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FREGEAN DESCRIPTION THEORY
IN PROOF-THEORETICAL SETTING

Abstract. We present a proof-theoretical analysis of the theory of definite
descriptions which emerges from Frege’s approach and was formally devel-
oped by Kalish and Montague. This theory of definite descriptions is based
on the assumption that all descriptions are treated as genuine terms. In
particular, a special object is chosen as a designatum for all descriptions
which fail to designate a unique object. Kalish and Montague provided
a semantical treatment of such theory as well as complete axiomatic and
natural deduction formalization. In the paper we provide a sequent cal-
culus formalization of this logic and prove cut elimination theorem in the
constructive manner.
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1. Introduction

Since the publication of B. Russell’s famous paper “On denoting” [22]
many researchers provided deep and detailed studies of the phenomenon
of definite descriptions. Yet, despite the long history and variety of
proposed solutions we can hardly say that some of them are treated as
obvious or commonly acceptable. In particular, a correct treatment of
so called improper descriptions (i.e., those which fail to have a unique
denotation) is hotly disputed.

It seems that most researchers dealing with the problem of definite
descriptions follow the Russellian route and eliminate them in favour of
ordinary first-order logic with identity. Such reductionist approach has
many disadvantages however and not surprisingly several logicians pro-
vided theories in which definite descriptions are treated as genuine terms.
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In fact, many solutions were developed on the ground of non-classical
logics like free or modal logic. It seems natural that richer resources of
such logical systems offer better prospects for development of satisfactory
theory of definite descriptions. Bencivenga [1] provides a good survey
of theories based on free logics, whereas Fitting and Mendelsohn [7] and
Garson [10] offer adequate formalizations of significantly different modal
theories of descriptions.

However, even in the framework of classical logic there is a tradition,
starting with Frege [8, 9], in which definite descriptions are treated as
genuine terms. This account was first elaborated by Carnap [4] under
the name of the chosen object theory, and developed in the setting of
different versions of set theory by Bernays [3] and Quine [20] where richer
languages allow for special treatment. On the ground of pure classical
logic, Fregean approach was also formalised by Rosser [21] but in the
way which is incomplete in some sense (see Hailperin [11]). Eventually
Kalish and Montague [15] provided semantical treatment with adequate
axiomatization in the setting of classical first-order logic (FOL). One can
also find a tableau characterization of this logic in Bencivenga, Lambert
and van Fraasen [2].

In this paper we are not concerned with philosophical problems con-
nected with different approaches but with their proof-theoretical treat-
ment. Although some of the proposed theories are formulated in terms
of natural deduction (Kalish and Montague [15], Garson [10]) or tableau
systems (Bencivenga, Lambert and van Fraasen [2], Fitting and Mendel-
sohn [7]) it is quite evident that a structural proof theory, in the sense
of Negri and von Plato [19], is still to come. In particular, we think of a
formalization provided in terms of sequent calculi with suitably defined
rules admitting cut elimination. In this perspective, rules of the men-
tioned systems are rather hardly suitable for proof-theoretical analysis.
In what follows we provide a sequent calculus equivalent to Kalish and
Montague system and prove cut elimination theorem for it.

2. Kalish and Montague System

The system of Kalish and Montague was first presented in [15] where
semantics for descriptions is provided with completeness proof for ax-
iomatic formalization. Natural deduction system, later extensively used
in a slightly modified form in the textbook [16], is also introduced there.
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We recall briefly the essential features of their formalization of Frege’s
theory of descriptions.

The system is formulated in the standard predicate language with
identity and with iota-operator forming definite descriptions from formu-
lae of the language. We will use the following categories of expressions
denoted by the following symbols:

e denumerably infinite set of variables VAR = {z,y, z, ...},

e denumerably infinite set of operation symbols of different arities FUN
={a,b,c,...,f,q9,h,...},

e denumerably infinite set of predicate symbols of different arities PRED
={A,B,C,...}

e logical constants: —, A, V, =, <, V, 3, =, 1.

Since definite descriptions are complex terms involving formulae, a
formal characterisation of a term and formula must be done simultane-
ously, in one definition. One may find such formal recursive definitions
in [16] or [10]. Here we omit details for brevity’s sake, but underline that
the set of terms cover variables, operations formed by means of elements
of FUN, and descriptions. The latter are written as 1zy, where ¢ is a
formula in the scope of iota-operator. In the presentation of sequent cal-
culus we adopt the convention, particularly useful in this framework, that
variables x, y, ..., may occur only bound by quantifiers or iota-operator.
Thus, in contrast to original Kalish and Monatague formulation, in the
role of free variables we will be using symbols of nullary operations (con-
stant names) a, b, c. In general, the same symbols are applied in the
language and metalanguage but with additional metavariables ¢, ¥, x
used for any formulae and I, A, IT, X' for their sets and multisets. More-
over, we will use a symbol 2 for denoting a special chosen object being
a designatum of all improper descriptions. Metavariables ¢, ¢1, ..., will
be applied for any term, including descriptions and . @[z/t] is officially
used for the operation of correct substitution of a term ¢ for z. However,
to simplify matters, we will be also using freely in proof schemata a
notation ¢(z), ¢(a), ¢(t). In particular, ¢(x) will be used to mean that
¢ being a scope of some operator contains at least one occurrence of
(bound) x, whereas ¢(a) and ¢(t) will denote the result of substitution.
A predicate (including identity) with arguments being any terms, in-
cluding descriptions, is treated as atomic formula and its complexity is
always 1. Complexity of any compound formula is the sum of the number
of occurrences of atomic formulae and the number of connectives and
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quantifiers used in the formation of this formula from atomic compo-
nents. It is important to note that neither iota-operators nor any logical
constants occurring inside scopes of descriptions are counted. Thus the
complexity of A1z(BaV JyCy) is 1 but the complexity of Ba Vv JyCy as
well as of B(1x(Vz(Az — RxyCly))) vV JyCly is 4.

Kalish and Montague characterised their system both semantically
and syntactically. The latter is presented both as axiomatic and Jas-
kowski-style natural deduction system. Moreover, in the later textbook
presentation there is a small change in the syntactical characterization
of improper descriptions. We omit details of their system for FOL with
identity and recall only axioms and corresponding natural deduction
rules for descriptions:

Ve(p(x) <>z =y) =y =1zp
—JyVa(p(z) <> 2 =vy) = 1w =12(x = )

where in both cases y does not occur in 1x¢ and 12(x = x) is a fixed
improper description. Note that the first axiom by universal general-
ization (primitive rule in Kalish Montague axiomatization of FOL) is
equivalent to Vy(Vz(p(z) <+ x = y) — y = 1zp). The latter implies
Vz(p(x) > x = t) — t = 1wp for any term properly substitutable for y
which is important for later considerations.

In natural deduction system instead of axioms we have two rules of
proper and improper description introduction:

FyVe(p(z) &z =y) F pzp) (PD)
—JyVa(p(z) <z =y) Frxp =12(z = x) (ID)

It is easy to demonstrate that (PD) gives the same result as the first
axiom thus both systems are equivalent. In [16] a natural deduction sys-
tem is a little bit changed. Improper descriptions are now characterised
by the following rule:

=TIy (p(z) < 2 =y) Frzp =12(x # x) (ID")

However, in their system 12¢(x = x) = 12(x # x) is a thesis, so it is still
the same theory. In fact, the way we syntactically represent the chosen
object being a denotation of all improper descriptions is inessential. In
what follows we will be using just a constant symbol ¢ as the name of
this fixed denotation. In this respect we follow a solution advocated by
Carnap [4].
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Kalish and Montague system (KM) is adequate with respect to se-
mantics with models having a fixed object 2 in the domain. A definition
of a model 9, denotation function V', valuation of variables v and sat-
isfaction relation F is standard. For descriptions we have the following
clause:

If there is a unique o € D such that 9, vZ E ¢, then V(1z¢) = o;
otherwise V(1xp) =1,

where for any v, v? is an x-variant of v with o assigned to x.
The axiomatic system is proved (weakly) adequate with respect to
this semantics.

3. Sequent Calculus

We will use a version of Gentzen’s LK calculus but with sequents built
not from finite lists but from multisets of formulae and with all rules
multiplicative (i.e., context-free in case of many-premiss rules).

I'=sAp o ll=X%

(AX) p = ¢ (Cut) =A%
(W) I'= A (W) I'= A
o, I'= A I'= Ap
0,0, ' = A I'= A 0,9
(©=) o, I'= A (=0) I'= Ajp
I'= Ajp o, I'= A
(_‘:>) —\(’07F:>A (:>_‘) F:>A’_|(p
p, 0, I'= A I'=s A II=X4Y
=) T = A CN TS A one
o, I'=A Y Il =X I'= A p,¢
V=) U T = A s GV TS A ove
I'=sA¢p ¢, I11=X% o, = A
=) S T =AY Sl aeey Wy
I'=sApYy o9 Il=X%
=) U T A%
(=o) o, I'= A Il = X, ¢

NI =AX 00
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ola/t], I = A I'= A plz/al
V=) ——————— V) ————
(V=) Vep, I’ = A (=) I' = A)Vzp

where a isnot in I, A, ¢
I'=A I'= A t

gy /el T = ) L2 Aol

dzp, ' = A I'= A/ Jzp
where a isnot in I, A, ¢

t=t,I'= A

(==) I'= A
(éi) I'=s Aty =t H=>E,g0[$/t1]
N L= A X, plx/t]

plx/al, ' = At =a t=a,ll = X, ¢[x/a
il = A X t=1zyp

where a is not in I, A, IT, X, ¢; and t is not 2

plz/a], I = A

I'= Ajv=1zp

where a is not in I', A, ¢

(=1)

(=11)

(=12) I'=s Aplz/ti] =X pa/ts) ti=t,A=0
! NI A= A X O0=1xp

The definition of a proof is standard. Similarly for definitions of
principal, side and parametric formulae in rule’s applications.

4. Equivalence of the Systems

We will show that for every I" = A derivable in our sequent calculus we
can provide a proof of I' +\/ A (where \/ A is a disjunction of elements
of A) in Kalish and Montague system and conversely. We restrict con-
siderations to rules for descriptions. For this aim let us take two sequents
expressing Kalish and Montague axioms (corresponding to theses T401
and T404 in [16]):

= Vy(Ve(p ¢z =y) > 1xp =y)
and

= "JYWVr(p <z =y) w1wp =1
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The first one differs from original KM axiom in having 1x¢ = y instead
of ¢(1zp) but both formulations are equivalent.

THEOREM 1. If I' + ¢ in KM system, then - I" = .

ProOF. It is sufficient to show that sequents corresponding to both ax-
ioms for 1 are provable. For better readability we underline side-formulae
of all rule-applications. As for the first see the proof (I) on p. 144. For
(ID) see the proof (II) on p. 144. -

THEOREM 2. If - I'= A, then I' -\/ A in KM system.

PRrOOF. It is enough to demonstrate that three rules for descriptions are
derivable in sequent calculus enriched with two additional axiomatic se-
quents corresponding to Kalish and Montague rules. For easier work note
first that the following sequents are derivable from additional axioms:

Ve(p < t=x)=t=1zp
and
—JyVa(p <>y =) =1 =12p

Derivability of (=) is simple; see Figure (III) on p. 145. Derivability of
(=11) goes like on Figure (IV) on p. 145.

Derivability of (=-:2) is the most tedious task. First note that on the
basis of the three premisses we can derive:

I'= A,(p(tl) I = 2, (p(tg) t1 :t27/1:>@
=N =)
F7H:>A727()0(t1)/\g0(t2) A:>97t1 #tQ
F7H7A:>A7279799(t1)/\§0(t2)/\t1 #tQ

DT A= A, %8,0,3z,y(e(x) Ap(y) ANe £ y)

=)
(=3

Now we can prove:

b=c=b=c a=c=a=c (= =)
@(b) = »(b) b=ca=c=a= -
W) s ethb=c  plibeca=csa=b )
o pb)a=cpb) ob=c=a=b
(W;v):ﬂ (p(b)7 a=¢, Vf(sﬁ(@ T = C) =a=0b

pla),a=c,pb),Ve(p(z) >z =c)=a=b
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(=«
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(r)dzL =1 (x =D > (T)D)Tp <= (D)D (A<)
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_ (v)drL =19 =1 > (q) < (0)D‘(D)D _ (<)
()P =q=1 () (v)dre =1T=1D <= (9)5‘(v)

G=v<=7=0  (Qd<= (@  (0)d<«= ()

(1)

(gr=)

‘MU IR q ‘D oJoym

()L = fi + (z = fi > (T)D)TA)fip <=

Awwvﬂv (r)dzL =D (T =D > (T)P)TA <
(1) — @v&&e”dﬂﬁ&ﬂdiﬁ&v&v&>|
(<p) QP «q=7'(x =0« (¥)P)7A T=7 < (99 (r =0 ¢ (T)P)zA
(<) (9)d =q=r'q=1 < (9) Q=1 <= (QPq=1 < (9%
() (o <=q=0(qQ)d  q=v(Q)d<=q=v q=v<=q=0(Q)d  q=0(9)P <= ()P
(@)% <= (99 1=v<=q=" 1=v<=q="v (@)% <= (9)9

(1)



145

FREGEAN DESCRIPTION THEORY ...

MU ST D 9Jaym

(v)drL =1y < T

(v)drL =1 < (v =i > (7)) 2AfE- (r=Ff < (2)P)apE- vV < T Mprsmw
V = (%=1 & (2)P)zplE (<E)
V=Jd(r=2 (2)h)2A (<)
VEegn=0 (0)d B
VeI r=p+ (0)dD=0D (==)
(=)
vV<eJgv=0n)d (n)d'p=p<=D="D ()
QAHLLABVQ.V D=D<&&=D=D
(A1)

"MOU ST D 2I9yM

(Z)drL =35V <= 10

(mp)

(D)bai=1< (@ =7 0 (2)3)7A C=io @A s e,

D=1 )V ET
PPz =nT=1 D=3V«
(111)

(o)




146 ANDRZEJ INDRZEJCZAK

which continues:

p(a) = ¢(a)
E:Z; p(a) = ¢(a),a=c pla),a=c,ob),Ve(p(x) >z =c)=a=b
(4o o(a), p(b), p(a) < a=cVe(p(z) oz =c)=a=b
(= o(a), p(b),Ve(p(z) < z=c),Ve(p(z) oz =c)=>a=D>

p(a),od),Ve(p(z) < z=c)=a=>b
p(a), (b), IVa(p(z) Gz =y)=a=b
p(a), ¢(b), a # b, IyNVa(p(z) < x=y) =
p(a) A p(b) Aa#b,IyVe(p(r) <z =y) =
Jz,y(p(z) N p(y) Ao #y), yVe(p(z) © x=y) =
Jz, y(p(z) Np(y) Az # y) = ~FyVz(p(z) < z = y)

where a, b, ¢ are new. It is obvious that by two cuts with I, I], A =
A, X,0,3z,y(p(x) Ap(y) Ao # y) and ~TFyVa(e(z) <y = z) =1 =
1¢¢(x) we derive the conclusion of the rule. —|

(3=)
(==)
(n=)
(F=)

5. Cut Elimination

As a preliminary step we will prove:
LEMMA 1 (Substitution). If Fp I' = A, then by (I" = A)la/t].

ProOOF. By induction on the height of a proof. It is straightforward
but tedious exercise. Note that we provided not sheer admissibility but
height-preserving admissibility. -

Moreover, we assume that all proofs satisfy the condition of regular-
ity —every constant which is fresh by side condition on the respective
rule, must be fresh in the entire proof not only on the branch where
the application of this rule takes place. Clearly, every proof may be
systematically transformed into regular proof by Substitution lemma.

Let us define the notions of cut-degree and proof-degree:

1. Cut-degree is the complexity of cut-formula ¢ and is noted as dp.
2. Proof-degree (dD) is the maximal cut-degree in D.

We follow the strategy of proof which was originally introduced for
hypersequent calculi by Metcalfe, Olivetti and Gabbay [18] and later
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extensively used in this framework (see, e.g., Ciabattoni, Metcalfe, Mon-
tagna [5], Indrzejczak [12], Kurokawa [17]) but applicable also to stan-
dard sequent calculi (see Indrzejczak [13, 14]). The general strategy of
proof is somewhat similar to Curry’s [6] proof of cut admissibility but
simpler in some respects and still based rather on local transformations
of proof instead of global ones characteristic for Curry’s proof. The
proof of cut elimination theorem is based on two lemmata which make
a reduction first on the right and next on the left premiss of cut.

LEMMA 2 (Right reduction). Let Dy = I' = A, ¢ and Dy - ok IT = X
with dD1,dDy < dp, and ¢ principal in I' = A, ¢, then we can construct
a proof D such that D+ I'* IT = AF X and dD < dp.

ProOOF. By induction on the height of Ds. The basis is trivial. In-
duction step requires consideration of all cases of possible derivation of
@k, IT = X and the role of cut-formula in the transition. In all cases
where all occurrences of ¢ are parametric we simply apply the induction
hypotheses to premisses of ©*, IT = X and then apply to them respective
rule — it is essentially due to the context independence of almost all rules
and regularity of proofs. In the case of troubles with side condition on
fresh constants we must first apply Substitution lemma. In the case
one of the occurrence of ¢ in the premise(s) is a side formula of the last
rule we must additionally apply weakening to restore the lacking formula
before the application of a rule. This situation covers also applications
of rules (==) since active formula is in the antecedents only. Note also
that there are no rules introducing identities with descriptions in the
antecedents as principal formulae (the same remark applies to (= =))
hence in case ¢ is such a formula everything is obtained by the induction
hypothesis.

In the cases where one occurrence of ¢ in @, IT = X is principal we
make use of the fact that ¢ in the left premiss is principal too (note that
for C and W it is trivial). We analyse the case of (V =):

I'=Apa) o) Yop(@) ' =X
I' = AVzp(x) Vap(x)k I = X
Ik 1T = AF %

where a is fresh, hence by Substitution Lemma we have:

I'= A o(t)
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and by the induction hypothesis we have:
o(t), "1 1T = AF L 8
and we can build a proof:

D= Ap(t) o), "I = A D
Ik 1T = Ak %

One should notice that even if ¢ is a complex term containing definite
descriptions, due to the way we defined complexity of a formula, the new
proof has lower cut-degree. —

LEMMA 3 (Left reduction). Let Dy = I' = A, oF and Dy F @, I = X
with dDy,dDy < dy, then we can construct a proof D such that D +
I 1% = A X% and dD < dep.

PRrOOF. The proof of the Left Reduction Lemma is similar but on the
height of D;. The only difference is that in case cut-formula is principal
we apply first the induction hypothesis and then the Right Reduction
Lemma. For example, if the last sequent is obtained by (=) we have:

ola), I = Ayt =120(x), t =a t=ua,Iy = Ay, t =10p(x)7, p(a)
I = A, Xt =1wp(x)k

where a is new, k =i+ j+ 1 and I, A are multiset unions of I, I and
Ay, Ag respectively. By the induction hypothesis we obtain:

o(a), I, II" = A, Xt =a t=a, o, II7 = Ay, 37, 0(a)
T = A Xt =azp(x)

Since this proof satisfies assumptions of the Right Reduction Lemma,
then by the latter (with possibly some weakenings, if there are more
than one occurrence of cut-formula in the right premiss) we obtain the
result. .

Eventually on the basis of the Left Reduction Lemma we obtain cut
elimination by successive decreasing of cut degree. Therefore:

THEOREM 3 (Cut Elimination). If I" = A is provable, then it is provable
without application of (Cut)
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6. Concluding Remarks

From the standpoint of several requirements formulated for well-behaved
sequent calculi one may raise some objections towards presented system.
In our opinion, it provides a satisfactory solution to the problem of de-
vising cut-free sequent system despite of some inelegancies. We have
mentioned in the introduction that there is a tableau system due to Ben-
civenga, Lambert and van Fraasen [2] for essentially the same logic. It is
well known that, in principle, tableau systems may be easily transformed
into sequent calculi and vice versa (at least in the standard versions of
both). Hence one could suspect that these tableau rules may provide
better characterization of 1-operator. However, in sequent version they
are of the form:

Jy(Vz(p(z) Gz =y) Ap(y), ' = A —FyVa(p(z) < z=y) APz £2), [ = A
YOzp), I = A

where 1 (1z¢p) is either a predicate or negated predicate with at least
one occurrence of 1z among its arguments. In particular, it may be
a negated identity statement. It is clear that such rules have the form
which is hardly suitable for satisfactory proof theoretical treatment. One
needs to make some decomposition of the formulae in premisses to obtain
more satisfactory result and this is what we have done in our system.

Still it may seem that a better system is possible where descrip-
tions are characterised by the rules which introduce them also to the
antecedents of conclusion-sequents, and that introduce them not only
as arguments of identity statements but also of more general (atomic)
formulae. It is possible to do it in fact and we consider these both
questions in what follows.

One may add to the system the following rule:

I'= Ajt=a,9[z/ad] t=a,plz/a,l] = X t=i,4=0
=1wwp, I, A= A X6

where a is not in I', A, II, X, A, ©, .

The problem is that such a rule is redundant what can be easily
shown. To establish derivability of (1=) we first derive on the basis of
the first two premisses as on Figure (V) on p. 153.

The last sequent together with the axiomatic t = 1zp(x) = t =
12¢(x) yields by (==) t =1zp(z), 1] = A, XY, t =1 This by cut
with the third premiss t =1, A = © yields the conclusion.

(=)
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In a similar way we can demonstrate redundancy of other rules we
might want to have. For example consider the following, apparently
more general rule:

[x/a], ' = At =a t=a,ll = X, plz/d A= 6,At
DILA= A Y O, Aaxp

where a is new. Such a rule is easily derivable in the following way:

(=) 2

olz/a], ' = At =a t=a,ll = X, ¢[z/a]
D= A X t=1xp A= 6, At
NilbA= A XY 0, Aicy

One may obtain similar results for other rules introducing proper or
improper descriptions to antecedents. Hence, by enriching the system
with these rules we do not obtain anything new and in fact it should be
not surprising since KM is a complete system. Moreover if we add such
rules as primitive to our sequent calculus our cut elimination proof will be
lost. At first it seems that everything goes well but several complications
inevitably follow. First of all they are connected with the fact that
identity statements having descriptions as arguments may be deduced
by rules of different sort. In fact, the shape of our rules for identity was
dictated by the need of avoiding such troubles. If we would use additional
axiomatic sequents of the form = t = t and t; = ta, p[x/t1] = @[z /ts]
it is not possible to eliminate cuts with at least one premiss being of
such form and having definite description as one of the arguments of
identity while the other premiss having this identity is deduced by one
of the rules for 1. Similarly we could use some other rules for expressing
Leibniz Law, like e.g. Negri and von Plato’s rule:

(=1)

(==)

ty = t2,¢[$/t1],g0[$/t2],r = A
tl - t?a(p[x/tl]’F = A

But such choice also does not work, even in our original system, if t; = o
is cut formula with at least one description as an argument. Consider a
situation where it is principal in both premisses but in the left premiss
introduced by (=~); in such cases there is no possibility of replacing this
cut with cut made on premisses. So if we add as primitive rule (1=) we
have the same problem with cut formula deduced by our (= =) in the
left premiss. But this is not a serious problem since we can use some
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other rules for identity to avoid collision. In fact five more are possible
(see Indrzejczak [14]) and among them there is:

F=>A,(p[l'/t1] H=>2,t1:t2 (p[l’/tz],/l#@
NilA= A XY 6

The choice of such rule avoids the problem we described but still a
system with such additional primitive rules causes problems. It will be
instructive to analyse in detail what happens if we just add (1=). If we
try to prove the Right Reduction Lemma we need to consider also a case
where 12 () is a principal formula in the right premiss. Specifically we
have:

t=12p(x)* I II,A= A,X,0

(==

deduced from:l
t=1xp(x)', ) = X1,t =a,p(a)
t= mnp(:):)j,t =a,p(a), Iy = X,
t=1xp(z)", t =1,113 = X3

where a is new, I] and X' are multiset unions of parameters from pre-
misses, and k =7+ j +n + 1. By the induction hypothesis we obtain:
(a’) Fivﬂl = Aivzht = a?@(a)
(b) = a, @(a)7pjvﬂ2 = Ajv 22
(C) t:Z,Fn,Hg = An,23

In the case t is just + we obtain the conclusion simply from the third

premiss by (==) and several weakenings. So the only case to consider
is when ¢ is not + and the left premiss is deduced by (=1):

gD(b),F1=>A1,t:b t:b,F2=>A2,<p(b)
I'= At =12p(x)
where b is not in I', A, ¢, and by regularity also a is not. Hence by
Substitution Lemma we obtain proofs of:
(d) ¢(a),[1= At =a
(e) t =a,Iy = As,p(a)

These sequents may be combined in the following way. By cut on (a)
and (d) we obtain:

(f) Fl,Fi,Hl :>A1,Ai,21,t:a,t:a

and by cut on (b) and (e) we obtain:
(g) t=a,t= a?FQ’Fj7H2 = AQ)Aj722
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Eventually, applications of contraction and cut on (f) and (g) yield
the result. Apparently, it looks well but, unfortunatelly, it does not work
since new cuts are not of lower degree. 1z as an argument of identity
statement has complexity 0 but even if ¢ is not a complex formula if
it is unpacked it has complexity > 1. One may think that changing
a definition of complexity may help but it does not work too. If we
count constants and predicates present in scopes of descriptions, then
the cases with quantifiers give no guarantee for reduction of complexity
since t substituted for x in applications of (=3) or (V=) may be a
complex description. Thus what seems to be one of the virtues of KM
system, i.e., the fact that new rules for descriptions do not spoil an old
machinery of FOL, in the setting of sequent calculus and cut elimination
proof, introduces a serious problem. This is the reason why, in spite of
some inelegancies, the provided solution seems to be the best possible if
cut elimination is our primary goal.

The last thing which may seem curious is why there are two rules
for introduction of improper descriptions in the succedent instead of
one, or two— but with the second introducing it in the antecedent. As
for the latter the situation is exactly as in the case of rules for proper
descriptions. We could add a rule introducing improper descriptions to
the antecedent but it is derivable and moreover, its addition as primitive
leads to the same complications in cut elimination proof as those reported
above.

As for the first question it is in fact possible to use one rule instead
of two. Using a strategy mentioned in Negri and von Plato [19] we could
introduce a rule of the form:

QD[SB/G,],F = A790[‘T/t1] W[I/GLH = 2,(,0[17/t2] @[m/a]atl =t2,A= 0O
NihA= A XY 01=1zp

(=2

where a is not in I'; A and .

Both original rules are derivable by means of this rule and weaken-
ings. In the other direction we can show a derivability of the new rule
in the way from Figure (VI) on p. 153.

However, having two rules instead of more complex one is a better
choice. Two primitive rules naturally correspond to two different sources
of improper descriptions: (=-11) to nonexistence of a designatum, (= 12)
to existence of more than one designata. Moreover, applications of these
two rules significantly simplify proofs.
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dr=1'9'K'VEV I

dri=1duri=1'9'K'V <V U

(O<)

‘ [4 ‘ [4 ‘ [4 .—HNAH
drL=1'9'K'y <V I d[?/t]d ()

hxrL =1

BTV v I /e o/ald s O

6 <=V G ="n'p/r]d

D AU =S S UCE I

(1A)

uoaoxd %Ud@ﬁd Sem mmﬂawmg umOEHQJWH.H 93} pue mau SI D aIoyMm

()T =1'5 'y < 1T

(B)prL=1< (x =A<+ (

(1))
(—=)
(<=E)
(=A)

T))TAfE- (z =i & (2)P)TpE- "K'V < 1T
'V < (T=1i & (2)9)TAlE
'V <1 (=0 (2))TA
K'VEnIr=rc 1)
K== 1=v'(Nd'V =g
(A)

(=)
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