NATURAL DEDUCTION FOR THREE-VALUED REGULAR LOGICS

Abstract. In this paper, I consider a family of three-valued regular logics: the well-known strong and weak S. C. Kleene’s logics and two intermediate logics, where one was discovered by M. Fitting and the other one by E. Komendantskaya. All these systems were originally presented in the semantical way and based on the theory of recursion. However, the proof theory of them still is not fully developed. Thus, natural deduction systems are built only for strong Kleene’s logic both with one (A. Urquhart, G. Priest, A. Tamminga) and two designated values (G. Priest, B. Kooi, A. Tamminga). The purpose of this paper is to provide natural deduction systems for weak and intermediate regular logics both with one and two designated values.

Keywords: natural deduction; regular logic; Kleene’s logic; three-valued logic

1. Introduction

Regular logics were first mentioned in the works of S. C. Kleene [4, 5] where he defined two three-valued regular logics (a strong and a weak one). A regular logic is understood as a logic which propositional connectives are regular. What is its regularity, and how it can be useful, are explained in [5] as follows:

We conclude that, in order for the propositional connectives to be partial recursive operations (or at least to produce partial recursive predicates when applied to partial recursive predicates), we must choose tables for them which are regular, in the following sense: A given column (row) contains t in the u row (column), only if the column (row) consists entirely of t’s; and likewise for f. [5, p. 334]
The values t and f are understood in a usual way, i.e., as “truth” and “falsehood”, value u is understood as “not defined”. For t, u, and f we will use 1, $\frac{1}{2}$, and 0, respectively.

Let At and $Form$ be, respectively, the set of all propositional variables and the set of all formulas of the propositional language in language that is built with propositional variables and the propositional connectives: \neg, \lor, and \land. All logics we will build in the set $Form$. Let us denote a truth-table f for a connective c by f_c.

In the three-valued case, there are only four regular conjunctions and disjunctions (see [6] for details). Depending on the choice of the number of designated values each collection of connectives yields two different regular logics.

First, we have two logics K_3 and K_3^2, respectively, for the matrixes $\langle\{1, \frac{1}{2}, 0\}, f_\neg, f_\lor, f_\land, \{1\}\rangle$ and $\langle\{1, \frac{1}{2}, 0\}, f_\neg, f_\lor, f_\land, \{1, \frac{1}{2}\}\rangle$, where

<table>
<thead>
<tr>
<th>f_\neg</th>
<th>f_\lor</th>
<th>f_\land</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Second, we have two logics K_3^w and K_3^{w2}, respectively, for the matrixes $\langle\{1, \frac{1}{2}, 0\}, f_\neg, f_\lor, f_\land, \{1\}\rangle$ and $\langle\{1, \frac{1}{2}, 0\}, f_\neg, f_\lor, f_\land, \{1, \frac{1}{2}\}\rangle$, where f_\neg is the same as for K_3 and

<table>
<thead>
<tr>
<th>f_\lor</th>
<th>f_\land</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The logics K_3 and K_3^w are called **strong Kleene’s logic** and **weak Kleene’s logic**, respectively. They were introduced by Kleene in [4] in 1938 (see also [5]). However, K_3 appeared in [8] as a fragment of Łukasiewicz’s logic L_3 (1920), and K_3^w appeared in [1] as a fragment of Bochvar’s logic B_3 (1938) independently by [4]. Note that K_3^2 is also known as LP (Logic of Paradox) and was carefully studied by Priest [11].

A natural deduction system for K_3 was first created by Urquhart [14]; later Priest [11] and Tamminga [12] independently obtained the same result. A natural deduction system for K_3^2 was created by Priest [11] and later it was independently provided by Kooi and Tamminga [7].

1 Four-valued regular logics are described in [13].
Thirdly, we have two logics $K_3^→$ and $K_3^→^2$, respectively, for the matrices $\langle\{1, \frac{1}{2}, 0\}, f_-, f_\lor, f_\land, \{1\}\rangle$ and $\langle\{1, \frac{1}{2}, 0\}, f_-, f_\lor, f_\land, \{1, \frac{1}{2}\}\rangle$, where f_- is the same as for K_3 and

<table>
<thead>
<tr>
<th>f_\lor</th>
<th>1</th>
<th>$\frac{1}{2}$</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_\land</th>
<th>1</th>
<th>$\frac{1}{2}$</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fourthly, we have two logics $K_3^←$ and $K_3^←^2$, respectively, for the matrices $\langle\{1, \frac{1}{2}, 0\}, f_-, f_\lor, f_\land, \{1\}\rangle$ and $\langle\{1, \frac{1}{2}, 0\}, f_-, f_\lor, f_\land, \{1, \frac{1}{2}\}\rangle$, where f_- is the same as for K_3 and

<table>
<thead>
<tr>
<th>f_\lor</th>
<th>1</th>
<th>$\frac{1}{2}$</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>$\frac{1}{2}$</td>
<td>1</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_\land</th>
<th>1</th>
<th>$\frac{1}{2}$</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$K_3^→$ and $K_3^←$ are called intermediate logics. The logic $K_3^→$ was first discovered by Fitting [2]. The logic $K_3^←$ was discovered by Komen-dantskaya [6].

2. Rules for natural deduction systems

We will use the following rules of inference:

\[
\begin{align*}
(\text{EFQ}) & \quad \frac{A}{\neg A} & (\text{EM}) & \quad \frac{A \lor \neg A}{A} \\
(\neg \text{-I}) & \quad \frac{\neg \neg A}{A} & (\neg \text{-E}) & \quad \frac{\neg \neg A}{A} \\
(\lor \text{-I}_1) & \quad \frac{A}{A \lor B} & (\lor \text{-I}_2) & \quad \frac{B}{A \lor B} \\
(\lor \text{-I}_3) & \quad \frac{\neg A \land B}{A \lor B} & (\lor \text{-I}_4) & \quad \frac{A \land \neg B}{A \lor B} \\
(\lor \text{-I}_5) & \quad \frac{A \land B}{A \lor B} \\
(\land \text{-I}_1) & \quad \frac{A \land B}{A} & (\land \text{-I}_2) & \quad \frac{A \land B}{B} \\
(\land \text{-I}_3) & \quad \frac{A \land B}{\neg A \lor B} & (\land \text{-I}_4) & \quad \frac{A \land B}{\neg A \lor B} \\
(\neg \lor \text{-I}_1) & \quad \frac{\neg A \lor B}{\neg A \land B} & (\neg \lor \text{-I}_2) & \quad \frac{A \lor \neg A}{\neg A \land B} \\
(\neg \lor \text{-I}_3) & \quad \frac{B \lor \neg B}{\neg A \land B} & (\neg \lor \text{-I}_4) & \quad \frac{A \lor \neg B}{\neg A \land B} \\
(\neg \land \text{-I}_1) & \quad \frac{\neg A \land B}{\neg A \lor B} & (\neg \land \text{-I}_2) & \quad \frac{\neg A \land B}{\neg A \lor B} \\
(\neg \land \text{-I}_3) & \quad \frac{\neg A \land B}{\neg A \lor B} & (\neg \land \text{-I}_4) & \quad \frac{\neg A \land B}{\neg A \lor B} \\
\end{align*}
\]
\[
\frac{\neg A \land B}{(\neg \land I_4) \quad \neg (A \land B)} \quad \frac{A \land \neg B}{(\neg \land I_5) \quad \neg (A \land B)} \quad \frac{\neg (A \land B)}{\neg \land E}
\]

Moreover, we consider the following four versions of the proof construction rule \((\lor E)\):

\[
\begin{array}{c}
(\lor E_1) \\
\frac{[A]}{A \lor B} \\
\frac{[B]}{C} \\
\hline
C
\end{array}
\quad
\begin{array}{c}
(A \lor B) \\
\frac{C}{C}
\end{array}
\quad
\begin{array}{c}
(A \lor (A \lor B)) \\
\frac{C}{C}
\end{array}
\quad
\begin{array}{c}
A \lor (B \lor C) \\
\frac{C}{C}
\end{array}
\]

where \([X]\) means that the assumption \(X\) is discharged.

Note that \(R_{cl} := \{(EFQ), (EM), (\neg \neg I), (\neg \neg E), (\lor I_1), (\lor I_2), (\lor E_1), (\land I_1), (\land E_1), (\land E_2), (\neg \lor I_1), (\neg \lor E_1), (\neg \land I_1), (\neg \land E)\}\) is a set of rules of a natural deduction system for classical logic. For natural deduction systems for \(K_3\) and \(K_2^3\) are suitable sets \(R_{cl} \setminus \{(EM)\}\) and \(R_{cl} \setminus \{(EFQ)\}\), respectively. Moreover, \(R_{cl} \setminus \{(EFQ), (EM)\}\) is a set of inference rules for \(FDE\) (it was proven by Priest in [11]; for more detailed proof see [10]).

The notion of a deduction of \(A\) from \(\Gamma\) in all natural deduction systems described in this paper is defined as a tree labeled with formulas.

As an example, consider the following deduction of \((A \land B) \lor (A \land C)\) from \(A \land (B \lor C)\) in the mentioned systems.

\[
\begin{array}{c}
A \land (B \lor C) \\
\hline
A \\
\frac{[B]}{A \lor B} (\lor I_1) \\
\frac{(A \land B) \lor (A \land C)}{(A \lor B) \lor (A \land C)} (\lor E_1) (1,2)
\end{array}
\]

3. Natural deduction system for \(K_3^\rightarrow\)

A set of rules for \(K_3^\rightarrow\) is as follows: (EFQ), (\neg \neg I), (\neg \neg E), (\lor I_1), (\lor I_3), (\lor E_2), (\land I_1), (\land E_1), (\land E_2), (\neg \lor I_1), (\neg \lor E_1), (\neg \land I_2), (\neg \land I_5), (\neg \land E).

Soundness follows by a simple routine check.

Theorem 3.1 (Soundness). For any \(\Gamma \subseteq \text{Form}\) and any \(A \in \text{Form}\):

\[
\text{if } \Gamma \vdash_{K_3^\rightarrow} A \text{ then } \Gamma \models_{K_3^\rightarrow} A.
\]
For completeness proof Henkin’s method is used. At that the notational conventions of [7, 12] are adopted.

Definition 3.1. A set of formulas \(\Gamma \) is a *nontrivial prime theory* iff the following conditions are met:

\[(\Gamma 1) \quad \Gamma \neq \text{Form} \quad \quad \text{(non-triviality)}\]
\[(\Gamma 2) \quad \Gamma \vdash_{\mathcal{K}_3} A \text{ iff } A \in \Gamma \quad \quad \text{(closure of } \vdash_{\mathcal{K}_3})\]
\[(\Gamma 3) \quad \text{if } A \lor B \in \Gamma \text{ then either } A \in \Gamma \text{ or both } \neg A \in \Gamma \text{ and } B \in \Gamma \quad \quad \text{(primeness)}\]

Definition 3.2. For all \(\Gamma \subseteq \text{Form} \) and \(A \in \text{Form} \), \(e(A, \Gamma) \) is a canonic valuation iff the following conditions hold:

\[
e(A, \Gamma) = \begin{cases}
1 & \text{iff } A \in \Gamma \text{ and } \neg A \notin \Gamma \\
\frac{1}{2} & \text{iff } A \notin \Gamma \text{ and } \neg A \notin \Gamma \\
0 & \text{iff } A \notin \Gamma \text{ and } \neg A \in \Gamma \\
\emptyset & \text{iff } A \in \Gamma \text{ and } \neg A \in \Gamma
\end{cases}
\]

Note. For logics with two designated values conditions for \(\frac{1}{2} \) and \(\emptyset \) are defined in a different way:

\[
e(A, \Gamma) = \begin{cases}
\frac{1}{2} & \text{iff } A \in \Gamma \text{ and } \neg A \notin \Gamma \\
\emptyset & \text{iff } A \notin \Gamma \text{ and } \neg A \notin \Gamma
\end{cases}
\]

Lemma 3.1. For all \(\Gamma \subseteq \text{Form} \) and \(A, B \in \text{Form} \):

1. \(e(A, \Gamma) \neq \emptyset \),
2. \(f_\neg(e(A, \Gamma)) = e(\neg A, \Gamma) \),
3. \(f_\lor(e(A, \Gamma), e(B, \Gamma)) = e(A \lor B, \Gamma) \),
4. \(f_\land(e(A, \Gamma), e(B, \Gamma)) = e(A \land B, \Gamma) \).

Proof. Ad 1. Suppose \(e(A, \Gamma) = \emptyset \). Then \(A \in \Gamma \), \(\neg A \notin \Gamma \). By the rule (EFQ), \(B \in \Gamma \), that is \(\Gamma = \text{Form} \). This contradicts to (\(\Gamma 1 \)). Therefore, \(e(A, \Gamma) \neq \emptyset \).

Ad 2. If \(e(A, \Gamma) = 1 \) then \(A \in \Gamma \), \(\neg A \notin \Gamma \). By the rule (\(\neg \neg I \)), \(\neg \neg A \in \Gamma \). Hence, \(e(\neg A, \Gamma) = 0 = f_\neg(1) = f_\neg(e(A, \Gamma)) \).

If \(e(A, \Gamma) = \frac{1}{2} \) then \(A \notin \Gamma \), \(\neg A \notin \Gamma \). Suppose \(\neg \neg A \in \Gamma \). By the rule (\(\neg \neg E \)), \(A \in \Gamma \). Contradiction. Consequently, \(\neg \neg A \notin \Gamma \). Hence \(e(\neg A, \Gamma) = \frac{1}{2} = f_\neg(\frac{1}{2}) = f_\neg(e(A, \Gamma)) \).

If \(e(A, \Gamma) = 0 \) then \(A \notin \Gamma \), \(\neg A \in \Gamma \). Suppose \(\neg \neg A \in \Gamma \). By the rule (\(\neg \neg E \)), \(A \in \Gamma \). Contradiction. Consequently, \(\neg \neg A \notin \Gamma \). Hence \(e(\neg A, \Gamma) = 1 = f_\neg(0) = f_\neg(e(A, \Gamma)) \).
Ad 3. If \(e(A, \Gamma) = 1 \) and \(e(B, \Gamma) = 1 \), then \(A \in \Gamma \), \(\neg A \notin \Gamma \), \(B \in \Gamma \), \(\neg B \notin \Gamma \). By the rule \((\lor I_1)\), \(A \lor B \in \Gamma \). Let \(\neg(A \lor B) \in \Gamma \). By the rule \((\neg \forall E_1)\), \(\neg A \land \neg B \in \Gamma \). Applying the rules \((\land E_1)\) and \((\land E_2)\), get \(\neg A \in \Gamma \) and \(\neg B \in \Gamma \). Contradiction. Hence \(\neg(A \lor B) \notin \Gamma \). Consequently, \(e(A \lor B, \Gamma) = 1 = f_\lor(1, 1) = f_\lor(e(A, \Gamma), e(B, \Gamma)) \).

If \(e(A, \Gamma) = \frac{1}{2} \) and \(e(B, \Gamma) = 1 \), then \(A \notin \Gamma \), \(\neg A \notin \Gamma \), \(B \in \Gamma \), \(\neg B \notin \Gamma \). Let \(A \lor B \in \Gamma \). By \((\Gamma 3)\), either \(A \in \Gamma \) or both \(\neg A \in \Gamma \) and \(B \in \Gamma \). Since \(A \notin \Gamma \), so \(\neg A \in \Gamma \) and \(B \in \Gamma \). But then \(\neg A \in \Gamma \). Contradiction. \(A \lor B \notin \Gamma \). Applying the rules \((\neg \forall E_1)\), \((\land E_1)\), and \((\land E_2)\), get \(\neg A \in \Gamma \), \(\neg B \in \Gamma \). Contradiction. Hence \(\neg(A \lor B) \notin \Gamma \). Consequently, \(e(A \lor B, \Gamma) = \frac{1}{2} = f_\lor(\frac{1}{2}, 1) = f_\lor(e(A, \Gamma), e(B, \Gamma)) \).

The other cases are proved similarly.

Ad 4. If \(e(A, \Gamma) = 1 \) and \(e(B, \Gamma) = 1 \), then \(A \in \Gamma \), \(\neg A \notin \Gamma \), \(B \in \Gamma \), \(\neg B \notin \Gamma \). By the rule \((\land I_1)\), \(A \land B \in \Gamma \). Let \(\neg(A \land B) \in \Gamma \). By the rule \((\neg \land E)\), \(\neg A \lor \neg B \in \Gamma \). By \((\Gamma 3)\), either \(\neg A \in \Gamma \) or both \(\neg A \in \Gamma \) and \(\neg B \in \Gamma \). Since \(\neg A \notin \Gamma \), so \(\neg A \in \Gamma \) and \(\neg B \in \Gamma \). But then \(\neg B \in \Gamma \). Contradiction. Hence \(\neg(A \land B) \notin \Gamma \). Therefore, \(e(A \land B, \Gamma) = 1 = f_\land(1, 1) = f_\land(e(A, \Gamma), e(B, \Gamma)) \).

If \(e(A, \Gamma) = 1 \) and \(e(B, \Gamma) = 0 \), then \(A \in \Gamma \), \(\neg A \notin \Gamma \), \(B \notin \Gamma \), \(\neg B \in \Gamma \). Let \(A \land B \in \Gamma \). By the rule \((\land E_2)\), \(B \in \Gamma \). Contradiction. \(A \land B \notin \Gamma \). Applying the rules \((\land I_1)\) and \((\neg \land I_5)\), get \(\neg(A \land B) \in \Gamma \). Therefore, \(e(A \land B, \Gamma) = 0 = f_\land(1, 0) = f_\land(e(A, \Gamma), e(B, \Gamma)) \).

If \(e(A, \Gamma) = 0 \) and \(e(B, \Gamma) = \frac{1}{2} \), then \(A \notin \Gamma \), \(\neg A \in \Gamma \), \(B \notin \Gamma \), \(\neg B \notin \Gamma \). Let \(A \land B \in \Gamma \). By the rule \((\land E_1)\), \(A \in \Gamma \). Contradiction. \(A \land B \notin \Gamma \). By the rule \((\neg \land I_2)\), \(\neg(A \land B) \in \Gamma \). Therefore, \(e(A \land B, \Gamma) = 0 = f_\land(0, \frac{1}{2}) = f_\land(e(A, \Gamma), e(B, \Gamma)) \).

The other cases are proved similarly. \[\square\]

By a structural induction on formulas, using Lemma 3.1 we obtain:

Lemma 3.2. Let \(\Gamma \) be any nontrivial prime theory and \(v_\Gamma \) be an arbitrary valuation such that \(v_\Gamma(p) = e(p, \Gamma) \), for any \(p \in At \). Then for any \(A \in Form \) we have \(v_\Gamma(A) = e(A, \Gamma) \).
LEMMA 3.3 (Lindenbaum). For all $\Gamma \subseteq \text{Form}$, $A \in \text{Form}$, if $\Gamma \not\vdash_{K_3} A$, then there is $\Gamma^* \subseteq \text{Form}$ such that (1) $\Gamma \subseteq \Gamma^*$, (2) $\Gamma^* \not\vdash_{K_3} A$, and (3) Γ^* is a nontrivial prime theory.

PROOF. Let B_1, B_2, \ldots be an enumeration of all formulas. Now define a sequence of sets of formulas $\Gamma_1, \Gamma_2, \ldots$. Let $\Gamma_1 = \Gamma$ and

$$\Gamma_{n+1} = \begin{cases} \Gamma_n \cup \{B_{n+1}\} & \text{if } \Gamma_n \cup \{B_{n+1}\} \not\vdash_{K_3} A, \\ \Gamma_{n+1} = \Gamma_n & \text{otherwise.} \end{cases}$$

We put $\Gamma^* := \bigcup_{n=1}^\infty \Gamma_n$. Then:

(1) Follows from the definition of Γ^*.

(2) By a straightforward induction on i. Since $\Gamma_1 = \Gamma$, so $\Gamma_1 \not\vdash_{K_3} A$. By the inductive assumption, $\Gamma_i \not\vdash_{K_3} A$. If $\Gamma_{i+1} = \Gamma_i$, then $\Gamma_{i+1} \not\vdash_{K_3} A$. If $\Gamma_{i+1} \neq \Gamma_i$, then $\Gamma_{i+1} = \Gamma_i \cup \{B_{i+1}\}$. Assume that $\Gamma_i \cup \{B_{i+1}\} \not\vdash_{K_3} A$. But then $\Gamma_{i+1} = \Gamma_i$, by the definition of the sequence of $\Gamma_1, \Gamma_2, \ldots$. Contradiction. Hence, $\Gamma_i \cup \{B_{i+1}\} \not\vdash_{K_3} A$. Thus, if $\Gamma_{i+1} \neq \Gamma_i$, then $\Gamma_{i+1} \not\vdash_{K_3} A$. Clearly, that if it holds for Γ_i that $\Gamma_i \not\vdash_{K_3} A$, then $\Gamma^* \not\vdash_{K_3} A$.

(3) We show the condition $(\Gamma_1)-(\Gamma_3)$.

$(\Gamma 1)$ Since $\Gamma^* \not\vdash_{K_3} A$, so it is obvious that $\Gamma^* \neq \text{Form}$.

$(\Gamma 2)$ “\Rightarrow” Assume that $\Gamma^* \vdash_{K_3} B$. Then there is i such that $B = B_i$ and for some Γ_i we have $\Gamma_i \vdash_{K_3} B_i$. Assume that $B_i \not\in \Gamma_i$. Hence $\Gamma_{i-1} \cup \{B_i\} \not\vdash_{K_3} A$. But then $\Gamma^* \not\vdash_{K_3} A$, because $\Gamma_{i-1} \subseteq \Gamma^*$ and $\Gamma^* \vdash_{K_3} B$. Nonetheless, it was proved in (2) that $\Gamma^* \not\vdash_{K_3} A$. In this case $B_i \in \Gamma_i$. Therefore, if $\Gamma^* \vdash_{K_3} B$ then $B \in \Gamma^*$.

“\Leftarrow” Suppose $B \in \Gamma$, $\Gamma^* \not\vdash_{K_3} B$. Then there is i such that $B = B_i$ and for some Γ_{i-1} we have $\Gamma_{i-1} \cup \{B_i\} \not\vdash_{K_3} A$. Since $\Gamma_{i-1} \subseteq \Gamma^*$, so $\Gamma^* \cup \{B_i\} \not\vdash_{K_3} A$. From the latter and the fact that $\Gamma^* \not\vdash_{K_3} A$, obtain that $B_i \not\in \Gamma^*$, that is $B \not\in \Gamma^*$. Contradiction. Therefore, $\Gamma^* \vdash_{K_3} B$. Thus, if $B \in \Gamma^*$ then $\Gamma^* \vdash_{K_3} B$.

$(\Gamma 3)$ To show (\ast): if $B \lor C \in \Gamma^*$ then either $B \in \Gamma^*$ or both $\neg B \in \Gamma^*$ and $C \in \Gamma^*$, we first prove the following statements:

(a) If $B \lor C \in \Gamma^*$ then either $B \in \Gamma^*$ or $\neg B \land C \in \Gamma^*$.
(b) If $B \in \Gamma^*$ or $\neg B \land C \in \Gamma^*$, then either $B \in \Gamma^*$ or both $\neg B \in \Gamma^*$ and $C \in \Gamma^*$.

Suppose $B \lor C \in \Gamma^*$, but $B \notin \Gamma^*$ and $\neg B \land C \notin \Gamma^*$. Since $B \lor C \in \Gamma^*$, so $\Gamma^* \vdash_{K_3} B \lor C$; cf. $(\Gamma 2))$. On the other hand, for some i and j we have:
B = B_i and \neg B \land C = B_j; \Gamma_{i-1} \cup \{B_i\} \vdash_{K_3} A, and \Gamma_{j-1} \cup \{B_j\} \vdash_{K_3} A.
Moreover, \Gamma_{i-1} \subseteq \Gamma^* and \Gamma_{j-1} \subseteq \Gamma^*. Then \Gamma^* \cup \{B_i\} \vdash_{K_3} A and \Gamma^* \cup \{B_j\} \vdash_{K_3} A. From the latter and the fact that \Gamma^* \vdash_{K_3} B \lor C, by the rule (\lor E_2), we obtain that \Gamma^* \vdash_{K_3} A, but according to (2), \Gamma^* \not\vdash_{K_3} A. Contradiction. So the statement (a) is proved.

Using the rules (\lor E_1) and (\lor E_2), it is simple to prove the statement (b). Moreover, using the transitivity and statements (a) and (b), we obtain (*).

Theorem 3.2 (Completeness). For all \Gamma \subseteq \text{Form} and A \in \text{Form}:

\[\text{if } \Gamma \vdash_{K_3} A \text{ then } \Gamma \vdash_{K_3} A. \]

Proof. Will be provided by contraposition. Let \Gamma \not\vdash_{K_3} A. Then, by Lemma 3.3, there is \Gamma^* \subseteq \text{Form} such that \Gamma \subseteq \Gamma^*, \Gamma^* \not\vdash_{K_3} A, and \Gamma^* is a nontrivial prime theory. By Lemma 3.2, there is a valuation \nu_{\Gamma^*} such that: \nu_{\Gamma^*}(B) = 1, for any B \in \Gamma, and \nu_{\Gamma^*}(A) \neq 1. But then \Gamma \not\vdash_{K_3} A. □

In the light of theorems 3.1 and 3.2 we obtain:

Theorem 3.3 (Adequacy). For all \Gamma \subseteq \text{Form} and A \in \text{Form}:

\[\Gamma \vdash_{K_3} A \text{ iff } \Gamma \vdash_{K_3} A. \]

4. Natural deduction systems for \(K_3^- \)-related logics

For a natural deduction system of the logic \(K_3^- \) we have the following set of rules: (EM), (\neg \neg I), (\neg \neg E), (\lor I_1), (\lor I_2), (\lor E_1), (\land I_1), (\land I_2), (\land E_1), (\land E_3), (\neg \lor I_1), (\neg \lor I_2), (\neg \lor E_1), (\neg \land I_1), (\neg \land I_2), (\neg \land E).

For a natural deduction system of the logic \(K_3^* \) we have the following set of rules: (EFQ), (\neg \neg I), (\neg \neg E), (\lor I_2), (\lor I_4), (\lor E_3), (\land I_1), (\land E_1), (\land E_2), (\neg \lor I_1), (\neg \lor E_1), (\neg \land I_3), (\neg \land I_4), (\neg \land E).

For a natural deduction system of the logic \(K_3^- \) we have the following set of rules: (EM), (\neg \neg I), (\neg \neg E), (\lor I_1), (\lor I_2), (\lor E_1), (\land I_1), (\land I_3), (\land E_2), (\land E_4), (\neg \lor I_1), (\neg \lor I_3), (\neg \lor E_1), (\neg \lor E_2), (\neg \land I_1), (\neg \land E).

For a natural deduction system of the logic \(K_3^* \) we have the following set of rules: (EFQ), (\neg \neg I), (\neg \neg E), (\lor I_3), (\lor I_4), (\lor E_4), (\land I_1), (\land E_1), (\land E_2), (\neg \lor I_1), (\neg \lor E_1), (\neg \land I_1), (\neg \land E).
For a natural deduction system of the logic K_{3}^{w2} we have the following set of rules: (EM), ($\neg\neg$I), ($\neg\neg$E), (\veeI), (\veeI$_{1}$), (\veeI$_{2}$), (\veeI$_{5}$), (\wedgeI$_{1}$), (\wedgeI$_{2}$), (\wedgeI$_{3}$), (\wedgeE), ($\neg\vee$I), ($\neg\vee$I$_{1}$), ($\neg\vee$I$_{2}$), ($\neg\vee$I$_{3}$), ($\neg\vee$E), ($\neg\wedge$I), ($\neg\wedge$E).

Similarly as Theorem 3.3 we obtain:

Theorem 4.1 (Adequacy). Let L be one of the following logics: $K_{3}^{\rightarrow 2}$, $K_{3}^{\leftarrow 2}$, K_{3}^{w}, K_{3}^{w2}. Then for all $\Gamma \subseteq \text{Form}$ and $A \in \text{Form}$:

$$\Gamma \vdash_{L} A \text{ iff } \Gamma \models_{L} A.$$

Concluding remarks

Thus, I have constructed natural deduction systems for weak and intermediate regular logics. Consequently, all three-valued regular logics (both with one and two designated values) are presented in the form of natural deduction systems. However, development of proof-search algorithms suitable for these systems is left untouched and, hopefully, will stimulate further research. One more subject for future investigations could be study of proof theory of four-valued regular logics.

Acknowledgments. I would like to thank an anonymous referee for helpful comments on the earlier version of this paper.

References

YAROSLAV PETROUKHIN
Department of Philosophy
Moscow State University
Moscow, Russia
yaroslav.petrukhin@mail.ru