). Set C = K(-,1).

(@) M +|a|B(1) fora>0;
" | AT +|a|B(-1) fora<0.

Step 3. In view of Step 2 we may assume that A € A(m,C) and

Afa) =

M + |a]AT  for a > 0;
M +|alA~ fora<0,

where AT, A~ € GL(m,C) and c(AT)NiR =0, (A7) NiR=0.

With respect to Lemma 6.2 we may assume that At and A~ in Step 3 are

of the form as B = (1) of Lemma 6.1. The statement of Theorem 4.2 follows

by an easy computation of dimensions. O

REMARK 6.3. The conjugated map appears in the statement of Theorem 4.2,

since we started from the complexification A° of an R-linear map A. Thus in
Step 1 we have to split out at both eigenvalues i3 and —if.

(1]
2]
(3]
4]
(5]
(6]
7]
(8]
(9]
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