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Abstract. The present paper studies two approaches to the expressiveness
of propositional modal logics based on first-degree entailment logic, FDE.
We first consider the basic FDE-based modal logic BK and certain systems
in its vicinity, and then turn to some FDE-based modal logics in a richer
vocabulary, including modal bilattice logic, MBL. On the one hand, model-
theoretic proofs of the definability of connectives along the lines of [7] and
[17] are given for various FDE-based modal logics. On the other hand,
building on [10], expressibility is considered in terms of mutual faithful
embeddability of one logic into another logic. A distinction is drawn be-
tween definitional equivalence, which is defined with respect to a pair of
structural translations between two languages, and weak definitional equiv-
alence, which is defined with respect to a weaker notion of translations.
Moreover, the definitional equivalence of some FDE-based modal logics is
proven, especially the definitional equivalence of MBL and a conservative
extension of the logic BK2 × BK2, which underlines the central role played
by BK among FDE-based modal logics.

Keywords: definability of connectives; first-degree entailment logic; modal
logic; modal bilattice logic; functional completeness; translations between
logics; weak definitional equivalence; definitional equivalence

Introduction

The present paper studies two approaches to the expressiveness of propo-
sitional modal logics based on first-degree entailment logic, FDE. To be-
gin with, we consider the basic FDE-based modal logic BK and certain
fragments of it that make use of different implications. Then we turn
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to some recently studied FDE-based modal logics in a richer vocabulary,
including modal bilattice logic, MBL, [12].

In the first approach, expressiveness is understood in terms of the
definability of logical connectives. A set of connectives is expressively
complete if from that inventory of connectives every semantically possi-
ble connective can be explicitly defined. For many-valued logics, includ-
ing two-valued classical logic, expressive completeness means functional
completeness. Given a many-valued logic and a finite set of n-ary truth-
functions, if every possible n-ary truth-function of the logic in question
can be obtained by finite compositions of members of the given set of
truth-functions, this set is called functionally complete. In particular,
the search space for the functional completeness result is well defined,
namely the class of all possible n-ary truth-functions. For a relational se-
mantics as for FDE-based modal logics, however, it is not clear what the
search space should be, since on the one hand the verification (support of
truth) conditions and the falsification (support of falsity) conditions are
given in terms of metalogical verification and falsification clauses. On
the other hand, the definitions of the modal operators rely on an acces-
sibility relation between worlds, which can not be expressed in terms of
many-valued truth-functions. Our strategy for obtaining results about
the definable connectives is therefore somewhat different from that for
many-valued logics. Nevertheless, in conformance with [7], we will speak
of functional completeness in our consideration of the class of definable
connectives for various FDE-based modal logics.1 This development fol-
lows the lines of [7] and [17], where results about the class of definable
connectives were given with respect to intuitionistic logic and various
constructive modal logics with strong negation. We will first restrict the
class of expressible metalogical verification and falsification conditions,
and then show that within the so defined class, all metalogically express-
ible verification and falsification conditions can be expressed by object
language formulas of the respective logics.

The second approach considers expressibility in terms of mutual

1 There are several other papers that investigate some notion of functional com-
pleteness. However, despite its title, the paper [3] is not about the definability of
logical operations in systems of modal logic, but rather about embedding a deductive
metatheory into the object language. In [15, 16] a space of possible connectives is
given neither by a class of truth-functions, nor by a class of verification and falsi-
fication conditions, but instead by schemata for left and right introduction rules in
sequent calculi.
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faithful embeddability of one logic into another logic. Here, a distinction
is drawn between definitional equivalence, which is defined with respect
to a pair of structural translations between two languages, and weak def-
initional equivalence, which is defined with respect to a weaker notion of
translations, namely with respect to weak structural translations. Suffi-
cient conditions will be stated under which weak definitional equivalence
implies definitional equivalence, and it will be observed that the presence
of the constants b and n for the glutty and the gappy truth value, respec-
tively, of FDE may lead to definitional equivalence. In particular, the log-
ics BK2+2

− , BKFS

bl
, and MBL turn out to be definitionally equivalent. In

order to stretch the results about the definability of logical connectives to
these logics, we will extend the metalogical vocabulary for defining verifi-
cation and falsification conditions to contain metalanguage counterparts
of b and n as well as operations standing for the lattice meet and lattice
join with respect to the information order in logical bilattices, cf. [1].

The paper is organized as follows. In Section 1 we will recall the
semantical definitions of the systems KFDE, KN4, BK2−, BK2, BK,
and BK2+2

− , BKFS

bl
, MBL. In Section 2 we will explore the classes

of definable logical connectives for KFDE, KN4, BK2−, BK2 and BK. In
Section 3 we will proof definitional equivalence for some modal extensions
of FDE and in Section 4 we will investigate the classes of definable logical
connectives for BK2+2

− , BKFS

bl
and MBL. Finally, Section 5 contains

some concluding remarks.

1. FDE-based modal logics

Almost all logics considered in this section were studied in [10], and
although their presentation here will be self-contained, we refer the in-
terested reader to that paper for further information, including presen-
tations of some axiomatizations and tableau calculi.

In order to semantically define the respective FDE-based modal logic,
the metalogical language is a two-sorted first-order language containing:

• all formulas in the language of L as the first sort of individual vari-
ables, where L ∈ {KFDE,KN4,BK2−,BK2,BK,BK2+2

− ,BKFS

bl
,

MBL},
• a non-empty denumerable set V of information state variables as the

second sort of variables,
• the classical connectives ∧∧, ∨∨, ¬¬, →→,
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• the classical quantifiers ∀∀ and ∃∃,
• the binary predicate symbols 
+, 
−, and R.
The metalanguage is then defined as follows:
• state variables: w ∈ V ,
• object language formula variables: A,
• atomic formulas of the metalanguage: α,
• formulas of the metalanguage: ϕ,
• α ::= w 
+ A | w 
− A | wRw,
• ϕ ::= α | ¬¬ϕ | ϕ ∧∧ ϕ | ϕ ∨∨ ϕ | ϕ→→ ϕ | ∀∀ϕ | ∃∃ϕ.
Bi-implication, ↔↔, is defined as usual.

1.1. Semantics for KFDE, KN4, BK2−, BK2, and BK

The languages LKFDE
= {∨,∧,∼,2}, LKN4 = {∨,∧,⇒,∼,2}, LBK2− =

{∨,∧,→,∼,2}, LBK2 = {∨,∧,→,∼,2,⊥} and LBK = {∨,∧,→,∼,
2,3,⊥} are based on a non-empty countable set of atomic propositions
Prop. We denote by Form(L), where L stands for the respective logic,
the set of formulas defined as usual, formulas by A, B, C, etc., and sets
of formulas by Γ , ∆, Σ, etc.

An L-model is a tuple M = 〈W,R, v+, v−〉, where W is a non-empty
set of information states (possible worlds), R ⊆ W×W is an accessibility
relation on W , and v+ and v− are functions v+, v− : Prop → 2W . We
now define verification and falsification relations 
+ and 
− between
worlds and formulas in a model M as follows:2

w 

+ p iff w ∈ v+(p);

w 

− p iff w ∈ v−(p);

w 

+ A ∧B iff (w 


+ A ∧∧ w 

+ B);

w 

− A ∧B iff (w 


− A ∨∨ w 

− B);

w 

+ A ∨B iff (w 


+ A ∨∨ w 

+ B);

w 

− A ∨B iff (w 


− A ∧∧ w 

− B);

w 

+ ∼A iff w 


− A;

w 

− ∼A iff w 


+ A;

w 

+ A → B iff (w 


+ A→→ w 

+ B);

w 

− A → B iff (w 


+ A ∧∧ w 

− B);

2 Since the metalanguage is classical, all classical equivalences hold in the meta-
language.
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w 

+ A ⇒ B iff ((w 


+ A→→ w 

+ B) ∧∧ (w 


− B →→ w 

− A));

w 

− A ⇒ B iff (w 


+ A ∧∧ w 

− B);

¬¬(w 

+ ⊥) w 


− ⊥;

w 

+
2A iff ∀∀u(wRu→→ u 


+ A);

w 

−
2A iff ∃∃u(wRu ∧∧ u 


− A);

w 

+
3A iff ∃∃u(wRu ∧∧ u 


+ A);

w 

−
3A iff ∀∀u(wRu→→ u 


− A).

We say that a formula A is true at world w in an L-model M iff
w 
+ A. We say that a formula A is true in an L-model, M 
+ A, iff A
is true at every world w from M’s set of worlds. A formula A is L-valid,
�L A, iff A is true in every L-model. Finally, a set of formulas Γ entails a
formula A in L, Γ �L A, iff for all L-models M and worlds w, if w 
+ B,
for all B ∈ Γ , then w 
+ A.

1.2. Semantics for BK2+2
− , BKFS

bl
, and MBL

The study of modal bilattice logic, MBL, was motivated in [12] by ob-
taining a modal extension of the four-valued logic FDE characterized by
possible worlds models with a four-valued accessibility relation between
possible worlds. In [10] it was shown that MBL can be faithfully em-
bedded into a logic characterized by the class of models of the fusion
BK2 × BK2 of two copies of BK2, enriched with the binary connectives
⊗ and ⊕ and the constants ⊤, b, and n from bilattice logic. Moreover,
it was shown that BK2 × BK2 and the Fischer Servi-style modal logic
BKFS are weakly definitionally equivalent. We shall refer to BK2 × BK2

and BKFS over the set of bilattice connectives as BK2+2
− and BKFS

bl
,

respectively.3 It will be shown that BK2+2
− , BKFS

bl
, and MBL are defi-

nitionally equivalent.
The languages LBK2+2

− = {∨,∧,⊗,⊕,→,∼,2+,2−,⊥,⊤, b, n},
LBKFS

bl

= {∨,∧,⊗,⊕,→,∼,2FS,3FS,⊥,⊤, b, n} and LMBL = {∨,∧,⊗,⊕,

→,∼,⊞,⊥,⊤, b, n} are based, as above, on a non-empty countable set
of atomic propositions Prop. Again, we denote by Form(L) the set of for-
mulas defined as usual, formulas by A, B, C, etc., and sets of formulas
by Γ , ∆, Σ, etc.

BK2+2
−-, BKFS

bl
- and MBL-models are tuples M = 〈W,R+, R−, v

+,
v−〉, where R+, R− ⊆ W × W are accessibility relations on W , and the

3 Note that BKFS

bl (BK2+2
−) is a conservative extension of BKFS (BK2 × BK2).



636 S. P. Odintsov, D. Skurt and H. Wansing

rest is analogously defined as above. For the connectives and constants
not considered so far, we have the following verification and falsification
conditions:

w 
+ A⊗B iff (w 
+ A ∧∧ w 
+ B);
w 
− A⊗B iff (w 
− A ∧∧ w 
− B);
w 
+ A⊕B iff (w 
+ A ∨∨ w 
+ B);
w 
− A⊕B iff (w 
− A ∨∨ w 
− B);
w 
+ ⊤ ¬¬(w 
− ⊤);
w 
+ b w 
− b;
¬¬(w 
+ n) ¬¬(w 
− n);
w 
+

2+A iff ∀∀u(wR+u→→ u 
+ A);
w 
−

2+A iff ∃∃u(wR+u ∧∧ u 
− A);
w 
+

2−A iff ∀∀u(wR−u→→ u 
+ A);
w 
−

2−A iff ∃∃u(wR−u ∧∧ u 
− A);
w 
+

2FSA iff ∀∀u(wR+u→→ u 
+ A);
w 
−

2FSA iff ∃∃u(wR+u ∧∧ u 
− A);
w 
+

3FSA iff ∃∃u(wR+u ∧∧ u 
+ A);
w 
−

3FSA iff ∀∀u(wR−u→→ u 
− A);
w 
+ ⊞A iff ∀∀u(wR+u→→ u 
+ A) ∧∧ ∀∀u(wR−u→→ ¬¬(u 
− A));
w 
− ⊞A iff ∃∃u(wR+u ∧∧ u 
− A).

Truth at a world, truth in a model, validity and entailment are de-
fined in analogy to the definitions of these notions in Subsection 1.1.

2. Logical Connectives for KFDE, KN4, BK2−, BK2, and BK

In this section we will follow [17], where in turn the results from [7] were
extended. Note that at first we will use almost the same definitions as in
[17]. We will make this clear by referring to the original definitions and
proofs. As already remarked in Introduction, the results presented here
do not establish functional completeness in the usual model theoretical
sense, even though we will use this term, but are results about the class
of connectives definable in the various modal extensions of FDE. As in [7]
and [17] we begin by restricting the expressiveness of our metalanguage.

If a metalogical formula ϕ contains the free variables w, A1, . . . ,
An, we will write this as ϕ(w,A1, . . . , An). Formulas wRu are called
relational atoms. In formulas ∀∀u(wRu→→ψ(u)) and ∃∃u(wRu∧∧ψ(u)) the
relational atom wRu is said to occur as a lower bound on the quantifier
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∀∀u (∃∃u), and the quantifier ∀∀u (∃∃u) is said to be bounded below by
wRu. Note that in the subformulas ψ(u), u is the only free variable.

Definition 2.1 ([17, Definition 1, p. 471]). A formula ϕ is a regular

metalogical formula iff

1. ϕ contains at most one free state variable,
2. all relational atoms occur as a lower bound on a quantifier,
3. every quantifier is bounded below by a relational atom.

Observation 2.1 (cf. Lemma 1 in [17, p. 473]). Every regular meta-
logical formula ϕ is of such shape that every quantified subformula of ϕ
has the shape ∀∀u(wRu→→θ(u)) or ∃∃u(wRu∧∧ θ(u)), where θ has no free
state variables other than u.

Definition 2.2 ([17, Definition 2, p. 471]). Let ϕ be a regular metalog-
ical formula. The formula ϕ is inductively defined as follows:

α = α, α is an atom
¬¬wRu = ¬¬wRu

¬¬w 
+ A = w 
− A
¬¬w 
− A = w 
+ A

¬¬¬¬θ = θ
ψ ◦ θ = ψ ◦ θ, ◦ ∈ {∧∧,∨∨,→→}

¬¬(ψ ∧∧ θ) = ¬¬ψ ∨∨ ¬¬θ

¬¬(ψ ∨∨ θ) = ¬¬ψ ∧∧ ¬¬θ

¬¬(ψ →→ θ) = ψ ∧∧ ¬¬θ

∀∀u(wRu→→ θ(u)) = ∀∀u(wRu→→ θ(u))

∃∃wψ = ∃∃u(wRu ∧∧ θ(u))

¬¬ ∀∀u(wRu→→ θ(u)) = ∃∃u¬¬(wRu→→ θ(u))

¬¬ ∃∃u(wRu ∧∧ θ(u)) = ∀∀u¬¬(wRu ∧∧ θ(u))

If ϕ is a regular metalogical formula, then ϕ is said to be an L-regular

metalogical formula for L ∈ {KN4,BK2−,BK2,BK}.

Remark 2.1. The notion of KFDE-regular formulas requires another con-
dition for →→ if ψ is not a relational atom:

ψ →→ θ = ¬¬ψ ∨∨ θ

This additional condition restricts the set of KFDE-regular connectives
since the classical metalogical implication cannot be expressed in the
object language of KFDE. The condition also needs to be used in [17] to
make the proof work there.
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Definition 2.3 ([17, Definition 3, p. 472]). A definition of an n-place
(n ­ 1) connective ⋆ has the form: for every model M = 〈W,R, v+, v−〉
and every w ∈ W ,

w 

+
⋆(A1, . . . , An) iff ψ(w, (A1, . . . , An)) and w 


−
⋆(A1, . . . , An)

iff ¬¬ψ(w, (A1, . . . , An)),

where ψ is an L-regular metalogical formula, by which ⋆ is said to be
defined.

Definition 2.4 ([17, Definition 5, p. 472]). The degree of quantification

d(ϕ) of a metalogical formula ϕ is inductively defined as follows:

• d(ϕ) = 0, if ϕ is quantifier-free;
• d(ϕ) = max(ni + 1) for 1 ¬ i ¬ j, if ϕ has j quantifiers, the i-th

quantifier ranges over the subformula δi of ϕ, and ni is the degree of
quantification of δi.

Observation 2.2 (cf. Lemma 2 in [17, p. 474]). Every L-regular meta-
logical formula ϕ is of such shape that every quantified subformula of ϕ
has the form ∀∀u(wRu→→ θ(u)) or ∃∃u(wRu∧∧ θ(u)), where θ has no free
state variable other than u.

Proof. The translation · does not generate new free variables. ⊣

Observation 2.3 (cf. Corollary 1 in [17, p. 474]). Let ϕ be an L-regular
metalogical formula. For every subformula of ϕ of the shape ∀∀u(wRu→→
θ(u)) or ∃∃u(wRu ∧∧ θ(u)), θ is L-regular.

Observation 2.4 (cf. Observation 2 in [17, p. 474]). For each L-formula
A, ϕ iff w 
+ A just in case ¬¬ϕ iff w 
− A.

Proof. The proof is by induction on A and follows the proof of Ob-
servation 2 in [17, p. 474] (neglecting the constructive implication). We
only need to prove the observation for the operators ⊥,→,⇒,2, and 3.

Suppose A = A → B:4

ϕ iff w 

+ A → B

iff w 
+ A→→ w 
+ B

∴ ¬¬ϕ iff ¬¬(w 
+ A→→ w 
+ B)

iff w 
+ A ∧∧ ¬¬w 
+ B

4 We will make use of “∴” to denote the classical consequence relation in the
metalanguage
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iff w 

+ A ∧∧ w 


− B

iff w 

− A → B

¬¬ϕ iff w 

− A → B

iff w 
+ A ∧∧ w 
− B

iff ¬¬(¬¬w 
+ A ∨∨ ¬¬w 
− B)

∴ ϕ iff ¬¬w 
+ A ∨∨ ¬¬w 
− B

iff w 
+ A→→ ¬¬w 
− B

iff w 

+ A→→ w 


+ B

iff w 

+ A → B

Now, suppose A = A ⇒ B:
ϕ iff w 


+ A ⇒ B

iff (w 
+ A→→ w 
+ B) ∧∧ (w 
− B →→ w 
− A)

∴ ¬¬ϕ iff ¬¬((w 
+ A→→ w 
+ B) ∧∧ (w 
− B →→ w 
− A))

iff ¬¬(w 
+ A→→ w 
+ B) ∨∨ ¬¬(w 
− B →→ w 
− A)

iff (w 
+ A ∧∧ ¬¬w 
+ B) ∨∨ (w 
− B ∧∧ ¬¬w 
− A)

iff (w 

+ A ∧∧ w 


− B) ∨∨ (w 

− B ∧∧ w 


+ A)

iff w 

+ A ∧∧ w 


− B

iff w 

− A ⇒ B

¬¬ϕ iff w 

− A ⇒ B

iff w 
+ A ∧∧ w 
− B

iff (w 
+ A ∧∧ w 
− B) ∨∨ (w 
+ A ∧∧ w 
− B)

iff ¬¬(¬¬(w 
+ A ∧∧ w 
− B) ∧∧ ¬¬(w 
+ A ∧∧ w 
− B))

∴ ϕ iff ¬¬(w 
+ A ∧∧ w 
− B) ∧∧ ¬¬(w 
+ A ∧∧ w 
− B)

iff (¬¬w 
+ A ∨∨ ¬¬w 
− B) ∧∧ (¬¬w 
+ A ∨∨ ¬¬w 
− B)

iff (¬¬w 
+ A ∨∨ w 
+ B) ∧∧ (w 
− A ∨∨ ¬¬w 
− B)

iff (w 
+ A→→ w 
+ B) ∧∧ (w 
− B →→ w 
− A)

iff w 

+ A ⇒ B

Now, suppose A = 2A:
ϕ iff w 


+
2A

iff ∀∀u(wRu→→ u 
+ A);
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∴ ¬¬ϕ iff ¬¬(∀∀u(wRu→→ u 
+ A)

iff ∃∃u¬¬(wRu→→ u 
+ A)

iff ∃∃u(wRu ∧∧ ¬¬u 
+ A)

iff w 

−
2A

and vice versa. The proof for 3A is similar.

The proof for A = ⊥ is a degenerate case, since ¬¬(w 
+ ⊥) and
w 
− ⊥, but neither ¬¬(w 
− ⊥) nor w 
+ ⊥, hence the equivalence is
trivially true. ⊣

Definition 2.5. A logical connective that can be defined by means of
an L-regular metalogical formula is said to be an L-regular connective.

Observation 2.5. The sets of connectives {∨,∧,∼,2}, {∨,∧,∼,⇒,2},
{∨,∧,∼,→,2}, {∨,∧,∼,→,⊥,2} and {∨,∧,∼,→,⊥,2,3} are sets of
KFDE-, KN4-, BK2−-, BK2- and BK-regular connectives, respectively.

Theorem 2.6. In the class of L-regular connectives the respective sets
of connectives are functionally complete. In other words, if an n-ary
(n ­ 1) connective ⋆ is defined by means of an L-regular metalogical
formula ϕ , then there is an L-formula A such that the following holds:
ϕ↔↔ w 
+ A (and ¬¬ϕ↔↔ w 
− A).

Proof. By induction on the degree of quantification of ϕ. Let 
± stand
uniformly either for + or for −.

Suppose d(ϕ) = 0, then every atomic subformula of ϕ is a non-
relational atom and every metalogical operator occurring in ϕ is either
∧∧, ∨∨, or →→. Let A be the result of replacing every occurrence of ∧∧
by ∧, every occurrence of ∨∨ by ∨, every occurrence of w 
+ B by B,
and every occurrence of w 
− B by ∼B. In case of BK2−, BK2 and
BK we furthermore replace every occurrence of w 
± A →→ w 
± B by
A∗ → B∗ and in case of KN4 every occurrence of w 
± A →→ w 
±

B by (A∗ ⇒ (A∗ ⇒ B∗)) ∨ B∗, where A∗ and B∗ are the respective
replacements of w 
± A and w 
± B. In case of BK2 and BK we
furthermore replace every occurrence of w 
+ ⊥ by ∼⊥ and w 
− ⊥ by
⊥. Then ϕ↔↔ w 
+ A (as well as ¬¬ϕ↔↔ w 
− A ), cf. Observation 2.4.
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Now, let d(ϕ) > 0. Then there is a subformula of ϕ of the shape
∀∀u(wRu →→ θ) or ∃∃u(wRu ∧∧ θ), where θ is quantifier free. By the in-
duction base case, θ ↔↔ A for some L-formula A. Now we have:

∀∀u(wRu→→ θ) iff w 
+
2A

∃∃u(wRu ∧∧ θ) iff w 
+ ∼2∼A

Moreover, additionally for BK we have:

∃∃u(wRu ∧∧ θ) iff w 
+
3A

If the subformulas ∀∀u(wRu →→ θ) and ∃∃u(wRu ∧∧ θ) in ϕ are replaced
by their respective equivalents, the result is an L-regular metalogical
formula which has one quantifier less than ϕ, and hence the induction
hypothesis can be used. ⊣

Remark 2.2. Since ⋆(A1, . . . , An) and the L- formula A that is guaran-
teed to exist by Theorem 2.6 share their verification and their falsification
conditions, the two formulas are provably strongly equivalent in every
logic under consideration in which strong implication, ⇒, is either primi-
tive or definable. In [9, 10] it was shown that provable strong equivalence
is a congruence relation in BK and in BK2, so that ⋆(A1, . . . , An) and
A are mutually replaceable in deductive contexts, which justifies consid-
ering A as definiens of ⋆(A1, . . . , An). The same replacement property
holds for KFDE, KN4, and BK2−.

Remark 2.3. The result presented above is in need of some clarifica-
tion. At first glance, Theorem 2.6 seems to state the rather trivial result
that everything that is expressible is expressible. However, the result
not only shows what is expressible, but also what is not. The proof
of functional completeness heavily relies 1) on the notion of L-regular
connectives and 2) on the requirement that verification and falsification
can be expressed by one metalogical formula as in Observation 2.4. The
verification and falsification conditions coming with the connectives for
the languages considered so far are thus symmetrical in the sense that
they are not really independent from each other. As for 1), in the class
of L-regular connectives it is, for example, not possible to distinguish
between ¬¬w 
+ A and w 
− A (¬¬w 
− A and w 
+ A). This means
that operators like � which would make FDE functionally complete in
the usual sense, cf. [11], with the following verification and falsification
conditions: w 
+� A iff (w 
+ A∧∧¬¬w 
− A) ∨∨ (¬¬w 
+ A∧∧¬¬w 
− A)
and w 
−� A iff (w 
+ A ∧∧ ¬¬w 
− A) ∨∨ (w 
+ A ∧∧ w 
− A) cannot
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be expressed by means of the given languages, as one perhaps desires.
As for 2), the requirement that verification and falsification need to be
expressed by one metalogical formula limits the class of languages to
which the presented method can be applied to. Similar things can be
said about the results in [17]. Therefore, in languages that contain con-
nectives for which the verification and falsification conditions can be seen
as asymmetrical, we need to alter our method to obtain results about
the classes of definable connectives.

Remark 2.4. Moreover, Remark 2.3 leads to the conclusion that the
presented method cannot be applied to BK2+2

− , BKFS

bl
, and MBL, as

the following observation shows.

Observation 2.7. For some BK2+2
− -, BKFS

bl
-, and MBL-formula A, ϕ

iff w 
+ A not just in case ¬¬ϕ iff w 
− A.

Proof. Suppose A = A⊗B:

ϕ iff w 
+ A⊗B

iff w 
+ A ∧∧ w 
+ B

∴ ¬¬ϕ iff ¬¬(w 
+ A ∧∧ w 
+ B)

iff ¬¬w 
+ A ∨∨ ¬¬w 
+ B
iff w 
− A ∨∨ w 
− B

not iff w 
− A⊗B

¬¬ϕ iff w 
− A⊗B

iff w 
− A ∧∧ w 
− B

iff ¬¬(¬¬w 
− A ∨∨ ¬¬w 
− B)

∴ ϕ iff ¬¬w 
− A ∨∨ ¬¬w 
− B

iff ¬¬w 
− A ∨∨ ¬¬w 
− B
iff w 
+ A ∨∨ w 
+ B

not iff w 
+ A⊗B

The case for ⊕ is similar. ⊣

Remark 2.5. Even though the verification and falsification conditions
for ⊗ and ⊕, on their own, are regular metalogical formulas in the sense
of Definition 2.1 and even BK2+2

−-, BKFS

bl
-, and MBL-regular, there

is no BK2+2
−-, no BKFS

bl
-, and no MBL-regular formula ϕ, such that

ϕ↔↔ w 
+ A ◦B (and ¬¬ϕ↔↔ w 
− A ◦B), with ◦ ∈ {⊗,⊕}.
In the following we will therefore adjust the presented method for

obtaining definable connectives. In particular, we will first prove results
about definitional equivalence between BK2+2

− , BKFS

bl
, and MBL and
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then make some changes in our metalanguage in order to prove results
about functional completeness.

3. Weak definitional equivalence in bilattice languages

In this section we will use the following abbreviations:

A ⇔ B := (A ⇒ B) ∧ (B ⇒ A),

A ↔ B := (A → B) ∧ (B → A),

¬A := A → ⊥.

The connectives ⇔ and ↔ are called strong equivalence and weak equiv-
alence, respectively. The weak equivalence respects the verification of
formulas, for any world w of any of the models under consideration we
have:

w 

+ A ↔ B iff (w 


+ A iff w 

+ B).

The strong equivalence connective is strong insofar as it respects also
the falsification of formulas:

w 

+ A ⇔ B iff (w 


+ A iff w 

+ B) ∧∧ (w 


− A iff w 

− B).

We call ¬ the classical negation. The verification and falsification
clauses for the classical negation look as follows:

w 

+ ¬A iff ¬¬(w 


+ A); w 

− ¬A iff w 


+ A.

3.1. Weak structural translations and weak definitional equivalence

First we recall the notion of definitional equivalence of logics from [5],
which was also considered as basic in [13] and [10].

Definition 3.1. If L1 and L2 are propositional languages, then an ar-
bitrary mapping θ : Form(L1) → Form(L2) is called a translation from

language L1 to L2. A translation θ is structural if it is induced by some
mapping α, which sends every n-ary connective c of L1 to a formula
α(c)(p1, . . . , pn) from Form(L2), in the following way:

θ(p) = p, p ∈ Prop; θ(c(A1, . . . , An)) = α(c)(p1/θ(A1), . . . , pn/θ(An)),

where A1, . . . , An ∈ Form(L1).

Notice that the definition of structural translation assumes that for-
mulas of both languages L1 and L2 are constructed starting from the
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same set of propositional variables Prop. This is not an essential re-
striction for our goals. Notice also that the condition on θ to preserve
propositional variables is present also in [8].

In the following we assume that the notion of a logic has been de-
fined such that a logic L determines a Tarskian consequence relation
⊢L between sets of formulas and single formulas. For all logics defined
in Section 2, we mean by ⊢L the local consequence relation �L defined
semantically at the end of Subsection 2.2. Moreover, whereas classical
negation satisfies contraposition (if A �L B, then ¬B �L ¬A), it is char-
acteristic of strong negation, that it does not satisfy contraposition in
general, which may lead to failure of the replacement rule for provably
weakly equivalent formulas.

Definition 3.2. (cf. [5, 13]) Let Li be a logic in the propositional lan-
guage Li, i = 1, 2.5 Let θ : Form(L1) → Form(L2) and ρ : Form(L2) →
Form(L1) be two structural translations. We say that L1 and L2 are
definitionally equivalent (d-equivalent) via translations θ and ρ if the
following conditions hold:

1. For Γ ∪{A} ⊆ Form(L1), the relation Γ ⊢L1
A implies θ(Γ ) ⊢L2

θ(A),
where θ(Γ ) := {θ(A) | A ∈ Γ}.

2. For Γ ∪{A} ⊆ Form(L2), the relation Γ ⊢L2
A implies ρ(Γ ) ⊢L1

ρ(A).
3. For every A ∈ Form(L1) and B ∈ Form(L2),

A ⇔ ρθ(A) ∈ L1 and B ⇔ θρ(B) ∈ L2 .

As compared to [5, 13], we simplified the definition of structural
translations, omitting peculiarities connected with the translation of
propositional constants via formulas with variables and with the pres-
ence of additional variables in formulas α(c). In Item 3 of the original
definition from [5], conditions A ⇔ ρθ(A) ∈ L1 and B ⇔ θρ(B) ∈ L2 are
replaced by conditions (A, ρθ(A)) ∈ Ω̃(L1 ) and respectively (B, θρ(B)) ∈
Ω̃(L2 ), where Ω̃(Li) denotes the so called Tarski’s congruence over logic
Li , i.e., the largest congruence on the algebra of formulas with the uni-
verse Form(Li) that respects all theories over Li (see [2, 4] for details).
However, in many logics L with strong negation, in particular in all logics
considered in this article, its Tarski’s congruence is determined by the
condition A ⇔ B ∈ L (see [10] for details).

5 We assume that either the strong equivalence connective is present in both
languages L1 and L2 or {⇒, ∧} ⊆ Li, i = 1, 2 and ⇔ is treated as an abbreviation.
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In [10] it was suggested to weaken the notion of definitional equiva-
lence for logics with strong negation ∼ in the language. Namely, it was
admitted that the translations involved in the previous definition are
not structural for ∼. Moreover, in Item 3 of Definition 3.2 the strong
equivalence was replaced by the weak one. We now slightly generalize
the notion of a weak structural translation as compared to [10], making
it more symmetrical.

Definition 3.3. Let L1 and L2 be propositional languages containing
∼. A translation θ : Form(L1) → Form(L2) is called weakly structural if
there are two mappings α and β, which send every n-ary connective c
of L1 \{∼} to formulas α(c)(p1, q1 . . . , pn, qn) and β(c)(p1, q1 . . . , pn, qn).
The translation θ is determined by α and β as follows:

θ(p) = p, θ(∼p) = ∼p, p ∈ Prop; θ(∼∼A) = θ(A);
θ(c(A1, ..., An)) = α(c)(p1/θ(A1), q1/θ(∼A1), ..., pn/θ(An), qn/θ(∼An));
θ(∼c(A1, ..., An))=β(c)(p1/θ(A1), q1/θ(∼A1), ..., pn/θ(An), qn/θ(∼An)),

where A1, . . . , An ∈ Form(L1).

Definition 3.4. Let Li be a logic in the propositional language Li,
i = 1, 2. Let θ : Form(L1) → Form(L2) and ρ : Form(L2) → Form(L1)
be two weak structural translations. We say that L1 and L2 are weakly

definitionally equivalent (weakly d-equivalent) via translations θ and ρ if
the following conditions hold:

1. For Γ ∪ {A} ⊆ Form(L1), the relation Γ ⊢L1
A implies θ(Γ ) ⊢L2

θ(A).
2. For Γ ∪ {A} ⊆ Form(L2), the relation Γ ⊢L2

A implies ρ(Γ ) ⊢L1
ρ(A).

3. For every A ∈ Form(L1) and B ∈ Form(L2),

A ↔ ρθ(A) ∈ L1 and B ↔ θρ(B) ∈ L2 .

To prove the main theorem of this section we will need weak struc-
tural translations satisfying some additional conditions.

Definition 3.5. Let L be a propositional language containing ∼, L

a logic in language L, and A(p1, . . . , pn) ∈ Form(L). We say that
C(p1, . . . , pn) agrees with the weak equivalence of L if for formulas
Ai, Bi ∈ Form(L), 1 ¬ i ¬ n, the relations

Ai ↔ Bi ∈ L, 1 ¬ i ¬ n

imply
C(A1, . . . , An, ) ↔ C(B1, . . . , Bn, Dn) ∈ L.
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In other words, a formula C(p1, . . . , pn) agrees with the weak equiv-
alence of L if L is closed under the rule

p1 ↔ q1, . . . , p1 ↔ q1

C(p1, . . . , pn) ↔ C(q1, . . . , qn)
.

This condition is not trivial for logics with strong negation. Usually, such
logics admit the replacement of weak equivalents in ∼-free formulas, but
such replacement rule fails in the general case.

Definition 3.6. Let L1 and L2 be propositional languages containing
∼. Let L2 be a logic in language L2. We say that a weak structural
translation θ : Form(L1) → Form(L2) agrees with the weak equivalence
of L2 if the mappings α and β determining θ are such that for every
n-ary connective c of L1 \ {∼}, the formulas

α(c)(p1, q1, . . . , pn, qn) and β(c)(p1, q1, . . . , pn, qn)

agree with the weak equivalence of L2 .

3.2. From weak d-equivalence to d-equivalence

The aim of this section is to formulate conditions on logics under which
weak d-equivalence implies d-equivalence.

Definition 3.7. A propositional logic L formulated in the language L
is called a bl-logic if it satisfies the following properties:

1. The weak equivalence connective detaches in L, i.e., for any formulas
A and B, B′, we have

A,A ↔ B ⊢L B.
2. There is a formula ⊙(p, q) ∈ Form(L) such that for any two formulas
A,B ∈ Form(L), we have

⊢L ⊙(A,B) ↔ A and ⊢L ∼ ⊙ (A,B) ↔ B.

Item 1 is natural for every truth (verification) preserving bicondi-
tional. Item 2 is typical for logics based on a bilattice language, by
which we mean a language extending {∨,∧,⊗,⊕,→,∼,⊥,⊤, b, n}, and
which explains the choice of the term “bl-logic”. This condition was in-
spired by the results of [1] on mutual definability of different connectives
in a bilattice language. To some extent the existence of a combinator
formula ⊙(p, q), which allows to combine an arbitrary truth condition
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with an arbitrary falsity condition, corresponds to the fact that a bilat-
tice (with operators) can be represented as a full twist-structure over
a lattice (with operators)(see the representation theorems in [1, 6, 12]).
Recall that a full twist-structure is an algebra defined on the direct
power of the universe of another algebra, but the new operations are not
defined componentwise, they are somehow “twisted”. Roughly speaking,
the first component of a twist-structure is a measure of truth, and the
second component is a measure of falsity. An arbitrary twist-structure is
a subalgebra of the full one. Algebraic models of many logics with strong
negation can be represented as twist-structures. These twist-structures
are not necessarily full. For example, models of explosive Nelson’s logic
N3 are isomorphic to twist-structures over Heyting algebras consisting
of pairs (a, b) such that a ∧ b = 0 (see [14]). This is not so in the
case of bilattice-based logics, whose algebraic models are necessarily full
twist-structures. The presence of bilattice connectives in the language
guarantees, in particular, that a full twist-structure has no proper sub-
algebras.

We say that two formulas A and B are L-equivalent if ⊢L A ↔ B.

Theorem 3.1. Let Li be a bl-logic formulated in language Li, i = 1, 2.
Assume that logics L1 and L2 are weakly d-equivalent via translations θ
and ρ such that θ agrees with the weak equivalence of L2 , and ρ agrees
with the weak equivalence of L1 . Further, we assume that θ and ρ com-
mute with the weak equivalence connective ↔. Then there are structural
translations θ′ and ρ′ such that they commute with strong negation and
logics L1 and L2 are d-equivalent via translations θ′ and ρ′.

Proof. Assume that the functions α and β determine a weak structural
translation θ, whereas the functions γ and δ determine ρ. In this way,
for every c ∈ L1 \ {∼} we have

θ(c(A1, . . . , An)) = α(c)(θ(A1), θ(∼A1), . . . , θ(An), θ(∼An)),

θ(∼c(A1, . . . , An)) = β(c)(θ(A1), θ(∼A1), . . . , θ(An), θ(∼An)),

where A1, . . . , An ∈ Form(L1). Moreover, for every c ∈ L2 \{∼} we have

ρ(c(B1, . . . , Bn)) = γ(c)(θ(B1), θ(∼B1), . . . , θ(Bn), θ(∼Bn)),

ρ(∼c(B1, . . . , Bn)) = δ(c)(θ(B1), θ(∼B1), . . . , θ(Bn), θ(∼Bn)),

where B1, . . . , Bn ∈ Form(L2).
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Let ⊙i(p, q) be an Li-formula such that

⊢Li
⊙i(A,B) ↔ A and ⊢Li

∼ ⊙i (A,B) ↔ B

for all Li-formulas A and B. We define two mappings ζ : L1 → Form(L2)
and η : L2 → Form(L1) as follows:

ζ(cn) = ⊙2(α(c)(p1,∼p1, . . . , pn,∼pn), β(c)(p1,∼p1, . . . , pn,∼pn)),

for c ∈ L1 \ {∼}; and

η(cn) = ⊙1(γ(c)(p1,∼p1, . . . , pn,∼pn), δ(c)(p1,∼p1, . . . , pn,∼pn)),

for c ∈ L2 \ {∼}; and

ζ(∼) = ∼p and η(∼) = ∼p.

Let θ′ and ρ′ be structural translations induced by mappings ζ and
η respectively. It remains to prove that θ′ and ρ′ are translations as
required, i.e., that θ′ and ρ′ commute with negation and that L1 and L2

are d-equivalent via θ′ and ρ′. The former is obvious, to prove the latter
we establish first the following fact.

Lemma 3.2. For every L1-formula A and L2-formula B, we have

⊢L2
θ(A) ↔ θ′(A) and ⊢L1

ρ(B) ↔ ρ′(B).

Proof. We prove only the first of the two equivalences by induction on
the structure of formulas, the proof of the second is similar. The base of
induction is obvious in view of

θ(p) = θ′(p) = p and θ(∼p) = θ′(∼p) = ∼p.

Let c be an n-ary connective of L1. Assume that for L1-formulas A1,
. . . , An we just proved

⊢L2
θ(Ai) ↔ θ′(Ai) and ⊢L2

θ(∼Ai) ↔ θ′(∼Ai), i = 1, . . . , n.

We have then

θ′(c(A1, . . . , An)) =

⊙2 (α(c)(θ′(A1),∼θ′(A1), . . .), β(c)(θ′(A1),∼θ′(A1), . . .)),

which is L2 -equivalent by the properties of ⊙2(p, q) to
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α(c)(θ′(A1),∼θ′(A1), . . . , θ′(An),∼θ′(An)) =

α(c)(θ′(A1), θ′(∼A1), . . . , θ′(An), θ′(∼An)).

The last equality is due to ζ(∼) = ∼p. Applying the induction hypoth-
esis and the fact that α(c) agrees with the weak equivalence of L2 , we
conclude that the last formula is L2 -equivalent to

α(c)(θ(A1), θ(∼A1), . . . , θ(An), θ(∼An)) = θ(c(A1, . . . , An)).

For a negated formula ∼c(A1, . . . , An) we have

θ′(∼c(A1, . . . , An))

∼ ⊙2 (α(c)(θ′(A1),∼θ′(A1), . . .), β(c)(θ′(A1),∼θ′(A1), . . .)).

Applying again the properties of ⊙2(p, q), the fact that β(c) agrees with
the weak equivalence of L2 , and the induction hypothesis, we conclude
that this formula is L2 -equivalent to

β(c)(θ(A1), θ(∼A1), . . . , θ(An), θ(∼An)) = θ(∼c(A1, . . . , An)). ⊣

We come back to the proof of the theorem. By the previous lemma,
the weak equivalences

θ(B) ↔ θ′(B), θ(A1) ↔ θ′(A1), . . . , θ(An) ↔ θ′(An)

are provable in L2 for any L1-formulas B, A1, . . . , An. This fact, Item 1
of Definition 3.7, and the transitivity of ⊢L2

entail that the relation

θ(A1), . . . , θ(An) ⊢L2
θ(B) implies θ′(A1), . . . , θ′(An) ⊢L2

θ′(B).

In this way the fact that θ′ embeds L1 into L2 follows from the fact that
θ embeds L1 into L2 . Similarly, we prove that ρ′ embeds L2 into L1 .

It remains to prove that the translations θ′ and ρ′ are mutually in-
verse up to weak equivalence. Let A ∈ Form(L1). By assumption we have
⊢L1

A ↔ ρθ(A), and by Lemma 3.2, ⊢L2
θ(A) ↔ θ′(A). Since ρ embeds

L2 into L1 and commutes with ↔, we obtain ⊢L1
ρθ(A) ↔ ρθ′(A). Again

by Lemma 3.2, ⊢L1
ρθ′(A) ↔ ρ′θ′(A). Finally, applying the transitivity

of weak equivalence, we conclude ⊢L1
A ↔ ρ′θ′(A). In a similar way one

can establish that ⊢L2
A ↔ θρ(A) for A ∈ Form(L2). ⊣
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3.3. Definitional equivalence of BK2+2
− , BKFS

bl
, and MBL

In [9], it was proved that BKFS and the fusion BK2 ×BK2 are weakly d-
equivalent. If we denote the modal operators of BK2 × BK2 as 2+

and 2−, then BK2+2
− becomes a conservative extension of BK2 ×

BK2, and we can adopt the proof from [9] to establish the weak d-
equivalence of BKFS

bl
and BK2+2

− . The weakly structural translation
θ : Form(LBKFS

bl

) −→ Form(LBK
2+2

− ) is defined so that it preserves propo-
sitional variables and constants, commutes with all non-modal connec-
tives, whereas for modalities we have

θ(2FSA) = 2+θ(A) and θ(3FSA) = ∼2+∼θ(A).

For strongly negated formulas, we define θ as follows:

θ(∼p) = ∼p, θ(∼⊥) = ∼⊥, θ(∼⊤) = ∼⊤, θ(∼b) = b, θ(∼n) = n,

θ(∼(A ∨B)) = θ(∼A) ∧ θ(∼B), θ(∼(A ∧B)) = θ(∼A) ∨ θ(∼B),

θ(∼(A⊕B)) = θ(∼A) ⊕ θ(∼B), θ(∼(A⊗B)) = θ(∼A) ⊗ θ(∼B),

θ(∼(A → B)) = θ(A) ∧ θ(∼B), θ(∼∼A) = θ(A),

θ(∼2FSA) = ∼2+∼θ(∼A), θ(∼3FSA) = 2−θ(∼A).

The inverse translation ρ : Form(LBK2+2
− ) −→ Form(LBKFS

bl

) also pre-
serves propositional variables and constants and commutes with the non-
modal connectives. For modal operators, we put

ρ(2+A) = 2FSρ(A) and ρ(2−A) = ∼3FS∼ρ(A).

For strongly negated formulas, ρ is defined as follows:

ρ(∼p) = ∼p, ρ(∼⊥) = ∼⊥, ρ(∼⊤) = ∼⊤, ρ(∼b) = b, ρ(∼n) = n,

ρ(∼(A ∨B)) = ρ(∼A) ∧ ρ(∼B), ρ(∼(A ∧B)) = ρ(∼A) ∨ ρ(∼B),

ρ(∼(A⊕B)) = ρ(∼A) ⊕ ρ(∼B), ρ(∼(A⊗B)) = ρ(∼A) ⊗ ρ(∼B),

ρ(∼(A → B)) = ρ(A) ∧ ρ(∼B), ρ(∼∼A) = ρ(A),

ρ(∼2+A) = ∼2FS∼ρ(∼A), ρ(∼2−A) = ¬∼3FS∼¬ρ(∼A).

Theorem 3.3. The logics BKFS

bl
and BK2+2

− are weakly d-equivalent
via translations θ and ρ.

Proof. Taking into account that both logics were defined over the same
class of models, the weak d-equivalence of logics BKFS

bl
and BK2+2

−

easily follows from the next lemma.
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Lemma 3.4. For every model M = 〈W,R,R′, v+, v−〉, w ∈ W , and for-
mulas A ∈ Form(LBK

2+2
− ), B ∈ Form(LBKFS

bl

), the following equivalences
hold:

M, w |=+ A iff M, w |=+ θ(A),

M, w |=+ ρ(B) iff M, w |=+ B.

Proof. Both equivalences were proved by induction on the structure of
formulas in Lemma 4.6 of [10] for a weaker language not containing the
connectives ⊕, ⊗ and the constants b, n, ⊤. Let us consider the cases
for ∼(A⊕B) and ∼(A⊗B).

w 
+ θ(∼(A⊕B))
iff w 
+ θ(∼A) ⊕ θ(∼B) (by definition of θ)
iff (w 
+ θ(∼A) ∨∨ w 
+ θ(∼B))
iff (w 
+ ∼A ∨∨w 
+ ∼B) (by induction hypothesis)
iff (w 
− A ∨∨ w 
− B)
iff w 
− A⊕B
iff w 
+ ∼(A⊕B).

w 
+ θ(∼(A⊗B))
iff w 
+ θ(∼A) ⊗ θ(∼B) (by definition of θ)
iff (w 
+ θ(∼A) ∧∧ w 
+ θ(∼B))
iff (w 
+ ∼A ∧∧w 
+ ∼B) (by induction hypothesis)
iff (w 
− A ∧∧ w 
− B)
iff w 
− A⊗B
iff w 
+ ∼(A⊗B). ⊣

⊣

Corollary 3.5. The logics BKFS

bl
and BK2+2

− are d-equivalent.

Proof. To apply Theorem 3.1, we have to check that BKFS

bl
and

BK2+2
− are bl-logics, that translations θ and ρ agree with weak the

equivalences of BK2+2
− and BKFS

bl
respectively, and that both θ and

ρ commute with ↔. The last fact is obvious. The fact that θ and ρ
agree with the weak equivalences of BK2+2

− and BKFS

bl
easily follows

from the definition of translations and the definition of verification and
falsification of formulas. Item (1) of Definition 3.7 obviously holds for
both logics. As for ⊙(p, q), one can choose in both cases the formula

⊙(p, q) = (p ∧ b) ∨ (∼q ∧ n). ⊣
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It turns out that MBL is also a bl-logic, and we prove now that
MBL and BK2+2

− are d-equivalent. The weakly structural translation
ζ : Form(LMBL) −→ Form(LBK2+2

− ) is a modification of the translation
of MBL-formulas into BK2+2

−-formulas from [10]. This translation pre-
serves propositional variables and the four constants, and commutes with
the connectives ∧, ∨, ⊗, ⊕. The modality ⊞ and its strong negation are
treated by ζ as follows:

ζ(⊞A) = 2+ζ(A) ∧ 2−¬ζ(∼A), ζ(∼ ⊞A) = ∼2+∼ζ(∼A).

For other strongly negated formulas, ζ is defined analogously to the
translation θ (see above).

We define the inverse weakly structural translation η : Form(LBK2+2
− )

−→ Form(LMBL) so that it preserves again propositional variables and
the four constants, and commutes with the connectives ∧, ∨, ⊗, ⊕, →.
The modal connectives of BK2+2

− and their strong negations are treated
by η as follows:

η(2+A) = ⊞(η(A) ∨ n), η(∼2+A) = ∼ ⊞ ∼η(∼A),

η(2−A) = ⊞(∼¬η(A) ∨ b), η(∼2−A) = ¬ ⊞ (∼η(∼A) ∨ b).

The translations of other strongly negated formulas are defined as above.

Theorem 3.6. The logics MBL and BK2+2
− are weakly d-equivalent

via translations ζ and η.

Proof. Again we have two logics defined over the same class of models,
so all what we need is to prove an analogue of Lemma 3.4.

Lemma 3.7. For every model M = 〈W,R,R′, v+, v−〉, w ∈ W , and for-
mulas A ∈ Form(LMBL), B ∈ Form(LBK2+2

− ), the following equivalences
hold:

M, w |=+ A iff M, w |=+ ζ(A),

M, w |=+ η(B) iff M, w |=+ B.

Proof. The first of this equivalences was established in the proof of
Theorem 5.7 of [10] stating that ζ faithfully embeds MBL into BK2+2

− .
By induction on the structure of formulas we prove the second equiv-

alence. We only check the cases for modalities and for strong negations
of modalities.

w 
+ η(2+B)
iff w 
+ ⊞(η(B) ∨ n) (by definition of η)
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iff (∀∀u(wR+u→→ u 
+ η(B) ∨ n) ∧∧ ∀∀u(wR−u→→ ¬¬(u 
− η(B) ∨ n)))
iff (∀∀u(wR+u→→ (u 
+ η(B) ∨∨u 
+ n)) ∧∧∀∀u(wR−u→→ ¬¬(u 
− η(B) ∧∧
u 
− n)))
iff ∀∀ u(wR+u→→ u 
+ η(B)) (in view of ¬¬(u 
+ n) and ¬¬(u 
− n))
iff ∀∀ u(wR+u→→ u 
+ B) (by induction hypothesis)
iff w 
+

2+B.

w 
+ η(∼2+B)
iff w 
+ ∼ ⊞ ∼η(∼B) (by definition of η)
iff w 
− ⊞∼η(∼B)
iff ∃∃ u(wR+u ∧∧ u 
− ∼η(∼B))
iff ∃∃ u(wR+u ∧∧ u 
+ η(∼B))
iff ∃∃ u(wR+u ∧∧ u 
+ ∼B) (by induction hypothesis)
iff ∃∃ u(wR+u ∧∧ u 
− B)
iff w 
−

2+B.
iff w 
+ ∼2+B.

w 
+ η(2−B)
iff w 
+ ⊞(∼¬η(B) ∨ b) (by definition of η)
iff ∀∀u(wR+u→→u 
+ ∼¬η(B)∨b)∧∧∀∀u(wR−u→→¬¬(u 
− ∼¬η(B)∨b))
iff ∀∀u(wR+u →→ (u 
+ ∼¬η(B) ∨∨ u 
+ b)) ∧∧ ∀∀u(wR−u →→ ¬¬(u 
−

∼¬η(B) ∧∧ u 
− b))
iff ∀∀ u(wR−u→→ ¬¬(u 
− ∼¬η(B))) (in view of u 
+ b and u 
− b)
iff ∀∀u(wR−u→→ ¬¬(u 
+ ¬η(B)))
iff ∀∀ u(wR−u→→ ¬¬¬¬(u 
+ η(B)))
iff ∀∀ u(wR−u→→ u 
+ η(B))
iff ∀∀ u(wR−u→→ u 
+ B) (by induction hypothesis)
iff w 
+

2−B.

w 
+ η(∼2−B)
iff w 
+ ¬ ⊞ (∼η(∼B) ∨ b) (by definition of η)
iff ¬¬(w 
+ ⊞(∼η(∼B) ∨ b))
iff ¬¬(∀∀u(wR+u→→u 
+ ∼η(∼B)∨b)∧∧∀∀ u(wR−u→→¬¬(u 
− ∼η(∼B)∨
b)))
iff ¬¬(∀∀u(wR+u →→ (u 
+ ∼η(∼B) ∨∨ u 
+ b)) ∧∧ ∀∀u(wR−u →→ ¬¬(u 
−

∼η(∼B) ∧∧ u 
− b)))
iff ¬¬(∀∀u(wR−u→→ ¬¬(u 
− ∼η(∼B))) (in view of u 
+ b and u 
− b)
iff ∃∃ u(wR−u ∧∧ u 
− ∼η(∼B)
iff ∃∃ u(wR−u ∧∧ u 
+ η(∼B)
iff ∃∃ u(wR−u ∧∧ u 
+ ∼B) (by induction hypothesis)
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iff ∃∃ u(wR−u ∧∧ u 
− B)
iff w 
−

2−B
iff w 
+ ∼2−B. ⊣

⊣

Corollary 3.8. The logics MBL and BK2+2
− are d-equivalent.

Proof. We know that BK2+2
− is a bl-logic. It is easy to see that

⊙(p, q) = (p ∧ b) ∨ (∼q ∧ n)

can serve as a combinator formula for MBL, too. In this way, MBL

is also a bl-logic. Obviously, both translations ζ and η commute with
↔. It remains to check that ζ and η agree with the weak equivalences
of BK2+2

− and MBL. The case of η is more complicated. Let α and
β be mappings that determine the weakly structural translation η. It
is easy to see from the definition of 
+ that MBL is closed under the
replacement of weak equivalents in formulas which are ∼-free and ⊞-free.
Therefore, we have to check the replacement of weak equivalents for the
following formulas:

α(2+) = ⊞(p ∨ n), α(2−) = ⊞(∼¬p ∨ b),

β(2+) = ∼ ⊞ ∼q, β(2−) = ¬ ⊞ (∼q ∨ b).

By proving Lemma 3.7, we established in particular the following:

w 

+
⊞(p ∨ n) iff ∀∀u(wR+u→→ u 


+ p),

w 

+
⊞(∼¬p ∨ b) iff ∀∀u(wR−u→→ u 


+ p),

w 

+ ∼ ⊞ ∼q iff ∃∃u(wR+u ∧∧ u 


+ q),

w 

+ ¬ ⊞ (∼q ∨ b) iff ∃∃u(wR−u ∧∧ u 


+ q).

It follows easily from these equivalences that MBL is closed under the
replacement rules:

p ↔ q

⊞(p ∨ n) ↔ ⊞(q ∨ n)

p ↔ q

⊞(∼¬p ∨ b) ↔ ⊞(∼¬q ∨ b)

p ↔ q

∼ ⊞ ∼p ↔ ∼ ⊞ ∼q

p ↔ q

¬ ⊞ (∼p ∨ b) ↔ ¬ ⊞ (∼q ∨ b)

We have thus proved that η agrees with the weak equivalence of MBL.
So we can apply Theorem 3.1 to infer the desired conclusion. ⊣



On Definability of Connectives . . . 655

From the transitivity of d-equivalence we obtain.

Corollary 3.9. The logics MBL and BKFS

bl
are d-equivalent.

Thus, despite essentially different definitions of modalities, all three
logics MBL, BKFS

bl
, and BK2+2

− are d-equivalent.

4. Logical Connectives for BK2+2
−, BKFS

bl
, and MBL

Since the logics BK2+2
− , BKFS

bl
, and MBL are definitionally equivalent,

in this section we will only discuss the logical connectives for BK2+2
− .

As for BKFS

bl
and MBL, the result of this section will carry over.

In Remarks 2.3 and 2.4 we showed that the presented method can-
not be applied to logics which comprise connectives like ⊕ or ⊗ because
they do not satisfy Observation 2.4. Furthermore, models for BK2+2

− ,
BKFS

bl
, and MBL contain two different accessibility relations, R+ and R−.

To apply the presented method for obtaining functional completeness
to BK2+2

− , we first enrich the metalanguage by two binary predicate
symbols, R+ and R−, and hence omit the predicate symbol R, and by
four new operations, ⊗⊗, ⊕⊕, bb, and nn. The definitions of regular meta-
logical formulas and L-regular metalogical formulas have to be changed
accordingly. Furthermore, we need to make some adjustments of the
verification and falsification conditions for ⊗, ⊕, b, and n:

w 
+ A⊗B iff w 
+ A⊗⊗ w 
+ B;
w 
− A⊗B iff w 
− A⊗⊗ w 
− B;
w 
+ A⊕B iff w 
+ A⊕⊕ w 
+ B;
w 
− A⊕B iff w 
− A⊕⊕ w 
− B.
w 
± b iff bb;
¬¬(w 
± n) iff nn,

where w 
± A ⊗⊗ w 
± B, w 
± A ⊕⊕ w 
± B are understood as
w 
± A∧∧w 
± B and w 
± A∨∨w 
± B, respectively. Note that even
though we treat ⊗⊗ and ⊕⊕ as some sort of metalanguage conjunction or
disjunction, they are independent operators, as the following definition
shows.

Note also that the treatment of bb and nn is similar, i.e., they are un-
derstood as w 
+ b ∧∧w 
− b and ¬¬(w 
+ n) ∧∧ ¬¬(w 
− n), respectively.
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Definition 4.1. Let ϕ be a regular metalogical formula. The formula
ϕ is now inductively defined as follows:6

¬¬wR±u = ¬¬wR±u
¬¬w 
+ A = w 
− A,A /∈ {b, n}
¬¬w 
− A = w 
+ A,A /∈ {b, n}

¬¬ bb = bb

¬¬ nn = nn

ψ ⊗⊗ θ = ψ ⊗⊗ θ

¬¬(ψ ⊗⊗ θ) = ¬¬ψ ⊗⊗ ¬¬θ
ψ ⊕⊕ θ = ψ ⊕⊕ θ

¬¬(ψ ⊕⊕ θ) = ¬¬ψ ⊕⊕ ¬¬θ

If ϕ is a regular metalogical formula, then ϕ is said to be an L-regular

metalogical formula.

Observation 4.1. For each BK2+2−-formula A, ϕ iff w 
+ A just in
case ¬¬ϕ iff w 
− A.

Proof. The proof is by induction on A and follows the proof of Obser-
vation 2.4. We only need to prove the observation for the operators ⊗
and ⊕.

Suppose A = A⊗B:

ϕ iff w 
+ A⊗B

iff w 
+ A⊗⊗w 
+ B

∴ ¬¬ϕ iff ¬¬(w 
+ A⊗⊗w 
+ B)

iff ¬¬w 
+ A⊗⊗ ¬¬w 
+ B
iff w 
− A⊗⊗w 
− B
iff w 
− A⊗B

¬¬ϕ iff w 
− A⊗B

iff w 
− A⊗⊗ w 
− B

iff ¬¬w 
+ A⊗⊗ ¬¬w 
+ B

iff ¬¬(w 
+ A⊗⊗ w 
+ B)

∴ ϕ iff w 
+ A⊗⊗ w 
+ B
iff w 
+ A⊗B

The proof for A = A⊕B is similar.
The proof for A = ⊤ is a degenerate case, since ¬¬(w 
− ⊤) and

w 
+ ⊤, but neither ¬¬(w 
+ ⊤) nor w 
− ⊤, hence the equivalence is
trivially true. As for A = b and A = n, the equivalences are trivially
true, as well. ⊣

Observation 4.2. The set of connectives {∨,∧,⊗,⊕,→,∼,2+,2−,⊥,
⊤, b, n} is a set of BK2+2

−-regular connectives.

6 The definitions for the other metalogical connectives are just like in Defini-
tion 2.2.
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Theorem 4.3. In the class of BK2+2
− -regular connectives the set of

connectives {∨,∧,⊗,⊕, →, ∼,2+,2−,⊥,⊤, b, n} is functionally com-
plete. In other words, if an n-ary (n ­ 1) connective ⋆ is defined
by means of a BK2+2

−-regular metalogical formula ϕ, then there is a
BK2+2

−-formula A such that the following holds: ϕ ↔↔ w 
+ A (and
¬¬ϕ↔↔ w 
− A).

Proof. Since the following proof works like the proof for Theorem 2.6,
we only show the theorem by induction on the degree of quantification
of ϕ for the additional operators.

Suppose d(ϕ) = 0, then let A be the result of replacing every oc-
currence of ⊗⊗ by ⊗ and every occurrence of ⊕⊕ by ⊕. Furthermore, we
replace every occurrence of w 
+ ⊤ by ⊤, w 
− ⊤ by ∼⊤, and every
occurrence of bb by b. Finally, we replace every occurrence of n by nn.

Now, let d(ϕ) > 0. Then there is a subformula of ϕ of the shape
∀∀u(wR±u →→ θ) or ∃∃u(wR±u ∧∧ θ), where θ is quantifier free. By the
induction base case, θ ↔↔ A for some L-formula. Now we have:

∀∀u(wR±u→→ θ) iff w 
+
2±A

∃∃u(wR±u ∧∧ θ) iff w 
+ ∼2±∼A

If the subformulas ∀∀u(wR±u →→ θ) and ∃∃u(wR±u ∧∧ θ) in ϕ are
replaced by their respective equivalents, the result is a BK2+2

−-regular
metalogical formula which has one quantifier less than ϕ, and hence the
induction hypothesis can be used. ⊣

5. Discussion of the results

The main result of Section 3, Theorem 3.1, provides a method of proving
definitional equivalence for logics in certain languages with strong nega-
tion. In particular, we could apply this method to prove the definitional
equivalence of certain modal logics extending the non-modal fragment
{∨,∧,⊗,⊕,→,∼,⊥,⊤, b, n} of LBK2+2

− .
Note that {∨,∧,⊗,⊕,→,∼,⊥,⊤, b, n} is functionally complete in the

usual sense, cf. [11], whereas LBK2+2
− is functionally complete only in

the class of BK2+2
−-regular connectives. Moreover, the two notions of

functional completeness do not coincide. The BK2+2
−-regular connec-

tives cannot define every truth-function definable from {∨,∧,⊗,⊕,→,
∼,⊥,⊤, b, n}. Take for example again the verification and falsification
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clauses for �: w 
+� A iff (w 
+ A∧∧¬¬w 
− A)∨∨(¬¬w 
+ A∧∧¬¬w 
− A)
and w 
−� A iff (w 
+ A∧∧¬¬w 
− A) ∨∨ (w 
+ A∧∧w 
− A). It is easy
to see that � is not a BK2+2

−-regular connective, since the negation
in front of a relational atom will disappear and, hence, this connective
cannot be expressed as a regular connective. This gives rise to the ques-
tion of how to close the gap between the functional completeness of the
non-modal fragment of BK2+2

− and the expressive incompleteness of
the logic in terms of definability by regular metalogical connectives.
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