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Abstract. A combination of epistemic logic and dynamic logic of programs
is presented. Although rich enough to formalize some simple game-theoretic
scenarios, its axiomatization is problematic as it leads to the paradoxical
conclusion that agents are omniscient. A cut-free labelled Gentzen-style
proof system is then introduced where knowledge and action, as well as
their combinations, are formulated as rules of inference, rather than axioms.
This provides a logical framework for reasoning about games in a modular
and systematic way, and to give a step-by-step reconstruction of agents
omniscience. In particular, its semantic assumptions are made explicit and a
possible solution can be found in weakening the properties of the knowledge
operator.
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1. Introduction

Since the pioneering work of Aumann [1], it has been widely acknowl-
edged that many solution concepts in game theory strictly depend on the
assumptions about what players know of the game or about other play-
ers’ knowledge. In this approach knowledge is defined set-theoretically
by Aumann structures, i.e. partitions over a set of informational states.
Aumann structures naturally find a logical counterpart in the semantics
of modal logic S5 where knowledge is represented by an equivalence
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relation over the set of conceivable alternatives. However, both Aumann
and Kripke structures have several important limitations in the analysis
of games since they deal with knowledge in a static way and it is not that
obvious to express how agents information can change in consequence of
the moves they may play. Nor it is possible to explain why their choices
are bounded by their reasoning abilities. Even the most simple game-
theoretic situation shows that knowledge and actions are not fixed from
the beginning but may evolve and change as the game progresses. It is
natural to think that what agents do depends on what they know, and on
the other hand, that what they do may change their knowledge. Thus,
knowledge and actions are mutually dependent notions involved into a
dynamic process. If the notion of rational agent has to be interpreted
dynamically, it is then clear that any attempt to formalize rationality
must be oriented toward logical frameworks in which knowledge and
action may interact.

A possible candidate for studying in an abstract and general way the
dynamics of knowledge and action in games is propositional dynamic
logic, PDL (see [13] for a comprehensive survey). Originally conceived
as the logic of computer programming, PDL is a multi-modal logic where
the modalities are not simply a collection of propositional operators de-
fined over a generic set of indexes, but are inductively generated over a
set of atomic programs or, in our terminology, basic actions. In general,
a program is a linguistic entity (written in some programming language)
that describe a procedure for computing an output for a given input; in
particular, in PDL a program α is a term denoting an algorithm. Al-
gorithms, as well as the actions that agents perform, are assumed to be
mechanically  i.e. step-by-step  executable, and they are supposed to
return an output after some finite number of steps. Therefore, programs
in PDL may be equivalently thought as actions of players in games.

In this sense, the expression [α]A means that by executing α, neces-
sarily A holds, that is, the action α must bring about A. In a “dual” way,
the formula 〈α〉A is interpreted as: by executing α, possibly A holds, i.e.
the action α may bring about A. This interpretation makes clear that in
PDL, differently from standard classical propositional logic, the truth-
values of formulas are not intended as determined from the beginning,
and fixed once and for all by a given reality existing independently from
human agents. On the contrary, formulas are supposed to acquire a
specific truth-value only with respect to the execution of some specific
human actions. In this sense, the conception of truth standing behind
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PDL becomes very much close to the non-transcendent conception typi-
cal of intuitionistic logic or, more generally, of the so-called verificationist
positions (see for example [17]).

However, in order to faithfully formalize game-theoretic scenarios, we
need to consider a further type of change and allow programs to mod-
ify not only truth values but also agents’ knowledge. Technically, this
means to combine the language of PDL with the language of standard
epistemic logic, EL (see [15]), for reasoning about knowledge. EL is a
multi-modal logic with a collection of modal operators Ki for each agent
i of a given finite set A. Intuitively, the formula KiA means that the
agent i knows that A. Usually, it is assumed as a minimal requirement
that agents have knowledge only of true fact, a false information being
at most be believed, but not properly known. Thus, we must assume
the principle of factivity of knowledge, that is, KiA ⊃ A. The other
principles usually given in order to characterize the knowledge operator
are more controversial and attracted the attention since they have been
introduced. The first one requires agents to be aware of their knowl-
edge, i.e. KiA ⊃ KiKiA (positive introspection), whereas the other one
presupposes also the awareness about their ignorance, ¬KiA ⊃ Ki¬KiA
(negative introspection). We shall assume the three principles through-
out and discuss later the possibility of leaving some of them out.

1.1. PDL without iteration

It is worth noting the in standard presentations of PDL, the Kleene
star operation of iteration (∗) is usually taken as a primitive operator,
whereas it is not taken into account here. Intuitively, a program α∗

corresponds to some finite number of successive applications of α.1 The
reason why we will not deal with it in our presentation is that iterating
a program means to be able to (re)use it many different times, and this
is far from being trivial insofar as it presupposes to possess a manner
of handling computational resources. Thus, in absence of a previously
defined operation for controlling the access to resources, the operation
of iteration remains only ideally applicable, but not concretely, as we
expect instead to be the case in a situation of interaction in which the
actions of each agent can be performed only if the actions of the other

1 It is worth noting that the operation of iteration concerns the construction of
programs, and not their execution as a hasty reflection may suggest.
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agents have been actually brought to conclusion. A toy example for bet-
ter understanding this point is given by the analysis of those programs
representing natural numbers written in an abstract functional program-
ming language, specifically λ-calculus (cf. the notion of Church numeral
given in [26, pp. 20, 282]). By the Curry-Howard correspondence, the
program corresponding to the natural number 2 is given by the following
proof (written in a sequent calculus version of Girard’s System F ):

β : X → β : X

β : X → β : X β : X → β : X

α : X ⊃ X, β : X → αβ : X
L⊃

α : X ⊃ X, α : X ⊃ X, β : X → α(α β) : X ⊃ X
L⊃

α : X ⊃ X, α : X ⊃ X → λβ.α(α β) : X ⊃ X
R⊃

α : X ⊃ X → λβ.α(α β) : X ⊃ X
Ctr

→ λαλβ.α(α β) : (X ⊃ X) ⊃ (X ⊃ X)
R⊃

→ ΛXλαλβ.α(α β) : ∀X((X ⊃ X) ⊃ (X ⊃ X))
R∀2

It is quite clear from this example that the iteration of α corresponds
to the application of the contraction rule on its formula specification. In
this case the appeal to contraction is not too much problematic, as it
is applied only once, but in principle it could be possible to apply it
any arbitrary finite number of times, and thus to contract any arbitrary
finite number of formulas specification of α, potentially generating the
whole series of natural numbers. However, as it is known from the linear
logic resource interpretation (see [27, pp. 1–2]), such an unbound use of
contraction corresponds to conceive the set of resources as perennially
exploitable. This means to open the space for potentially infinitary con-
siderations, which seem in fact to be alien from an agent-based perspec-
tive, where agents are human beings acting in concrete situations and
therefore subject to fixed finitary constraints.2 Consequently, reasoning
about games is not like reasoning about pure logic or mathematics: al-
though some kinds of abstraction and idealization are needed in order to

2 As it concerns the specific problem of natural numbers, the lesson of linear
logic is that the second order categorical definition of natural numbers does not go
beyond human epistemic capacities because of an impredicative account of second
order quantifiers, but already because at the propositional level some unbounded,
and hence potentially unfeasible, operations are allowed, viz. contraction. On the
other hand, examples of intrinsically epistemic-aware accounts of natural numbers
are given by those logical systems which, with respect to cut elimination, correspond
to classes of bounded computational complexity, e.g. Bounded Linear Logic, Light
Linear Logic, Soft Linear Logic.



Proof theory of epistemic logic of programs 305

formalize the situation we want to study, the resulting model should still
represent something that could effectively occur in real-life situations.
Indeed, the presence of multiple players means that the set of actions
which are in principle playable by each player is de facto bound by the
actions already performed by the other players.

1.2. Our proposal

In this paper, we focus on a specific combination of the standard epis-
temic logic (EL) for reasoning about knowledge, and the dynamic logic
of programs for reasoning about actions (PDL). The same combination
has been axiomatically investigated in [25] and [7]. These works are
mostly concerned with the following principles connecting knowledge
and action:

[α]KiA ⊃ Ki[α]A (No Learning)

Ki[α]A ⊃ [α]KiA (Perfect Recall)

〈α〉KiA ⊃ Ki〈α〉A (Reasoning Ability)

According to the No Learning principle (NL) if an agent comes
to know that A after any kind of execution of α, then the agent al-
ready knows that α brings about A. In other words, agents know in
advance the consequences of those actions that necessarily produce a
knowledge. Perfect Recall (PR) claims that agents never forget infor-
mation once it is acquired. The third condition, called the Church-
Rosser axiom in [25], is more evocative known as Reasoning Ability
(RA) from [7]. It says that if an agent comes to know that A af-
ter some kind of execution of α, then the agent already knows that
α could represent a way to obtain A. In other terms, agents know
in advance the consequences of those actions that possibly produce a
knowledge.

One can consider these principles as axiom schemes to be added to
the standard axiomatization of PDL and EL. We shall refer to such
axiomatization as EPDL. Although the three previous principles reflect
intuitive properties of the combination of knowledge and actions, [25]
showed that their acceptance is in fact far from being neutral: when
they come into play in connection with EL and PDL, they bring to
some unexpected, if not even puzzling, results of non-conservativity of
EPDL over EL.
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We shall introduce a cut-free Gentzen-style proof system for EPDL

where the notions of knowledge and action, as well as their combinations,
are formulated as rules of inference, rather than axioms. Our general aim
is to design a logical framework for reasoning about games in a modular
and systematic way, and to provide a reconstruction which makes explicit
the semantic assumptions leading to the non-conservativity results. Fi-
nally, we suggest that a possible solution can be found in weakening the
properties of the knowledge operator.

2. Language and Formal Semantics

The language L of Epistemic Logic of Programs (EPDL) is a com-
bination of the language of Epistemic Logic (EL) and the iteration-free
fragment of the language of Propositional Dynamic Logic (PDL). L con-
tains a countable set V = {P1, P2 . . .} of atomic formulas, a zero-place
operator ⊥, and a countable set of basic programs (interpreted intuitively
as actions) P = {π1, π2 . . .}. Programs α are inductively defined from
P using the operations of ; (sequential composition), ∪ (alternation)
and ? (test), whereas formulas are built from V and ⊥ by propositional
connectives ∧ (conjunction),∨ (disjunction), ⊃ (implication), and modal
operators Ki (for each agent i from a given set A) and [α] (for each
program α). More precisely, if P ∈ V, π ∈ P, and i ∈ A, the language
of EPDL is inductively defined (in Backus-Naur form) as follows:

A ::= P | ⊥ | A ∧ A | A ∨ A | A ⊃ A | KiA | [α]A

α ::= π | α; α | α ∪ α | A?

As usual, ¬A (negation), A ≡ B (equivalence) and 〈α〉A are ab-
breviations for A ⊃ ⊥, (A ⊃ B) ∧ (B ⊃ A) and ¬[α]¬A, respectively.
To execute the composition α; β of two programs α and β means to
execute α and then β. This corresponds to assuming the axiom scheme
[α; β]A ≡ [α][β]A (Comp). An execution of α ∪ β is either an execution
of α or of β (where the choice is non-deterministic), and it is character-
ized by the axiom scheme [α ∪β]A ≡ [α]A∧ [β]A (Alt). Finally, the test
of a formula A, namely A?, corresponds to check whether A is true. The
axiom scheme characterizing its behavior is given by [A?]B ≡ (A ⊃ B)
(Test). This axiom is particularly interesting because it shows that in
PDL it is possible to assign an operational interpretation to the usual
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classical implication in a manner similar to what the BHK interpretation
does for the intuitionistic implication.3

Formulas of L are evaluated in relational models  i.e. models based
on Kripke frames  combining the semantic features of epistemic and
dynamic models.

Definition. Let P be an atomic formula, π a basic action and i an
agent. A model is a structure M = 〈X, {Ri}i∈A, {Rπ}π∈P ,〉 where X
is non-empty set of states; each Ri and Rπ is a binary relation on X ;
and  is a binary relation on X × V. As usual, x  P means that P is
true at x.

The forcing relation  is given on atoms and it is inductively defined
for arbitrary formulas by the following set of valuation clauses:

x  ⊥ for no x

x  A ∧ B iff x  A and x  B

x  A ∨ B iff x  A or x  B

x  A ⊃ B iff x  A implies x  B

x  KiA iff for all y, xRiy implies y  A

x  [α]A iff for all y, xRαy implies y  A

The latter clause requires Rα, for an arbitrary action α, to be defined.
We shall assume the standard intended relational interpretation of pro-
grams ([10, p. 110]) and thus call a standard model a model satisfying
the following conditions:

Act1 ∀x∀y(xRα;βy ≡ ∃z(xRαz ∧ zRβy))
Act2 ∀x∀y(xRα∪βy ≡ xRαy ∨ xRβy)
Act3 ∀x∀y(xRA?y ≡ x  A ∧ x = y)

The latter condition makes appeal to identity between states. Since
in predicate logic identity is assumed to be reflexive  i.e. x = x  and
to satisfy the replacement scheme  i.e. x = y ∧ P (x) ⊃ P (y), for any
arbitrary atomic P  we need to impose on standard models the two
extra conditions:

Id1 ∀x(x = x)

3 This result is not astonishing if we think of the usual interpretation of intu-
itionistic logic into modal logic (cf. in particular [11]), where implication corresponds
to a 2 operator.
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Id2 ∀x∀y(x = y ∧ x  A ⊃ y  A)

where P (x) has been replaced by x  A, for any arbitrary A.
Finally, notice that the aforementioned principles of factivity, posi-

tive introspection, and negative introspection are valid when each Ri is
assumed to be an equivalence relation, i.e.

Kn1 ∀x(xRix)
Kn2 ∀x∀y(xRiy ⊃ yRix)
Kn3 ∀x∀y∀z(xRiy ∧ yRiz ⊃ xRiz)

We call a standard epistemic model a standard model where each Ri

satisfies the latter three conditions.

3. Proof Theory

Labelled systems [19] are a variant of G3 sequent calculi (see [28, p. 77]),
specifically designed for modal and non-classical logics. In labelled sys-
tems formulas do not occur in isolation but always together with the
possible state at which they are true. Thus, labelling is the syntactical
counterpart of forcing and we shall use the notation x : A to indicate
that A is labelled by x, whenever A is a formula and x a possible state.
Accessibility relations like xRy may also occur as they allow to handle
the transition from one state to another. A labelled sequent Γ → ∆ is
then defined as a multiset (list without order) of labelled formulas x : A
and relational atoms xRy separated by the symbol → that represents
the derivability relation in the object language. Once the semantics
is made explicit part of the syntax, rules for propositional connectives
and modalities are directly obtained from the definition of forcing. In
particular, since each valuation clause establishes the sufficient and nec-
essary conditions for a formula to be valid, it is possible to formulate
rules for introducing that formula in the right-hand side (succedent)
and left-hand side (antecedent) of →, respectively. More precisely, the
conversion of valuation clauses into inference rules is obtained by con-
verting if-directions into right rules and only-if-directions into left rules.
For example, from the sufficient condition for a formula KiA to be forced
at x, we found a rule for introducing the labelled formula x : KiA in the
succedent

xRiy, Γ → ∆, y : A

Γ → ∆, x : KiA
RK
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The role of universal quantifiers in the definition is reflected in the
rule by the variable condition that y does not appear in the conclusion.
Symmetrically, the necessary condition for KiA to be forced in x gives
the corresponding rule introducing x : KiA in the antecedent

y : A, x : KiA, xRiy, Γ → ∆

x : KiA, xRiy, Γ → ∆
LK

Analogously to the G3 rule for universal quantifier in predicate logic
the principal formulas x : KiA and xRiy are repeated into the premise.
The rules for formulas as [α]A are similar:

y : A, x : [α]A, xRαy, Γ → ∆

x : [α]A, xRαy, Γ → ∆
L[ ]

xRαy, Γ → ∆, y : A

Γ → ∆, x : [α]A
R[ ]

Notice that differently from modal rules, classical propositional rules
leave labels unchanged during their application. Moreover, initial se-
quents are restricted to atomic formulas. The following set of rules is
thus obtained:

x : P, Γ → ∆, x : P x : ⊥, Γ → ∆
L⊥

x : A, x : B, Γ → ∆

x : A ∧ B, Γ → ∆
L∧

Γ → ∆, x : A Γ → ∆, x : B

Γ → ∆, x : A ∧ B
R∧

x : A, Γ → ∆ x : B, Γ → ∆

x : A ∨ B, Γ → ∆
L∨

Γ → ∆, x : A, x : B

Γ → ∆, x : A ∨ B
R∨

Γ → ∆, x : A x : B, Γ → ∆

x : A ⊃ B, Γ → ∆
L⊃

x : A, Γ → ∆, x : B

Γ → ∆, x : A ⊃ B
R⊃

Finally, we need to consider another group of rules, called structural
rules, not introducing any logical operator. Weakening (Wk) corresponds
to assuming that the set of derivable sequents is closed under the addition
of formulas either in the antecedent or in the consequent of each of its
elements. Dually, contraction (Ctr) allows two occurrences of the same
formula to be reduced to one:4

4 Notice that contraction in this case is defined either on formulas labelled with
possible states or on relational atoms, but not on programs decorated with their
formulas specification. Hence, the presence of contraction is not in conflict with what
we said in §1.1 about the relationship between iteration and contraction.
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Γ → ∆
x : A, Γ → ∆

Wk
Γ → ∆

Γ → ∆, x : A
Wk

Γ → ∆
xRy, Γ → ∆

Wk

x : A, x : A, Γ → ∆

x : A, Γ → ∆
Ctr

Γ → ∆, x : A, x : A

Γ → ∆, x : A
Ctr

xRy, xRy, Γ → ∆

xRy, Γ → ∆
Ctr

The last rule to be considered is the rule of cut, which intuitively
corresponds to the operation of composition of proofs, that is, to the use
of lemmas for constructing new proofs:

Γ → ∆, x : A x : A, Γ′ → ∆′

Γ, Γ′ → ∆′, ∆
CUT

Although structural rules are extremely useful in the process of dis-
covering new proofs by top-down reasoning starting from initial sequents,
nonetheless it can be proved that they are dispensable rules: every se-
quent derivable by applying structural rules is already derivable without
any applications of them. In other words, structural rules are admissible

rules. Moreover, weakening and contraction are also height-preserving
admissible (hp-admissible for short), i.e. when applied they do not in-
crease the height of the derivation (defined as the length of its longest
branch; for details see [28, Def. 1.1.9, p. 9]).

Theorem 3.1. The following structural properties are satisfied:

1. Arbitrary initial sequents are derivable;

2. Substitution of labels is hp-admissible;

3. All the rules are hp-invertible;

4. Weakening is hp-admissible;

5. Contraction is hp-admissible;

6. Cut is admissible.

Proof. To prove 1. we need to show that sequents of the form x :
A, Γ → ∆, x : A with an arbitrary formula x : A are derivable. By
induction on x : A, we deal with the case of A is of the form [α]B, the
other ones being analogous. By the inductive hypothesis y : B, xRαy, x :
[α]B → y : B is derivable since y : B is a subformula of x : [α]B for
all y. Then apply L[ ] and obtain xRαy, x : [α]B → y : B. Since
there is no other occurrence of y, the rule R[ ] is applicable and the
conclusion x : [α]B → x : [α]B obtains. All the other claims are proved
by induction on the height of the derivation and follow the same pattern
of [19]. Hp-admissibility of substitution (2.) consists into showing that
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Γ[y/x] → ∆[y/x] are derivable whenever Γ → ∆ is, where Γ[y/x] and
∆[y/x] are obtained from Γ and ∆ by replacing every occurrence of the
label x by y. Hp-invertibility (3.) reduces to prove the admissibility of
the rules obtained by inverting the conclusion with the premise(s). For
example, in the case of R[ ] we need to show that for all y, the following
rule is admissible:

Γ → ∆, x : [α]A

xRαy, Γ → ∆, y : A

Inductively on the height of the premise, it is easy to see that if it
is initial, also the conclusion is initial. Suppose the premise has been
derived by some rule R, say R[ ] with a principal formula z : [β]B
different from x : [α]A; suppose also that is y does not occur in the
conclusion of R[ ]. We apply 2. and replace y by a new w so to obtain
from the premise of R[ ] the sequent zRβw, Γ → ∆, x : [α]A, w : B, then
by the inductive hypothesis we get zRβw, xRαy, Γ → ∆, y : A, w : B, and
finally by R[ ] we conclude xRαy, Γ → ∆, y : A, z : [β]B. All the other
case are proved similarly. The proof of hp-admissibility of weakening (4.)
is not problematic because in general the rules of G3 systems have been
designed exactly for obtaining it; for the pattern of demonstration see
[19]. Hp-admissibility of contraction (5.) is also proved by induction,
exploiting 3. In the case of two occurrences of x : [α]A, one of them
derived by an application of R[ ], we need to show that

xRαy, Γ → ∆, y : A, x : [α]A

Γ → ∆, x : [α]A, x : [α]A
R[ ]

is admissible. By applying 3. on the premise of R[ ] we obtain xRαy,
xRαy, Γ → ∆, y : A, y : A, from which by the inductive hypothesis and
another application of R[ ] we immediately conclude Γ → ∆, x : [α]A.
Cut admissibility (6.) is proved by induction on the structure of the cut
formula with sub induction on the sum of the heights of the derivations
of the premises of cut. The proof is to a large extent similar to the cut
elimination proofs in [21] so we shall consider only the case in which the
cut formula is x : [α]A and it is principal in both premises. A derivation
of the form

xRαy, Γ → ∆, y : A

Γ → ∆, x : [α]A
R[ ]

z : A, xRαz, x : [α]A, Γ′ → ∆′

xRαz, x : [α]A, Γ′ → ∆′
L[ ]

xRαz, Γ, Γ′ → ∆′, ∆
CUT
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is converted into one with two cuts, one is on a smaller formula, the other
is on a shorter derivation. Notice that the left most premise is obtained
from xRαy, Γ → ∆, y : A by applying 2.

xRαz, Γ → ∆, z : A

Γ → ∆, x : [α]A z : A, xRαz, x : [α]A, Γ′ → ∆′

z : A, xRαz, Γ, Γ, Γ′ → ∆′, ∆, ∆
CUT

xRαy, Γ, Γ, Γ′ → ∆′, ∆, ∆
CUT

xRαy, Γ, Γ′ → ∆′, ∆
Ctr

⊣

The admissibility results stated in Theorem 3.1 allow to build deriva-
tions in a systematic way: if a sequent is derivable, then its derivation
can be effectively found starting root-first from it and reconstructing its
derivation tree by successively applying backwards the instances of those
rules the principal formulas of which coincide with one of the formulas
present in the sequent under analysis.

It is not difficult to see that the system consisting of rules considered
so far characterizes the formulas valid in all relational models. In par-
ticular, all classical propositional tautologies and the normality axioms
for K and [ ]  i.e. the sequents → x : Ki(A ⊃ B) ⊃ (KiA ⊃ KiB)
and → x : [α](A ⊃ B) ⊃ ([α]A ⊃ [α]B)  are derivable using the given
rules. Still, these rules are not enough. Factivity, positive and negative
introspection, and all the formulas involving the operations for building
programs cannot be derived. Since these principles of knowledge and
actions are valid in all standard epistemic models, in order to render
them derivable we need to internalize in the calculus the conditions Kn1,
Kn2 and Kn3. We may think of thse condition as mathematical axioms
of some axiomatic theory. The question is then how to add proper ax-
ioms to the calculus. There are several ways for doing it ([20], § 6.3).
Consider the case of Ri. First, we could allow derivations to start with
“basic mathematical sequents” ([8, §1.4]) corresponding directly to the
properties of each Ri to be reflexive, transitive, and symmetric:

→ xRix xRiy, yRiz → xRiz xRiy → yRix

The problem is that this kind of initial sequents may be composed
together via instances of the cut rule that cannot be proved to be ad-
missible (for a general account of this problem see [9, p. 125] and [28,
p. 127]). For example, in order to derive the Euclideanness property an
essential and non-eliminable use of the cut rule is needed:

xRiy → yRix yRix, xRiz → yRiz

xRiy, xRiz → yRiz
CUT
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To retrieve cut admissibility we need to consider an alternative way to
internalize in the calculus the conditions characterizing standard epis-
temic models. In general, the idea is to abandon the traditional con-
ception of axioms as borders and starting points of derivations, and to
integrate them inside the inferential structure, and to make them part
of the body of derivations. In particular, in [21] a general method of
adding axioms to sequent calculus in the form of extra-logical inference
rules while preserving cut elimination is presented. The method cov-
ers specific mathematical theories (apartness, order and lattice theories,
affine and projective geometry) and, besides, it successfully applies to
modal and non-classical logics, as it is shown in [19]. We start from
the classical multi-succedent sequent calculus G3c (see [28, p. 77]) and
use the existence of conjunctive normal form in classical logic: every
quantifier-free formula is equivalent to some formula in conjunctive nor-
mal form, that is, to a conjunction of disjunctions of atomic formulas
or negation of atomic formulas. Each conjunct is a formula of the form
¬P1 ∨ · · · ∨ ¬Pm ∨ Q1 ∨ · · · ∨ Qn which is classically equivalent to the
implication

P1 ∧ · · · ∧ Pm ⊃ Q1 ∨ · · · ∨ Qn

Special cases are with m = 0, where it reduces to Q1 ∨ . . . ∨ Qn, and
with n = 0 where it is ¬(P1 ∧ . . . ∧ Pm). The universal closure of any
such implication is called a regular formula. Regular formulas are then
converted into deductively equivalent left rules of the form

Q1, P , Γ → ∆ . . . Qn, P , Γ → ∆

P, Γ → ∆
Reg

where the multiset P1, . . . , Pm has been abbreviated in P and repeated
in the premises in order to make contraction admissible.

Rules following Reg preserve cut elimination in the sense that the new
cuts created by means of Reg rules can always be reduced to already
known types of cuts, for which we posses a reduction strategy. The
fundamental aspect is that by transforming axioms into only one kind of
rules, i.e. left rules, it is not possible to create cuts between the principal
formulas of two Reg rules. Looking at our example, it is easy to see
that the conditions of reflexivity, transitivity, and symmetry of Ri are
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instances of regular formulas and thus they can be converted into Reg
rules:

xRix, Γ → ∆

Γ → ∆
Ref i

xRiz, xRiy, yRiz, Γ → ∆

xRiy, yRiz, Γ → ∆
Transi

yRix, xRiy, Γ → ∆

xRiy, Γ → ∆
Symi

When the basic mathematical sequents are replaced by the corresponding
rules of inference then the Euclideanness of Ri has a cut-free derivation:

yRiz, yRix, xRiy, xRiz → yRiz

yRix, xRiy, xRiz → yRiz
Transi

xRiy, xRiz → yRiz
Symi

The derivation above should not suggest that we need initial sequents
of the form xRiy, Γ → ∆, xRiy for deriving formulas of the language of
EPDL. The addition of these initial sequents is needed only for the
derivation of the properties of the accessibility relation.

All the properties characterizing knowledge operators Ki (factivity,
positive introspection, and negative introspection) become derivable
when our system of rules is extended with the rules Ref i, Transi, and
Symi. For example, in the case of factivity we have:

x : A, xRix, x : KiA → x : A

xRix, x : KiA → x : A
LK

x : KiA → x : A
Ref i

→ x : KiA ⊃ A
R⊃

By the same method, it is possible to convert into rules also existential
axioms, or, more generally, axioms of the form of geometric implications
(in the sense of category theory). These are the universal closures of
implications A ⊃ B in which A and B do not contain implications or
universal quantifiers. Geometric implications can be turned in a useful
normal form that consists of conjunctions of formulas

∀x(P1 ∧ · · · ∧ Pm ⊃ ∃y1M1 ∨ · · · ∨ ∃ynMn)

where each Pi is an atomic formula, each Mj a conjunction of a list of
atomic formulas Qj , and none of the variables in the vectors yj are free



Proof theory of epistemic logic of programs 315

in Pi. In turn, each of these formulas can be turned into an inference
rule of the following form:

Q1(z1/y1), P , Γ → ∆ . . . Qn(zn/yn), P , Γ → ∆

P , Γ → ∆
Geom

The variables yi are called the replaced variables of the schema, and the
variables zi the proper variables, or eigenvariables. In what follows, we
shall consider for ease of notation the case in which the vectors of vari-
ables yi consist of a single variable. The geometric rule schema is subject
to the condition that the eigenvariables must not be free in P , Γ, ∆. As
in the case of Reg rules, cut elimination still holds in presence of Geom

rules; a detailed proof can be found in [18].
An example of geometric semantic condition we need to deal with

is the condition Act1 corresponding to the sequential composition of
programs. In fact, the left-to-right direction of Act1 directly follows the
geometric scheme, while the right-to-left direction is logically equivalent
to the formula ∀x∀y∀z((xRαz ∧ zRβy) ⊃ xRα;βy) which follows the
regular scheme. The two directions can thus be converted into the two
following rules:

xRαz, zRβy, xRα;βy, Γ → ∆

xRα;βy, Γ → ∆
;1

xRα;βy, xRαz, zRβy, Γ → ∆

xRαz, zRβy, Γ → ∆
;2

As all the rules following Geom, also ;1 must satisfy the variable con-
dition that z does not occur in the conclusion. The axiom [α; β]B ≡
[α][β]B gets derived as follows:

z : A, xRα;βz, xRαy, yRβz, x : [α; β]A → z : A

xRα;βz, xRαy, yRβz, x : [α; β]A → z : A
L[ ]

xRαy, yRβz, x : [α; β]A → z : A
;2

xRαy, x : [α; β]A → y : [β]A
R[ ]

x : [α; β]A → x : [α][β]A
R[ ]

y : A, z : [β]A, xRαz, zRβy, xRα;βy, x : [α][β]A → y : A

z : [β]B, xRαz, zRβy, xRα;βy, x : [α][β]A → y : A
L[ ]

xRαz, zRβy, xRα;βy, x : [α][β]A → y : A
L[ ]

xRα;βy, x : [α][β]A → y : A
;1

x : [α][β]A → x : [α; β]A
R[ ]



316 Paolo Maffezioli, Alberto Naibo

Non-deterministic alternation between programs is semantically ex-
pressed by condition Act2. The left-to-right direction of Act2 directly
follows the regular scheme, while the right-to-left direction is logically
equivalent to the formula

∀x∀y(xRαy ⊃ xRα∪βy) ∧ ∀x∀y(xRβy ⊃ xRα∪βy)

which corresponds to the conjunction of two regular formulas. Hence,
the following three inference rules are obtained:

xRαy, xRα∪βy, Γ → ∆ xRβy, xRα∪βy, Γ → ∆

xRα∪βy, Γ → ∆
∪1

xRα∪βy, xRαy, Γ → ∆

xRαy, Γ → ∆
∪2 ′

xRα∪βy, xRβy, Γ → ∆

xRβy, Γ → ∆
∪2 ′′

Consequently, [α ∪ β]B ≡ [α]B ∧ [β]B can be derived using these rules.

y : A, xRα∪βy, xRαy, x : [α ∪ β]A → y : A

xRα∪βy, xRαy, x : [α ∪ β]A → y : A
L[ ]

xRαy, x : [α ∪ β]A → y : A
∪2 ′

x : [α ∪ β]A → x : [α]A
R[ ]

y : A, xRα∪βy, xRβy, x : [α ∪ β]A → y : A

xRα∪βy, xRβy, x : [α ∪ β]A → y : A
L[ ]

xRβy, x : [α ∪ β]A → y : A
∪2 ′′

x : [α ∪ β]A → x : [β]A
R[ ]

x : [α ∪ β]A → x : [α]A ∧ [β]A
R∧

y : A, xRαy, xRα∪βy, x : [α]A, x : [β]A → y : A

xRαy, xRα∪βy, x : [α]A, x : [β]A → y : A
L[ ]

y : A, xRβy, xRα∪βy, x : [α]A, x : [β]A → y : A

xRβy, xRα∪βy, x : [α]A, x : [β]A → y : A
L[ ]

xRα∪βy, x : [α]A, x : [β]A → y : A
∪1

x : [α]A, x : [β]A → x : [α ∪ β]A
R[ ]

x : [α]A ∧ [β]A → x : [α ∪ β]A
L∧

Before introducing the last set of rules corresponding to the semantic
condition on the test operator, we need to present the rules corresponding
to the conditions for identity Id1 and Id2:

x = x, Γ → ∆

Γ → ∆
Ref

=

y : A, x : A, x = y, Γ → ∆

x : A, x = y, Γ → ∆
Rep

=

Finally, the condition Act3 can be shown to be equivalent to the
conjunction of three regular formulas and then converted into the Reg
rules:

x : A, xRA?y, Γ → ∆

xRA?y, Γ → ∆
?1 ′

x = y, xRA?y, Γ → ∆

xRA?y, Γ → ∆
?1 ′′
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xRA?y, x : A, x = y, Γ → ∆

x : A, x = y, Γ → ∆
?2

The corresponding axiom [A?]B ≡ A ⊃ B is derivable as follows:

x : B, xRA?x, x = x, x : [A?]B, x : A → x : B

xRA?x, x = x, x : [A?]B, x : A → x : B
L[ ]

x = x, x : [A?]B, x : A → x : B
?2

x : [A?]B, x : A → x : B
Ref

=

x : [A?]B → x : A ⊃ B
R⊃

x : A, xRA?y → y : B, x : A

y : B, x = y, x : A, xRA?y, x : B → y : B

x = y, x : A, xRA?y, x : B → y : B
Rep=

x : A, xRA?y, x : B → y : B
?1 ′′

x : A, xRA?y, x : A ⊃ B → y : B
L⊃

xRA?y, x : A ⊃ B → y : B
?1 ′

x : A ⊃ B → x : [A?]B
R[ ]

4. No Learning, Perfect Recall and Reasoning Ability

Since the language of EPDL is freely generated by the union of the two
languages of EL and PDL, and since the models of EPDL are obtained
by joining up the the models of EL and those of PDL, it is then clear
that EPDL can be considered as the fusion of the two logics EL and
PDL. However, EPDL also contains mixed formulas where epistemic
and action modalities interact. As we have already seen, a quite natural
reading can be assigned to them and their peculiarity is to contribute to
the formalization of some simple game-theoretic scenarios. In this section
we are concerned with the problem of finding cut-elimination preserving
rules which correspond to the three principles under consideration. Since
they express the connection between the two groups of modalities of
EPDL it is clear that this connection is reflected also at the semantic
level. In [25] the frame conditions characterizing the principles NL, PR

and RA are found. They are summarized in the table below.

NL [α]KiA ⊃ Ki[α]A ∀x∀y∀z(xRiy ∧ yRαz ⊃ ∃w(xRαw ∧ wRiz))

PR Ki[α]A ⊃ [α]KiA ∀x∀y∀z(xRαy ∧ yRiz ⊃ ∃w(xRiw ∧ wRαz))

RA 〈α〉KiA ⊃ Ki〈α〉A ∀x∀y∀z(xRαy ∧ xRiz ⊃ ∃w(yRiw ∧ zRαw))
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These conditions state that the following diagrams can be completed
(the completing arrows are the dotted ones):

NL PR RA

x

y z

w

Ri

Rα

Rα

Ri

x y

zw

Rα

RiRi

Rα

x y

z w

Rα

RiRi

Rα

Notice that the three conditions coincide with geometric implications
and therefore it is possible to make them corresponding to rules of the
form

xRαw, wRiz, xRiy, yRαz, Γ → ∆

xRiy, yRαz, Γ → ∆
NL

xRiw, wRαz, xRαy, yRiz, Γ → ∆

xRαy, yRiz, Γ → ∆
PR

yRiw, zRαw, xRαy, xRiz, Γ → ∆

xRαy, xRiz, Γ → ∆
RA

All the rules must meet the condition that the label w does not occur
in the conclusion. This reflects the role of the existential quantifier in
the corresponding semantic condition. The axioms NL, PR and RA

from the Hilbert-style axiomatization can now be derived by applying
the new rules:

z : A, w : KiA, xRαw, wRiz, xRiy, yRαz, x : [α]KiA → z : A

w : KiA, xRαw, wRiz, xRiy, yRαz, x : [α]KiA → z : A
LK

xRαw, wRiz, xRiy, yRαz, x : [α]KiA → z : A
L[ ]

xRiy, yRαz, x : [α]KiA → z : A
NL

xRiy, x : [α]KiA → y : [α]A
R[ ]

x : [α]KiA → x : Ki[α]A
RK

z : A, w : [α]A, xRiw, wRαz, xRαy, yRiz, x : Ki[α]A → z : A

w : [α]A, xRiw, wRαz, xRαy, yRiz, x : Ki[α]A → z : A
L[ ]

xRiw, wRαz, xRαy, yRiz, x : Ki[α]A → z : A
LK

xRαy, yRiz, x : Ki[α]A → z : A
PR

xRαy, x : Ki[α]A → y : KiA
RK

x : Ki[α]A → x : [α]KiA
R[ ]
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w : A, yRiw, zRαw, xRαy, xRiz, y : KiA → z : 〈α〉A, w : A

w : A, yRiw, zRαw, xRαy, xRiz, y : KiA → z : 〈α〉A
R〈 〉

yRiw, zRαw, xRαy, xRiz, y : KiA → z : 〈α〉A
LK

xRαy, xRiz, y : KiA → z : 〈α〉A
RA

xRαy, y : KiA → x : Ki〈α〉A
RK

x : 〈α〉KiA → x : Ki〈α〉A
L〈 〉

The system obtained by collecting all the rules presented in the last
two sections (§§ 3, 4) will be called G3EPDL. This system is provably
equivalent to the axiomatic system EPDL.

5. A paradoxical situation

Let us now temporarily leave our sequent calculus presentation of EPDL

and get back to the standard axiomatic account. As we mentioned in
the Introduction, a main result of [25, Cor. 24, p. 122] is to have shown
that EPDL is a non-conservative extension of EL. In particular, the
principle

A ⊃ KiA OP

which belongs to the language of EL, is derivable in EPDL, but not in
EL. In a nutshell,

EPDL
A ⊃ KiA but

�
�
�

EL
A ⊃ KiA

More precisely, what is shown in [25] is that OP is derivable simply by
combining EL, PDL and just one of the “mixing” principles NL, PR

or RA, i.e.

EL+PDL+NL
A ⊃ KiA or

EL+PDL+PR
A ⊃ KiA or

EL+PDL+RA
A ⊃ KiA

For example, in the case of NL the derivation is the following:

1. [α]KiA ⊃ Ki[α]A NL

2. [¬A?]KiA ⊃ Ki[¬A?]A Instantiation of 1.
3. [A?]B ≡ A ⊃ B Test

4. [¬A?]KiA ≡ ¬A ⊃ KiA Instantiation of 3.
5. (¬A ⊃ KiA) ⊃ (Ki[¬A?]A) Transitivity on 4., 2.
6. Ki[¬A?]A ≡ Ki(¬A ⊃ A) Necessitation on 3.
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7. (¬A ⊃ KiA) ⊃ Ki(¬A ⊃ A) Transitivity on 5., 6.
8. (¬A ⊃ KiA) ⊃ KiA Logical Equivalences from 7.
9. ¬A ∨ KiA Logical Tautologies from 8.
10. A ⊃ KiA Logical Tautologies from 9.

What makes this result extremely puzzling is that OP is nothing else
but the formal characterization of the omniscience principle. This seems
clearly to undermine the possibility of using EPDL as a formal frame-
work for studying the knowledge/actions interaction, because if each
agent already knows everything that is true, what then would be added
by her interaction with the other agents? In other terms, the idea is that
if OP holds, then either there would be no quest for knowledge at all
or the quest would be purely solipsistic. In either case the conclusion
would be highly counterintuitive.

In fact, the situation is even more dramatic. In presence of the
factivity of knowledge we have that truth and knowledge collapse, i.e.

EPDL
A ≡ KiA

We are then in a situation analogue to the one of the Church-Fitch para-
dox of knowability (see [24] and the bibliography therein). Not only in
both cases truth and knowledge become two indiscernible concepts, but
also their identification seems to be caused by the acceptance of formal
presentations of some principles characterizing verificationist theories of
truth and meaning. In the case of the Church-Fitch paradox it is the
knowability principle (or principle K, see [4, p. 99]) to be involved, while
in this case it is PR that can be seen as the formal version of a sort
of manifestability principle, or better, of a principle concerning the non-
transcendence of semantical concepts.5 Indeed, PR may be read as:
if an agent i knows that any occurrence of α represents a justification
for the assertion of A, then when α occurs i is able to recognize it as
such and thus to know that A. In other terms, PR states that the
justifications for the assertion of a proposition A are epistemically trans-
parent to us. On the other hand, principles NL and RA formalize a

5 With the expression ‘semantical concepts’ we want to denote those concepts
on which a theory of meaning or a theory of truth are based on. For example, the
semantical key concept of certain verificationist theories of truth is the concept of
proof. On the contrary, when we speak of textquoteleft formal semantics’ we are just
speaking of a mathematical framework in which to express the formal properties that
a semantical concept should possess. Thus, in this case, we do not need to indicate
which this concept is, but simply to describe its abstract and general properties.
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more general and basic condition, not necessarily quintessential of the
verificationist account, but also common to other theories of meaning
and truth. The idea behind these two principles is that the agents who
participate successfully to a linguistic exchange6 are supposed to know
what is a (necessary or possible) justification for the assertion of a cer-
tain proposition. In other words, we are assuming that those agents who
successfully take part to a common and social enterprise, like linguistic
communication or knowledge acquisition, they do not it by chance, but
because they already know what counts as a semantical key concept for
the situation in which they are acting.

5.1. Possible solutions

Similarly to what happens with the Church-Fitch paradox, the standard
solutions proposed to block this new epistemic paradox are essentially
of two kinds (see [24]). The first one is a completely syntactical solution
as it consists in the restriction on the possible instances of the axiom
schemes NL, PR, RA ([25, p. 124]). In a nutshell, the idea is that if
A is a formula occurring in one of these axioms, then the place-holders
for programs occurring in the same axiom can be instantiated neither
with the test for A nor with the test for ¬A. In this manner the step 2.
of the derivation of A ⊃ KiA above is prevented. The problem of this
type of solution is that, on the one hand, it represents a too much ad hoc

solution. On the other hand, actions and formulas become heterogeneous
with respect to the operation of instantiation which is uniform when
applied to formulas, but is not when applied to actions.

The second solution is more conceptual, and has the effect of entailing
some changes in the formal semantics of EPDL. The basic idea is to drop
the standard test operator ? and replace it with a new informational test

operator ¿ (cf. [25, p. 124 et seqq.]) such that

A¿ means test if A is known

In this manner the operation of testing is no more linked directly to the
truth value of a formula, but to the epistemic access to it. To test a
formula does not mean to test if it is true, but rather if it is known.
Semantically, we replace the accessibility relation RA? with a new acces-
sibility relation RA¿ for which it holds that for an arbitrary agent i,

6 Notice that since the Wittgenstein of the Philosophical Investigations it is quite
standard to conceive linguistic exchanges as particular kind of games (see [29]).



322 Paolo Maffezioli, Alberto Naibo

Act3′ ∀x∀y(xRA¿y ≡ xRiy ∧ y  KiA)

This frame property is sufficient in order to validate the following
principle, which characterize the behavior of ¿ with respect to a generic
agent i

[A¿]B ≡ Ki(KiA ⊃ B) Inf Test

It is worth noting that the definition of Act3′ does not involve any refer-
ence to identity between possible states. Therefore, if ? is replaced by ¿
we do not need the rules Ref = and Rep=.

The problem of this solution is that it has a too much global charac-
ter: it works for the whole system EPDL without allowing to understand
if the cause of the paradox could be circumscribed to the axioms NL,
PR, and RA. In particular, there is no analysis of the responsibility that
each of these axioms has in the derivation of the paradox, when used in
conjunction with the standard test operator. Without such analysis the
combination of EL and PDL is put into question, while a much more
parsimonious solution would have been to operate only the revisions sug-
gested by the analysis of the “mixing” axioms, because they are the last
axioms to have been added and thus it is reasonable to think of them as
the most changeable part of the theory. However, a second problematic
aspect of this solution is that by rejecting the standard test operator we
have also to abandon the possibility of providing a verificationist account
of implication inside a classical logic framework, which represents indeed
one of the most debated topics of verificationism nowadays (for a general
exposition of the problem see [5, pp. 291–300]).

5.2. A different kind of analysis

It is not difficult to see that the paradox is derivable also in our sys-
tem G3EPDL. However, the use of inference rules instead of axiom
schemes guarantees a systematic and modular analysis of the collapse
of truth and knowledge. More precisely, thanks to the properties stated
in Theorem 3.1, it is possible to operate a proof-search on the sequent
→ x : A ⊃ KiA, and since the rules NL, PR, and RA are independent
from each other, it is possible to investigate fragments of G3EPDL

containing only one of them at a time; in this way we can render the
analysis of the derivation of OP a modular one, focusing just on one of
the “mixing” axioms. Moreover, since the axioms of EPDL have been
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transformed into inference rules acting on their corresponding frame con-
ditions, the proof-search becomes a formal and systematic method for
extracting the semantic conditions standing behind any given derivable
formula of EPDL.

Let us focus now on the principle NL, i.e. let us consider only the
system G3EPDL \ {PR, RA}. By root-first proof search we can find
the semantic conditions sufficient for deriving OP.

y : A, yRA?w, wRix, yRix, xRA?x, x = x, xRiy, x : A → y : A

yRA?w, wRix, yRix, xRA?x, x = x, xRiy, x : A → y : A
?1 ′

yRix, xRA?x, x = x, xRiy, x : A → y : A
NL

xRA?x, x = x, xRiy, x : A → y : A
Symi

x = x, xRiy, x : A → y : A
?2

xRiy, x : A → y : A
Ref

=

x : A → x : KiA
RK

→ x : A ⊃ KiA
R⊃

The peculiarity of this derivation is that it makes appeal to the rule
Symi, while the use of the properties of the knowledge operator remained
hidden in the Hilbert-style axiomatic derivation.

5.3. An alternative solution

From the previous derivation we can simply infer that Symi is a suf-
ficient condition for the derivation of OP with respect to the system
G3EPDL \ {PR, RA}: if Symi is assumed, then OP can be derived.
The derivation itself gives no information about whether Symi is also
a necessary condition for OP. Nevertheless, by pruning the tree just
before the application of Symi a countermodel for OP can be extracted
(for ease of representation, the Ri-reflexivity relations on x and y are
omitted):

x x  A

y x 1 A

Ri

RA?
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In this model x 1 A ⊃ KiA, because x  A, but x 1 KiA. This
shows that Symi is also a necessary condition for OP: without Symi,
OP becomes invalid.

The previous result shows that the standard test operator and NL

are not problematic per se, but become so when epistemic modalities
correspond to S5 modalities. From a conceptual point of view, this
means that when knowledge and actions interact, the characterization
of knowledge by using the principles of S5 could be too strong. In other
terms, if knowledge is studied as a dynamic notion and not a static one,
then it could be necessary to formalize it in a more permissive way.
In particular, the solution that naturally stems from the previous result
consists in weakening the properties of the knowledge operator and leave
out the symmetry of Ri. Without symmetric accessibility relations the
Euclideanness of Ri does not follows anymore. And since Euclideanness
correspond to the principle of negative introspection (see [6, p. 63]) we
should abandon this principle. This idea seems to be confirmed by the
following informal argument meant to show that this principle is not
valid when knowledge is dynamic: the fact the we do not know that A is
not sufficient to entail that we know that we do not know that A, since
it could be the case that in the future a certain action could bring about
A and therefore put us in the condition to eventually know that A.

6. Conclusions and related works

Although in this paper we focused on the standard PDL (without it-
eration) to formalize the reasoning about actions in games, there are
variants of PDL that have been specifically introduced to this puro-
pose. Among them, Game Logic [22] is a generalization of PDL that
formalize the resoning about determined 2-palyer games. It should be
also noticed that an alternative proof-theoretic approach to EPDL is
presented in [23] where a Tait-style sequent calculus is introduced and
the proof-search procedure is shown to be decidable. However, a re-
stricted version of the cut rule is considered, whereas in this paper we
work with cut rule in its full generality. Moreover, in [23] axiom schemes
are transformed into inference rules following a method similar to the
fold/unfold pattern described in [3]: these rules act directly on formulas
and not on their semantic conditions. The drawback is that proof-search
procedure cannot be used for systematically find the semantic conditions
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of derivable sequents of EPDL. Other works are concerned with either
the epistemic part or the program part of EPDL. Within the tradi-
tion of labelled systems [12] presents a sequent calculus for multi-agent
epistemic logic with the operator of distributed knowledge. The rules
for Ki and the relational rules for Ri of our system G3EPDL are the
same rules of the system presented in [12]. As it concerns propositional
dynamic logic several approaches have been recently proposed. In [14] a
tree-hypersequent calculus for the full language of PDL is introduced.
Although the system satisfies the structural properties, the rules that
correspond to the operator ∗ has an infinite number of premises. A sys-
tem for the iteration-free fragment of EPDL is presented in [2].

In this paper we have investigated the connection between the for-
mal notions of knowledge and action from a proof-theoretic perspective.
Such a connection can be formulated within the language of EPDL and
is known to be problematic as it leads to the collapse of knowledge and
truth and consequently to the omniscience of agents. The phenomenon
is clearly related to the paradox of knowability. In either case from
intuitively valid principles combining two kinds of modal operators it is
possible to conclude a highly counterintuitive formula where one of the
two modality disappeared. As in the Church-Fitch paradox of knowa-
bility, also in EPDL the collapse of knowledge and truth is presented
axiomatically. Following the strategy adopted in [16] we formulate these
principles as rules of inference, rather than axioms, and provide an anal-
ysis of the derivation of omniscience where every step is made explicit.
In particular, our analysis allows to recognize that the assumptions on
knowledge operator, although neglected in the axiomatic derivation, play
an important role. In particular, it becomes clear where exactly in the
proof of omniscience from NL the assumptions about knowledge as an
S5 modality are needed. Thus, an alternative reading of the result  and
consequently an alternative solution  is made possible by our analysis:
that knowledge, as S5 operator, is somehow inadequate if we aim at
formalizing a dynamic notion of knowledge. The presence of principles
connecting knowledge and action forces us to revise our notion of knowl-
edge. If the properties of knowledge operator are weakened, the price one
has to pay is to loose the correspondence between Kripke frames and Au-
mann structures. Since in Aumann structures knowledge is represented
by a partition on a set of state, we need to consider the equivalence class
of the accessibility relations in the corresponding Kripke frames. This is
possible only when the Ri’s are equivalence relations. Nevertheless, the
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set-theoretic approach by Aumann was specifically designed for dealing
with common knowledge. Since we do not take into consideration this
operator here, the loss of the correspondence with Aumann structures is
not conceptually problematic.

As it concerns the future developments of our work, a first idea could
be to “inferentialize” the information test of [25]. Notice that the se-
mantics of R¿ follows the regular scheme and therefore the method of
conversion of axioms into rules applies. Thus, we can provide a proof-
theoretic analysis of the solution proposed in [25].

Another possible direction is to consider other alternative logics un-
derlying EPDL. As we have mentioned above, the study of game-like
situations reflects a verificationist account of truth and knowledge. Since
the logical framework usually accepted by this kind of account is intu-
itionistic logic, it could be interesting to study an intuitionistic version of
EDPL. In particular, it seems to us that intuitionistic EPDL could shed
some lights about the derivability of omniscience using PR and RA.
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