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SIMPLIFIED KRIPKE STYLE SEMANTICS

FOR SOME VERY WEAK MODAL LOGICS

Abstract. In the present paper1 we examine very weak modal logicsC1, D1, E1, S0.5◦, S0.5◦+(D), S0.5 and some of their versions which
are closed under replacement of tautological equivalents (rte-versions).
We give semantics for these logics, formulated by means of Kripke style
models of the form 〈w,A,V 〉, where w is a «distinguished» world, A is
a set of worlds which are alternatives to w, and V is a valuation which
for formulae and worlds assigns the truth-vales such that: (i) for all
formulae and all worlds, V preserves classical conditions for truth-value
operators; (ii) for the world w and any formula ϕ, V (�ϕ, w) = 1 iff
∀x∈A V (ϕ, x) = 1; (iii) for other worlds formula p�ϕq has an arbitrary
value. Moreover, for rte-versions of considered logics we must add the
following condition: (iv) V (�χ,w) = V (�χ[ϕ/ψ], w), if ϕ and ψ are
tautological equivalent. Finally, for C1, D1 and E1 we must add queer

models of the form 〈w, V 〉 in which: (i) holds and (ii′) V (�ϕ, w) = 0,
for any formula ϕ. We prove that considered logics are determined by
some classes of above models.

Keywords: Simplified Kripke style semantics, very weak modal logics.

1. Preliminaries. Some historical notes

Modal formulae are formed in the standard way from the set At of propo-
sitional letters: ‘p’, ‘q’, ‘p0’, ‘p1’, ‘p2’, . . . ; truth-value operators: ‘¬’,

1This article is the final version of a draft paper [14], mentioned in the references
of the papers [13] and [15].
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‘∨’, ‘∧’, ‘⊃’, and ‘≡’ (connectives of negation, disjunction, conjunction,
material implication, and material equivalence, respectively); the modal
operator ‘�’ (necessity; the possibility sign ‘♦’ is the abbreviation of
‘¬�¬’); and brackets. Let For be the set of all modal formulae. For any
set Γ of formulae we put �Γ := {p�ϕq : ϕ ∈ Γ}.

Let Taut be the set of all classical tautologies (without the modal
operator) and—as in [3, 4]—let PL be the set of modal formulae which
are instances of classical tautologies.

Let Σ be a set of modal formulae. Also as in [3], Σ is a modal system

iff PL ⊆ Σ and Σ is closed under the following rule of detachment for
‘⊃’ (modus ponens), i.e., for any formulae ϕ and ψ:

if ϕ and pϕ ⊃ ψq are members of Σ , so is ψ. (MP)

We say that a modal system is congruential iff it is closed under the
following rule of congruence:

if pϕ ≡ ψq ∈ Σ , then p�ϕ ≡ �ψq ∈ Σ . (RE)

Notice that a modal system Σ is congruential iff it is closed under re-
placement

if pϕ ≡ ψq ∈ Σ and χ ∈ Σ , then χ[ϕ/ψ] ∈ Σ , (RRE)

or equivalently

if pϕ ≡ ψq ∈ Σ , then pχ[ϕ/ψ] ≡ χq ∈ Σ , (RRE′)

where χ[ϕ/ψ] is any formula that results from χ by replacing one or more
occurrences of ϕ, in χ, by ψ.

A modal system Σ is called regular iff it is closed under the following
regularity rule:

if p(ϕ ∧ ψ) ⊃ χq ∈ Σ , then p(�ϕ ∧ �ψ) ⊃ �χq ∈ Σ . (RR)

A modal system Σ is regular iff it contains all instances of

�(p ⊃ q) ⊃ (� p ⊃ � q) (K)

and is closed under the following monotonic rule

if pϕ ⊃ ψq ∈ Σ then p�ϕ ⊃ �ψq ∈ Σ , (RM)

iff it is closed under (RM) and contains all instances of

(� p ∧ � q) ⊃ �(p ∧ q) (C)
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iff it is closed under (RE) and contains all instances of

�(p ∧ q) ≡ (� p ∧ � q) (R)

We say that a modal system Σ is normal iff it contains all instances
of (K) and is closed under the following rule:

if ϕ ∈ Σ , then p�ϕq ∈ Σ . (RN)

A modal system Σ is normal iff it is regular and contains the following
formula

�(p ⊃ p) (N)

iff it contains (N) and all instances of (K), and is closed under (RE).
A set Σ of modal formulae is a logic iff Σ is a modal system and is

closed under the following rule of uniform substitution:

if ϕ ∈ Σ then sϕ ∈ Σ , (US)

where sϕ is the result of uniform substitution of formulae for proposi-
tional letters in ϕ. Of course, the set PL is the smallest modal system
and it is a logic.

In [9] Lemmon set out the logic S0.5 and two groups of non-normal
modal logics called the “D” and “E” systems.

Firstly, the logic S0.5 is the smallest modal logic which includes
�Taut, and contains (K) and the following formula:

� p ⊃ p (T)

The logic S0.5◦ is associated with Lemmon’s S0.5 (for these logics see e.g.
[4, 9, 16]). S0.5◦ is the smallest logic which includes �Taut and contains
(K). Thus, S0.5 is S0.5◦ plus (T). Of course, by (US), S0.5 and S0.5◦

include the set �PL, and S0.5◦ ( S0.5 (see Fact 4.1).
Secondly, Lemmon “consider a series of Lewis modal systems E1, E2,

E3, E4, and E5, which are intended as possible epistemic counterparts
to the five systems S0.5, S2, S3, S4, and S5. A distinguishing mark of
E-systems is that in none of them is there any thesis of the form Lα”
[9, p. 181–182] (in our text Lα := �ϕ). All E-systems—just like all
S-systems—are logics that contain (K) and (T), include the set Taut, and
are closed under the rules: (MP) and (US) (so they include the set PL).
Moreover, the logics E2–E5 are regular. For example, E2 is the smallest
regular modal logic which contains (T). E3 is the smallest modal logic
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which is closed under the rule RM and contains (T) and the following
formula:

�(p ⊃ q) ⊃ �(� p ⊃ � q) (sK)

Thus, by PL, (sK) and (T), the logic E3 contains (K). So it is regular.
The logic E1 is closed neither under (RM) nor under (RR). It is the

smallest logic which contains (K) and (T), and includes the following set
of formulae:

MTaut := {p�ϕ ⊃ �ψq : pϕ ⊃ ψq ∈ Taut} .

Thus, E1 also includes the following sets of formulae.

MPL := {p�ϕ ⊃ �ψq : pϕ ⊃ ψq ∈ PL} ,

RPL := {p(�ϕ ∧ �ψ) ⊃ �χq : p(ϕ ∧ ψ) ⊃ χq ∈ PL} ,

EPL := {p�ϕ ≡ �ψq : pϕ ≡ ψq ∈ PL} .

We have E1 ( S0.5 (see Fact 4.1).
Thirdly, the five D-logics, D1, D2, D3, D4 and D5, were associated

with the five E-logics. “The distinguishing feature of D-systems is that
axiom (T) of the corresponding E-systems is weakened to (D)” [9, p. 184]

� p ⊃ ¬�¬p (D)

Precisely, D1 is the smallest logic which contains (K) and (D), and includes
the set MTaut. Thus, the logic D1 also includes the sets MPL, RPL and
EPL. We have D1 ( E1 (see Fact 4.1). The logics D2–D5 are regular,
e.g. D2 is the smallest regular modal logic which contains (D). We haveD2 ( E2.

In [10] the logic C2 is examined. It is E2 without (T) and (D). Pre-
cisely, C2 is the smallest regular logic. We have C2 ( D2.

By analogy to C2, in [16] by ‘C1’ Routley denoted the system E1
without (T) and (D), i.e., C1 is the smallest modal logic which contains
(K) and includes the set MTaut. So C1 includes MPL, RPL and EPL. We
have C1 ( D1 and C1 ( S0.5◦ (see Fact 4.1).

As in [2, 4], we say that a modal system Σ is closed under replacement

of tautological equivalents iff for all ϕ,ψ, χ ∈ For:

if pϕ ≡ ψq ∈ PL and χ ∈ Σ , then χ[ϕ/ψ] ∈ Σ . (rte)

or equivalently

if pϕ ≡ ψq ∈ PL, then χ ∈ Σ iff χ[ϕ/ψ] ∈ Σ . (rte′)



Simplified Kripke style semantics . . . 275

Thus, by PL, a modal system is closed under (rte) iff it includes the
following set of formulae:

REPL := {pχ[ϕ/ψ ] ≡ χq : pϕ ≡ ψq ∈ PL} .

In [2] a modal logic is called classical modal iff it contains (K) and (N),
and is closed under (rte).2 Notice that

Lemma 1.1. If Σ is closed under (rte) and (N) ∈ Σ , then �PL ⊆ Σ .

Proof. For any τ ∈ PL we have that p(p ⊃ p) ≡ τq ∈ PL. Hence
p� τq ∈ Σ , by (rte) for χ := (N), ϕ := ‘p ⊃ p’ and ψ := τ ’. ⊣

The non-congruential logics S0.9◦, S0.9, S1◦, S1, S2◦, S2, S3 and S3.5
are examples of “classical modal logics” in the sense of [2]. For details
concerning these logics see [4, 9] and Appendix A.

2. Some very weak systems

2.1. Very weak t-regular systems

Any modal system which includes the set RPL we will call t-regular. Thus,
the set RPL replaces the rule (RR) in the formulation of regular systems.
Of course, if Σ is a t-regular system and Σ ′ is a modal system such that
Σ ⊆ Σ ′, then Σ ′ is also a t-regular.

Lemma 2.1. All t-regular systems include the sets MPL and EPL.

Proof. If pϕ ⊃ ψq ∈ PL, then also p(ϕ ∧ ϕ) ⊃ ψq ∈ PL. So we use
RPL and PL. Moreover, If pϕ ≡ ψq ∈ PL, then also pϕ ⊃ ψq ∈ PL and
pψ ⊃ ϕq ∈ PL. So we use MPL and PL. ⊣

Lemma 2.2. All instances of (K), (C), (R) and

(

�(p ⊃ q) ∧ �(q ⊃ r)
)

⊃ �(p ⊃ r) (X)

are members of all t-regular systems.

Proof. Since p
(

(ϕ ⊃ ψ) ∧ ϕ
)

⊃ ψq, p(ϕ ∧ ψ) ⊃ ϕq, p(ϕ ∧ ψ) ⊃ ψq,
p(ϕ ∧ψ) ⊃ (ϕ∧ψ)q and p

(

(ϕ ⊃ ψ) ∧ (ψ ⊃ χ)
)

⊃ (ϕ ⊃ χ)q belong to PL
and all t-regular systems include RPL and MPL. ⊣

2In [3, 4] the expression ‘classical modal’ was referred to ‘congruential’.



276 Andrzej Pietruszczak

Lemma 2.3. For any system Σ the following conditions are equivalent:

(a) Σ is t-regular,

(b) Σ contains all instances of (K) and includes the set MPL,

(c) Σ contains all instances of (C) and includes the set MPL,

(d) Σ contains all instances of (X) and includes the set MPL.

Proof. “(a) ⇒ (b)”, “(a) ⇒ (c)”, “(a) ⇒ (d)” By lemmas 2.1 and 2.2.
“(c) ⇒ (a)” If p(ϕ ∧ ψ) ⊃ χq ∈ PL, then p�(ϕ ∧ ψ) ⊃ �χq ∈ Σ ,

since MPL ⊆ Σ . Hence p(�ϕ ∧ �ψ) ⊃ �χq ∈ Σ , by (C) and PL.
“(b) ⇒ (a)” If p(ϕ ∧ ψ) ⊃ χq ∈ PL, then pϕ ⊃ (ψ ⊃ χ)q ∈ PL, by

PL. Hence p�ϕ ⊃ �(ψ ⊃ χ)q ∈ Σ , by MPL ⊆ Σ . So p�ϕ ⊃ (�ψ ⊃

�χ)q ∈ Σ , by (K) and PL.
“(d) ⇒ (b)” By (X), p

(

�(τ ⊃ ϕ) ∧ �(ϕ ⊃ ψ)
)

⊃ �(τ ⊃ ψ)q ∈ Σ , for
any τ ∈ Taut. Since pϕ ≡ (τ ⊃ ϕ)q ∈ PL and EPL ⊆ Σ , so p�ϕ ≡ �(τ ⊃
ϕ)q ∈ Σ . Similarly for ψ. Hence p�(ϕ ⊃ ψ) ⊃ (�ϕ ⊃ �ψ)q ∈ Σ , by
PL. ⊣

All t-regular systems contain all instances of the following formulae:

♦p ≡ ¬�¬p (df♦)

� p ≡ ¬♦¬p (df �)

♦(p ∨ q) ≡ (♦p ∨ ♦q) (R⋄)

♦(p ⊃ q) ≡ (� p ⊃ ♦q) (R⋄�)

The logics C1, D1 and E1 are t-regular (for these logics see p. 274).
The logic C1 is the smallest t-regular system.

Notice that E1 contains the following formula:

p ⊃ ♦ p (T⋄)

and (D). Moreover, by (R⋄�), D1 contains the following formula:

♦(p ⊃ p) (P)

In this paper by C1+(Tq) we denote the smallest t-regular logic which
contains the following formula

� p ⊃ (p ∨ � q) (Tq)
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For t-regular logics the formula (Tq) may be replace by

¬�(q ∧ ¬q) ⊃ (� p ⊃ p) (T′

q)

♦(q ⊃ q) ⊃ (� p ⊃ p) (T′′

q)

The name ‘Tq’ is an abbreviation for ‘quasi-T’, because (T) and (Tq) are
valid in all reflexive and quasi-reflexive standard models, respectively.3

We have that C1 ( D1 ( E1 and C1 ( C1+(Tq) ( E1 (see Fact 4.1).
Notice that the logic C1 plus two axioms (D) and (Tq) equals E1 (i.e.E1 = C1+(D)+(Tq) = D1+(Tq)). Indeed, by C1 and (D) we obtain (P).

Hence we have (T), by (T′′

q), (MP) and (US).
In this paper we prove that the logics C1, D1, C1+(Tq) and E1 are

not closed under (rte). For example, the formula ‘�� p ≡ ��¬¬p’ is
not a member of these logics (see Remark 3.2 and Fact 4.1).

2.2. Very weak t-normal systems

Any modal system which contains all instances of (K) and includes the set
�PL will be called t-normal. Thus, the set �PL replaces the rule (RN) in
the formulation of normal systems. Of course, if Σ is a t-normal system
and Σ ′ is a modal system such that Σ ⊆ Σ ′, then Σ ′ is also a t-normal.

Lemma 2.4. For any system Σ the following conditions are equivalent:

(a) Σ is t-normal,

(b) Σ is t-regular and contains (N).

Proof. “(a) ⇒ (b)” (N) ∈ �PL. Moreover, if p(ϕ∧ψ) ⊃ χq ∈ PL, then
pϕ ⊃ (ψ ⊃ χ)q ∈ PL, by PL and (MP). Hence p�(ϕ ⊃ (ψ ⊃ χ))q ∈ Σ ,
since �PL ⊆ Σ . So p�ϕ ⊃ (�ψ ⊃ �χ)q ∈ Σ and p(�ϕ ∧ �ψ) ⊃

�χq ∈ Σ , by (K), PL and (MP).
“(b) ⇒ (a)” By Lemma 2.3, Σ contains all instances of (K) and

includes the set MPL, Let τ ∈ PL. Then p(p ⊃ p) ⊃ τq ∈ PL. So
p(N) ⊃ � τq ∈ Σ , since MPL ⊆ Σ . Thus, �PL ⊆ Σ . ⊣

3In any quasi-reflexive standard frame an accessibility relation R on a set W of
worlds is such that ∀x,y∈W (xRy ⇒ xRx). See [3, p. 92, Exercise 3.51], where instead
of ‘quasi-reflexive’ the term ‘reverse secondary reflexive’ is used.
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The logic S0.5◦ is the smallest t-normal system; S0.5 is the smallest
t-normal logic which contains (T) (for these logics see p. 273). Of course,S0.5 contains (T⋄) and (D).

In the present paper by S0.5◦+(D) we denote the smallest t-normal
logic which contains (D), i.e. S0.5◦ plus (D). Of course, S0.5◦+(D) contains
(P). Moreover, by S0.5◦+(Tq) we denote the smallest t-normal logic which
contains (Tq), i.e. S0.5◦ plus the axiom (Tq).

We have that S0.5◦ ( S0.5◦+(D) ( S0.5, besides S0.5◦ ( S0.5◦+(Tq) (S0.5 and C1+(Tq) ( S0.5◦+(Tq) (see Fact 4.1).
Notice that the logic S0.5◦ plus two axioms (D) and (Tq) is equals S0.5

(i.e. S0.5 = S0.5◦+(D)+(Tq)). Indeed, from S0.5◦ and (D) we obtain (P),
and hence (T), by (T′′

q), (MP) and (US).
In this paper we prove that S0.5◦, S0.5◦+(Tq), S0.5◦+(D) and S0.5 are

not closed under (rte). For example, the formula ‘�� p ≡ ��¬¬p’ is
not a member of these logics (see Remark 3.2 and Fact 4.1).

2.3. Very weak t-normal rte-systems

By rte-systems we mean modal systems which are closed under (rte). By
Lemma 1.1 we have

Lemma 2.5. If a rte-system contains (N) and all instances of (K), then

it is t-normal.

Let S0.5◦rte, S0.5rte, S0.5◦rte+(D) and S0.5◦rte+(Tq) be, respectively,
such versions of the logics S0.5◦, S0.5, S0.5◦+(D) and S0.5◦+(Tq) that
are closed under (rte). Thus, S0.5◦rte is the smallest t-normal rte-system,
and S0.5rte, S0.5◦rte+(D) and S0.5◦rte+(Tq) are the smallest t-normal rte-
logics which contain (T), (D) and (Tq), respectively.4 We have thatS0.5◦rte ( S0.5◦rte+(D) ( S0.5rte and S0.5◦rte ( S0.5◦rte+(Tq) ( S0.5rte
(see Fact 4.1).

2.4. Very weak t-regular rte-systems

Let C1rte, D1rte, E1rte and E1rte+(Tq) be, respectively, such versions of
the logics C1, D1, E1 and C1+(Tq) that are closed under (rte). The

4Thus, S0.5◦rte is the smallest classical modal logic in the sense of [2], and S0.5rte,S0.5◦rte+(D) and S0.5◦rte+(Tq) are the smallest classical modal logics (in the sense of
[2]) which contain (T), (D) and (Tq), respectively.
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logic C1rte is the smallest t-regular rte-system. The logics D1rte, E1rte
and E1rte+(Tq) are smallest t-regular rte-logics which contain (T), (D)
and (Tq), respectively. We have that C1rte ( D1rte ( E1rte and C1rte (E1rte+(Tq) ( E1rte (see Fact 4.1).

3. Semantics for very weak systems

3.1. Models for very weak t-normal and t-regular systems

For very weak t-normal modal systems we are using the following seman-
tics, which consists of “t-normal models”.

A model for very weak t-normal systems (or t-normal model) is any
triple 〈w,A, V 〉 in which

1. w is a «distinguished» (normal) world,

2. A is a set of worlds which are alternatives to the world w,

3. V is a valuation from For × ({w} ∪A) to {0, 1}:

(i) for all formulae and all worlds, V preserves classical conditions
for truth-value operators,

(ii) for the world w and any ϕ ∈ For

(V
�
) V (�ϕ,w) = 1 iff ∀x∈A V (ϕ, x) = 1,

(iii) for every world from A \ {w}, formulae p�ϕq have arbitrary
values.

A formula ϕ is true in a t-normal model 〈w,A, V 〉 iff V (ϕ,w) = 1. We
say that a formula is t-normal valid iff it is true in all t-normal models.

We say that a t-normal model 〈w,A, V 〉 is self-associate (resp. empty,
non-empty) iff w ∈ A (resp. A = ∅, A 6= ∅). Let nM be the class of all
t-normal models. Moreover, let nMsa (resp. nMø, nM+) be the class of
t-normal models which are self-associate (resp. empty, non-empty). Of
course, nMsa ( nM+ and nMø ∩ nM+ = ∅.

Remark 3.1. We may also use the class of models of the form 〈W,w,
A, V 〉, where W is a non-empty set of worlds, w ∈ W , A ⊆ W , and w,
A and V are as mentioned above. Of course, the triple 〈w,A, V 〉 may be
identified with the quadruple 〈W,w,A, V 〉 such that W = {w} ∪A. ⊣
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In the case of very weak t-regular systems we broaden the class of
t-normal models by the class of queer models of the form 〈w,V 〉 with
only one (queer) world w and a valuation V : For × {w} → {0, 1} which
satisfies classical conditions for truth-value operators and such that

(ii′) for the world w and any ϕ ∈ For

V (�ϕ,w) = 0.

Of course, a queer model 〈w,V 〉 may be identified with the valuation
V : For → {0, 1} such that V (ϕ) = V (ϕ,w), for any ϕ from For.

Let qM be the class of all queer models and we put rM := nM ∪ qM,
i.e. rM is the class of models for very weak t-regular systems.

A formula ϕ is true in a queer model 〈w,V 〉 iff V (ϕ,w) = 1. We say
that a formula is t-regular valid iff it is true in all models from rM. We
have the following lemmas.

Lemma 3.1. 1. If ϕ ∈ PL, then V (ϕ, x) = 1, for any world x in any

model from rM. So all formulae from PL are t-regular valid.

2. All formulae from �PL are t-normal valid.

3. All formulae from the sets MPL RPL and EPL are t-regular valid.

Lemma 3.2. 1. All instances of formulae (K) and (R) are t-regular valid.

2. All instances of the formulae (T) and (Tq) are true in any model from

nMsa ∪ qM.

3. All instances of the formula (D) are true in all models from nM+ ∪qM.

4. All instances of the formula (Tq) are true in all models from nMø.

Fact 3.3. Let pϕ ≡ ψq ∈ PL. Then for any classical formula χ (without

the modal operator) following holds: V (χ, x) = V (χ[ϕ/ψ], x), for any

world x in any model from rM.

Remark 3.2. Let w 6= a, A := {w, a} and V be an arbitrary valuation
such that V (� p, a) = 1 and V (�¬¬p, a) = 0. Then 〈w,A, V 〉 belongs to
nMsa and the formula ‘�� p ≡ ��¬¬p’ is not true in this model. ⊣
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3.2. Models for very weak t-normal and t-regular rte-systems

For very weak t-normal rte-systems we are using t&rte-normal models,
where by a t&rte-normal model we mean a t-normal model 〈w,A, V 〉
which satisfies the following condition:

(iv) for all formulae ϕ, ψ and χ: if pϕ ≡ ψq ∈ PL and ∀x∈A V (χ, x) = 1,
then ∀x∈A V (χ[ϕ/ψ], x) = 1.

Of course, the condition (iv) is equivalent to the following:

(iv′) for all formulae ϕ, ψ and χ: if pϕ ≡ ψq ∈ PL, then ∀x∈A V (χ, x) = 1
iff ∀x∈A V (χ[ϕ/ψ], x) = 1.

Moreover, by (V
�
), the condition (iv) is equivalent to the following one:

(iv′′) for all formulae ϕ, ψ and χ: if pϕ ≡ ψq ∈ PL, then V (�χ,w) =
V (�χ[ϕ/ψ ], w).

Let nMrte be the class of all t&rte-normal models. Moreover, let
nMsa

rte (resp. nMø

rte, nM+
rte) be the class of t&rte-normal models which

are self-associate (resp. empty, non-empty).
In the case of very weak t-regular rte-systems we broaden the class

of t&rte-normal models by queer models. We put rMrte := nMrte ∪ qM,
i.e. rMrte is the class of models for very weak t&rte-regular systems.

We say that a formula is t&rte-normal valid (resp. t&rte-regular

valid) iff it is true in all models from nMrte (resp. rMrte).
We have the following lemma.

Lemma 3.4. If pϕ ≡ ψq ∈ PL, then V (χ,w) = V (χ[ϕ/ψ ], w) in all

t&rte-normal models and all queer models. So all formulae from REPL

are t&rte-regular valid.

4. Determination theorems

Let C be any class of considered models. We say that a formula ϕ is
C-valid (written |=C ϕ) iff ϕ is true in all models from C .

Let Σ be an arbitrary modal system. We say that Σ is sound with
respect to C iff Σ ⊆ {ϕ ∈ For : |=C ϕ}. We say that Σ is complete with
respect to C iff Σ ⊇ {ϕ ∈ For : |=C ϕ}. We say that Σ is determined

by C iff Σ = {ϕ ∈ For : |=C ϕ}, i.e., Σ is sound and complete with
respect to C .
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4.1. Soundness

By lemmas 3.1, 3.2 and 3.4 we obtain the following facts.

Fact 4.1. 1. C1 is sound with respect to the class rM.

2. D1 is sound with respect to the class nM+ ∪ qM.

3. E1 is sound with respect to the class nMsa ∪ qM.

4. C1+(Tq) is sound with respect to the class nMsa ∪ nMø ∪ qM.

5. S0.5◦ is sound with respect to the class nM.

6. S0.5◦+(D) is sound with respect to the class nM+.

7. S0.5 is sound with respect to the class nMsa.

8. S0.5◦+(Tq) is sound with respect to the class nMsa ∪ nMø.

9. C1rte is sound with respect to the class rMrte.

10. D1rte is sound with respect to the class nM+
rte ∪ qM.

11. E1rte is sound with respect to the class nM+
rte ∪ qM.

12. E1rte+(Tq) is sound with respect to the class nM+
rte ∪ qM.

13. S0.5◦rte is sound with respect to the class nMrte.

14. S0.5◦rte+(D) is sound with respect to the class nM+
rte.

15. S0.5rte is sound with respect to the class nMsa
rte.

16. S0.5◦rte+(Tq) is sound with respect to the class nMsa
rte ∪ nMø

rte.

For completeness of considered very weak logics we use canonical
models metod.

4.2. Notions and facts concerning maximal consistent sets

For the following definitions see, for example, [3, 2.4 and 2.6]. Let Σ and
Σ ′ be any modal systems, and Γ ⊆ For.

Σ is consistent iff Σ 6= For; equivalently in the light of PL, iff ‘p∧¬p’
does not belong to Σ . For example, all modal logics from Section 2 are
consistent.

A formula ϕ is deducible from Γ in Σ (written Γ ⊢Σ ϕ) iff for some
{ψ1, . . . , ψn} ⊆ Γ (n ­ 0) we have p(ψ1 ∧ · · · ∧ ψn) ⊃ ϕq ∈ Σ . We have
⊢PL ⊆ ⊢Σ . Moreover, Σ ⊢Σ ϕ iff ϕ ∈ Σ iff ∅ ⊢Σ ϕ.

A set Γ is Σ-consistent iff for some ϕ ∈ For, Γ 0Σ ϕ; equivalently in
the light of PL, iff Γ 0Σ p ∧ ¬p. We have (see e.g. [3]):
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• If Γ is Σ-consistent, then Σ is consistent.

• Σ is consistent iff Σ is Σ-consistent.

• If Γ is Σ-consistent and Σ ′ ⊆ Σ , then Γ is Σ ′-consistent; so, Γ is
PL-consistent.

We say that Γ is Σ-maximal iff Γ is Σ-consistent and Γ has only
Σ-inconsistent proper extensions. Let MaxΣ be the set of all Σ-maximal
sets.

Lemma 4.2 ([3]). Let Γ ∈ MaxΣ . Then

1. Σ ⊆ Γ and Γ is a modal system.

2. Γ ⊢Σ ϕ iff ϕ ∈ Γ .

3. p¬ϕq ∈ Γ iff ϕ /∈ Γ .

4. pϕ ∧ ψq ∈ Γ iff both ϕ ∈ Γ and ψ ∈ Γ .

5. pϕ ∨ ψq ∈ Γ iff either ϕ ∈ Γ or ψ ∈ Γ .

6. pϕ ⊃ ψq ∈ Γ iff either ϕ /∈ Γ or ψ ∈ Γ .

7. pϕ ≡ ψq ∈ Γ iff either ϕ,ψ ∈ Γ or ϕ,ψ /∈ Γ .

Lemma 4.3. If Γ ∈ MaxΣ and Σ ′ ⊆ Σ , then Γ ∈ MaxΣ ′ . So Γ ∈ MaxPL.

Proof. Let Γ ∈ MaxΣ and Σ ′ ⊆ Σ . Then Γ is Σ ′-consistent and
PL-consistent. Moreover, suppose that Γ ∪ {ϕ} is Σ ′-consistent. Then
Γ ∪ {ϕ} is also PL-consistent. So p¬ϕq 6∈ Γ . Therefore ϕ ∈ Γ , by
Lemma 4.2.3. Hence Γ ∪ {ϕ} = Γ . Thus Γ be Σ ′-maximal. ⊣

Lemma 4.4 ([3]). 1. Γ ⊢Σ ϕ iff ϕ ∈ ∆, for any ∆ such that ∆ ∈ MaxΣ

and Γ ⊆ ∆.

2. ϕ ∈ Σ iff ϕ ∈ ∆, for any ∆ ∈ MaxΣ .

4.3. Canonical models

For completeness of very weak logics we need two following auxiliary
lemmas.
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Lemma 4.5. Let Σ be a t-regular consistent system and let Γ be a Σ-

maximal set such that Γ ∩ �For 6= ∅, i.e. {ψ ∈ For : p�ψq ∈ Γ } 6= ∅.5

Then for every ϕ ∈ For the following conditions are equivalent:

(a) p�ϕq ∈ Γ .

(b) Γ ⊢Σ �ϕ.

(c) {ψ : p�ψq ∈ Γ} ⊢PL ϕ.

(d) ϕ ∈ ∆, for any PL-maximal set ∆ such that {ψ : p�ψq ∈ Γ } ⊆ ∆.

Proof. “(a) ⇔ (b)” Lemma 4.2.2.
“(a) ⇒ (d)” It is trivial, since for any Γ ,∆ ⊆ For, if p�ϕq ∈ Γ and

{ψ ∈ For : p�ψq ∈ Γ} ⊆ ∆, then ϕ ∈ ∆.
“(d) ⇔ (c)” By Lemma 4.4.1.
“(c) ⇒ (b)” Ether ϕ ∈ PL or for some ψ1, . . . , ψn ∈ {ψ : p�ψq ∈ Γ},

n > 0, we have p(ψ1 ∧ · · · ∧ ψn) ⊃ ϕq ∈ PL. But the first case entails
the second case. Hence p(�ψ1 ∧ · · · ∧�ψn) ⊃ �ϕq ∈ Σ , since RPL ⊆ Σ .
But Γ contains each of p�ψ1q, . . . , p�ψnq, so Γ ⊢Σ �ϕ. ⊣

Let Σ be a t-regular system, Γ ∈ MaxΣ and {ψ : p�ψq ∈ Γ } 6= ∅.
We say that 〈wΓ , AΓ , VΓ〉 is a canonical model for Σ and Γ iff it satisfies
these conditions:

• wΓ := Γ ,

• AΓ :=
{

∆ ∈ MaxPL : ∀ψ∈For(p�ψq ∈ Γ ⇒ ψ ∈ ∆ )
}

,

• VΓ : For × ({wΓ } ∪ AΓ) → {0, 1} is the valuation such that for all
ϕ ∈ For and ∆ ∈ {wΓ } ∪AΓ

VΓ(ϕ,∆) :=

{

1 if ϕ ∈ ∆

0 otherwise

Lemma 4.6. For any t-regular system Σ and any Γ ∈ MaxΣ such that

{ψ : p�ψq ∈ Γ } 6= ∅ it holds that:

(a) 〈wΓ , AΓ , VΓ 〉 is a t-normal model.

(b) If Σ contains all instances of (T), then 〈wΓ , AΓ , VΓ 〉 is self-associate.

5Notice that all t-normal systems satisfy these assumptions. Firstly, all t-normal
systems are t-regular. Secondly, for any t-normal system Σ , if Γ is Σ-maximal, then
{ψ : p�ψq ∈ Γ} 6= ∅, since �PL ⊆ Σ ⊆ Γ , by Lemma 4.2.1.
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(c) If Σ contains all instances of (D), then 〈wΓ , AΓ , VΓ〉 is non-empty.

(d) If Σ contains all instances of (Tq), then 〈wΓ , AΓ , VΓ 〉 is either empty

or self-associate.

(e) If Σ is a rte-system, then 〈wΓ , AΓ , VΓ 〉 is t&rte-normal model.

Proof. (a) Thanks to properties of maximal sets (see Lemma 4.2), for
every ∆ ∈ {wΓ } ∪ AΓ the assignment VΓ(·,∆) preserves classical con-
ditions for truth-value operators. We prove that for wΓ the assignment
VΓ (·, wΓ ) satisfies the condition (V

�
).

For any ϕ ∈ For: VΓ (�ϕ,wΓ ) = 1 iff p�ϕq ∈ Γ (by definition of VΓ)
iff for every ∆ ∈ MaxPL for which {ψ ∈ For : p�ψq ∈ Γ} ⊆ ∆ we have
ϕ ∈ ∆ (by Lemma 4.5) iff for every ∆ ∈ AΓ , ϕ ∈ ∆ (by definition of AΓ )
iff for every ∆ ∈ AΓ , VΓ(ϕ,∆) = 1 (by definition of VΓ).

(b) We show that wΓ ∈ AΓ . Firstly, by Lemma 4.3, Γ ∈ MaxPL-
maximal. Secondly, for any ψ ∈ For, p�ψ ⊃ ψq ∈ Γ , by Lemma 4.2.1.
So, if p�ψq ∈ Γ , then ψ ∈ Γ , by Lemma 4.2.6.

(c) For some ϕ0 we have p�ϕ0q ∈ Γ . By Lemma 4.2.1, p�ϕ0 ⊃
¬�¬ϕ0q ∈ Γ . Hence, by lemmas 4.2.6 and 4.2.1, p¬�¬ϕ0q ∈ Γ and
p�¬ϕ0q /∈ Γ . Therefore, by Lemma 4.5, p¬ϕ0q /∈ ∆0, for some ∆0 such
that ∆0 is PL-maximal and {ψ : p�ψq ∈ Γ} ⊆ ∆0. Hence ∆0 ∈ AΓ .
Thus, 〈wΓ , AΓ , VΓ 〉 ∈ nM+.

(d) We show that wΓ ∈ AΓ or AΓ = ∅. Notice that, by lemmas 4.2.1
and 4.2.6, p¬�(q ∧ ¬q) ⊃ (�ψ ⊃ ψ)q ∈ Γ , for any formula ψ. Suppose
that AΓ 6= ∅. Then ‘�(q ∧ ¬q)’ /∈ Γ , by Lemma 4.5, since ‘q ∧ ¬q’ /∈ ∆,
for any ∆ which is PL-consistent. So, ‘¬�(q ∧ ¬q)’ ∈ Γ . Therefore
p�ψ ⊃ ψq ∈ Γ . Hence wΓ ∈ AΓ , as in (b).

(e) Suppose that pϕ ≡ ψq ∈ PL. Then p�χ[ϕ/ψ] ≡ �χq ∈ Σ , since
REPL ⊆ Σ . So also p�χ[ϕ/ψ] ≡ �χq ∈ Γ , by Lemma 4.2.1. Thus,
V (�χ,w) = V (�χ[ϕ/ψ], w), by definition of VΓ . ⊣

Let Σ be a t-regular system, Γ ∈ MaxΣ and {ψ : p�ψq ∈ Γ } = ∅.
We say that 〈wΓ , VΓ 〉 is a canonical model for Σ and Γ iff it satisfies
these conditions:

• wΓ := Γ ,

• VΓ : For × {wΓ } → {0, 1} is the valuation such that

VΓ(ϕ,wΓ ) :=

{

1 if ϕ ∈ Γ

0 otherwise
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Lemma 4.7. For any t-regular system Σ and any Γ ∈ MaxΣ such that

{ψ : p�ψq ∈ Γ } = ∅: 〈wΓ , VΓ〉 is a queer model.

Proof. Thanks to properties of maximal sets in modal systems (see
Lemma 4.2), the assignment VΓ preserves classical conditions for truth-
value operators. Moreover, for any ϕ ∈ For we have: p�ϕq /∈ Γ . So,
VΓ (�ϕ,wΓ ) = 0. ⊣

4.4. Completeness

By lemmas 4.4.2 and 4.6 for very weak t-normal and t-normal rte-systems
we obtain

Theorem 4.8. 1. S0.5◦ is complete with respect to the class nM.

2. S0.5◦+(D) is complete with respect to the class nM+.

3. S0.5◦+(Tq) is complete with respect to the class nMsa ∪ nMø.

4. S0.5 is complete with respect to the class nMsa.

5. S0.5◦rte is complete with respect to the class nMrte.

6. S0.5◦rte+(D) is complete with respect to the class nM+
rte.

7. S0.5◦rte+(Tq) is complete with respect to the class nMsa
rte ∪ nMø

rte.

8. S0.5rte is complete with respect to the class nMsa
rte.

Proof. The logics S0.5◦, S0.5◦+(D), S0.5◦+(Tq) and S0.5 are consistent
and t-regular. Moreover, for any t-normal logic Λ, if Γ ∈ MaxΛ, then
{ψ : p�ψq ∈ Γ } 6= ∅, since �PL ⊆ Λ ⊆ Γ .

1. Let ϕ be an arbitrary formula such that |=nM ϕ. Let Γ be an
arbitrary S0.5◦-maximal set. By Lemma 4.6a, 〈wΓ , AΓ , VΓ〉 ∈ nM. Thus,
VΓ (ϕ,wΓ ) = 1. Hence ϕ ∈ Γ , by definitions of wΓ and VΓ . So, we have
shown that ϕ belongs to all S0.5◦-maximal sets. Hence ϕ ∈ S0.5◦, by
Lemma 4.4.2.

2. By Lemma 4.6c, 〈wΓ , AΓ , VΓ 〉 ∈ nM+. The rest as in 1.
3. By Lemma 4.6d, 〈wΓ , AΓ , VΓ 〉 ∈ nM+ ∪ nMø. The rest as in 1.
4. By Lemma 4.6b, 〈wΓ , AΓ , VΓ 〉 ∈ nMsa. The rest as in 1.
5. By Lemma 4.6e, 〈wΓ , AΓ , VΓ 〉 ∈ nMrte. The rest as in 1.
6. By Lemma 4.6ce, 〈wΓ , AΓ , VΓ 〉 ∈ nM+

rte. The rest as in 1.
7. By Lemma 4.6de, 〈wΓ , AΓ , VΓ〉 ∈ nMsa

rte ∪ nMø

rte. The rest as in 1.
8. By Lemma 4.6be, 〈wΓ , AΓ , VΓ 〉 ∈ nMsa. The rest as in 1. ⊣



Simplified Kripke style semantics . . . 287

By lemmas 4.4.2, 4.6 and 4.7 for very weak t-regular and t-regular
rte-systems we obtain

Theorem 4.9. 1. C1 is complete with respect to the class rM.

2. D1 is complete with respect to the class nM+ ∪ qM.

3. C1+(Tq) is complete with respect to the class nMsa ∪ nMø ∪ qM.

4. E1 is complete with respect to the class nMsa ∪ qM.

5. C1rte is complete with respect to the class rMrte.

6. D1rte is complete with respect to the class nM+
rte ∪ qM.

7. E1rte+(Tq) is complete with respect to nMsa
rte ∪ nMø

rte ∪ qM.

8. E1rte is complete with respect to nMsa
rte ∪ qM.

Proof. 1. Let ϕ be an arbitrary formula such that |=rM ϕ. Let Γ be
an arbitrary C1-maximal set. In both alternative cases from lemmas 4.6
and 4.7, either 〈wΓ , AΓ , VΓ〉 ∈ nM or 〈wΓ , VΓ 〉 ∈ qM. Thus, in both
cases we have VΓ(ϕ,wΓ ) = 1. Hence ϕ ∈ Γ , by definitions of wΓ and VΓ .
So, we have shown that ϕ belongs to all C1-maximal sets. Hence ϕ ∈ C1,
by Lemma 4.4.2.

2. 〈wΓ , AΓ , VΓ 〉 ∈ nM+ or 〈wΓ , VΓ〉 ∈ qM. The rest as in 1.
3. 〈wΓ , AΓ , VΓ 〉 ∈ nMsa ∪ nMø or 〈wΓ , VΓ 〉 ∈ qM. The rest as in 1.
4. 〈wΓ , AΓ , VΓ 〉 ∈ nMsa or 〈wΓ , VΓ〉 ∈ qM. The rest as in 1.
5. 〈wΓ , AΓ , VΓ 〉 ∈ nMrte or 〈wΓ , VΓ 〉 ∈ qM. The rest as in 1.
6. 〈wΓ , AΓ , VΓ 〉 ∈ nM+

rte or 〈wΓ , VΓ 〉 ∈ qM. The rest as in 1.
7. 〈wΓ , AΓ , VΓ〉 ∈ nMsa

rte ∪ nMø

rte or 〈wΓ , VΓ 〉 ∈ qM. The rest as in 1.
8. 〈wΓ , AΓ , VΓ 〉 ∈ nMsa

rte or 〈wΓ , VΓ 〉 ∈ qM. The rest as in 1. ⊣

A. Location of very weak modal logics

A.1. Strict implication and strict equivalence

In original Lewis’ works (see e.g. [12]) the primitive modal operator is the
possibility sign ‘♦’. The necessity sign ‘�’ is the abbreviation of ‘¬♦¬’.
Moreover, for the connective of strict implication ‘J’ was used pϕ J ψq
as an abbreviation of a formula p¬♦(ϕ ∧ ¬ψ)q.

In this paper—as in [9]—the primitive modal operator is ‘�’ and
pϕ J ψq is an abbreviation of p�(ϕ ⊃ ψ)q. Moreover, in this paper—
as in [12] and [9]—a strict equivalence pϕ L ψq is an abbreviation of
p(ϕ J ψ) ∧ (ψ J ϕ)q.
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Lemma A.1. For any modal system Σ and any ϕ,ψ ∈ For:

if pϕL ψq ∈ Σ , then pϕ J ψq, pψ J ϕq ∈ Σ .

Proof. Let pϕ L ψq ∈ Σ , i.e., p�(ϕ ⊃ ψ) ∧ �(ψ ⊃ ϕ)q ∈ Σ . Hence
p�(ϕ ⊃ ψ)q, p�(ψ ⊃ ϕ)q ∈ Σ , by PL, i.e., pϕ J ψq, pψ J ϕq ∈ Σ . ⊣

Lemma A.2. For any t-regular system Σ and any ϕ,ψ ∈ For:

pϕL ψ)q ∈ Σ iff p�(ϕ ≡ ψ)q ∈ Σ .

Proof. If p�(ϕ ⊃ ψ)∧�(ψ ⊃ ϕ)q ∈ Σ , then p�(ϕ ≡ ψ)q ∈ Σ , by (MP)
and since RPL ⊆ Σ . If p�(ϕ ≡ ψ)q ∈ Σ , then p�(ϕ ⊃ ψ)q, p�(ψ ⊃ ϕ)q ∈
Σ , since PL,MPL ⊆ Σ . So, p�(ϕ ⊃ ψ) ∧ �(ψ ⊃ ϕ)q ∈ Σ , by PL. ⊣

Lemma A.3 ([4, 9]). If Σ is closed under the following rule

if p�ϕq ∈ Σ , then ϕ ∈ Σ , (RN∗)

then Σ is closed under the strict version of modus ponens

if pϕ J ψq ∈ Σ and ϕ ∈ Σ , then ψ ∈ Σ . (SMP)

Hence, any modal system which contains all instances of (T) is also closed

under (RN∗) and (SMP).

Lemma A.4 ([4]). Let Σ be a rte-system which is closed under (SMP).
Then Σ is closed under (RN∗).

Proof. Let p�ϕq ∈ Σ and τ ∈ PL ⊆ Σ . Then pϕ ≡ (τ ⊃ ϕ)q ∈ PL, so
p�(τ ⊃ ϕ)q ∈ Σ , by (rte). So ϕ ∈ Σ , by (SMP). ⊣

Lemma A.5. Let Σ be any system which is closed under (SMP) and

includes MPL. Then Σ is closed under (RN∗).

Proof. Let p�ϕq ∈ Σ and τ ∈ PL ⊆ Σ . Then pϕ ⊃ (τ ⊃ ϕ)q ∈ PL,
so p�ϕ ⊃ �(τ ⊃ ϕ)q ∈ Σ , since MPL ⊆ Σ . Thus, p�(τ ⊃ ϕ)q ∈ Σ , by
(MP), and ϕ ∈ Σ , by (SMP). ⊣
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A.2. Strict classical modal systems

Imitating [4], we say that a modal system Σ is strictT classical (“tradi-

tionally strict classical”) iff �PL ⊆ Σ and Σ is closed under “traditional
replacement rule for strict equivalents”:

if pϕL ψq ∈ Σ and χ ∈ Σ , then χ[ϕ/ψ] ∈ Σ . (RRSET)

Moreover, a modal system Σ is called strict classical iff �PL ⊆ Σ and
Σ is closed under the following replacement rule:

if p�(ϕ ≡ ψ)q ∈ Σ and χ ∈ Σ , then χ[ϕ/ψ] ∈ Σ . (RRSE)

We obtain that for modal logics which contain (K) and/or (X), the above
notions are equivalent (see Lemma A.9).

Lemma A.6 ([4]). Let Σ be strictT or strict classical. Then Σ is also a

rte-system.

Proof. Suppose that pϕ ≡ ψq ∈ PL and χ ∈ Σ . Since �PL ⊆ Σ , so
we have that p�(ϕ ≡ ψ)q ∈ Σ and p�(ϕ ⊃ ψ) ∧�(ψ ⊃ ϕ)q ∈ Σ , by PL.
Hence χ[ϕ/ψ] ∈ Σ follows by (RRSE) or by (RRSET), respectively. ⊣

By definitions we have the following lemma.

Lemma A.7. Let Σ be strictT or strict classical and let Σ contain all

instances of (K). Then Σ is t-normal.

Now notice that

Lemma A.8 ([4, 9]). Let Σ be strictT or strict classical and let Σ contain

all instances of (X) (resp. �(X)). Then Σ contains all instances of (K)
(resp. �(K)).

Proof. Let ϕ,ψ ∈ For. Since �PL ⊆ Σ and pϕ ≡ (τ ⊃ ϕ)q ∈ PL, for
any τ ∈ Taut, so we have pϕL (τ ⊃ ϕ)q, p�

(

ϕ ≡ (τ ⊃ ϕ)
)

q ∈ Σ , by PL.
Similarly for ψ. Let Σ contain all instances of (X). Then p

(

�(τ ⊃ ϕ) ∧

�(ϕ ⊃ ψ)
)

⊃ �(τ ⊃ ψ)q ∈ Σ . Hence p�(ϕ ⊃ ψ) ⊃ (�ϕ ⊃ �ψ)q ∈ Σ ,
by PL and either (RRSET) or (RRSE).

Let Σ contain all instances of �(X). Then p�
((

�(τ ⊃ ϕ)∧�(ϕ ⊃ ψ)
)

⊃ �(τ ⊃ ψ)
)

q ∈ Σ . Hence p�
(

�(ϕ ⊃ ψ) ⊃ (�ϕ ⊃ �ψ)
)

q ∈ Σ , by PL
and either (RRSET) or (RRSE). ⊣
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By lemmas 2.4, A.2, A.7 and A.8 we have the following lemma.

Lemma A.9 ([4]). For any modal system Σ which contains all instances

of (K) or (X): Σ is strictT classical iff Σ is strict classical.

Moreover, we obtain

Lemma A.10 ([4]). 1. If Σ is strictT classical, then it is also closed under

the following “traditional” rule of congruence for strict equivalence

if pϕL ψq ∈ Σ , then p�ϕL �ψq ∈ Σ . (RSET)

2. If Σ is strict classical, then is also closed under the following rule of

congruence for strict equivalence

if p�(ϕ ≡ ψ)q ∈ Σ , then p�(�ϕ ≡ �ψ)q ∈ Σ . (RSE)

Proof. 1. Since �PL ⊆ Σ , we have that p�ϕ L �ϕq ∈ Σ , by PL.
Hence if pϕL ψq ∈ Σ , then p�ϕL �ψq ∈ Σ , by (RRSET).

2. Since �PL ⊆ Σ , we have that p�(�ϕ ≡ �ϕ)q ∈ Σ . Hence if
p�(ϕ ≡ ψ)q ∈ Σ , then p�(�ϕ ≡ �ψ)q ∈ Σ , by (RRSE). ⊣

Lemma A.11 ([4, 9]). Let Σ be a t-normal system which closed under

(RSET). Then

1. Σ is also closed under the following rule of replacement

if pϕL ψq ∈ Σ , then pχ[ϕ/ψ]L χq ∈ Σ , (RRSE′

T)

2. If Σ is also closed under (SMP), then Σ is closed under (RRSET).

Proof. 1. By induction.
2. Let pϕ L ψq ∈ Σ and χ ∈ Σ . Then pχ[ϕ/ψ] L χq ∈ Σ , by 1.

Hence pχ J χ[ϕ/ψ]q ∈ Σ , by Lemma A.1. So χ[ϕ/ψ] ∈ Σ , by (SMP). ⊣

A.3. The logics S0.9, S0.9◦, S1 and S1◦

In [9] Lemmon provided a simple axiomatization of the Lewis’ logic S1,
where it is the smallest strictT classical modal logic which contains for-
mulae �(X), (T) and �(T). Of course, the logic S1 contains also (X) and,
by Lemma A.8, the formulae (K) and �(K). So S1 is strict classical and
it is a t-normal rte-logic (see lemmas A.6, A.7 and A.9).
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In [9] Lemmon also introduced the logic S0.9, where it was meant as
the smallest modal logic which included �Taut, contained formulae �(K),
(T) and �(T), and is closed under (RSET). So S0.9 contains (K) and is
t-normal. Hence, contains (X), since S0.9 is also t-regular. Moreover, by
lemmas A.8 and A.10.1, we obtain that S0.9 ⊆ S1. In [7] it was proved
that S0.9 6= S1, since �(X) /∈ S0.9 (see also [4]).

“The other two systems, S1◦ and S0.9◦, are often loosely described
as S1 and S0.9 minus the schema T” [4, p. 12]. In [4] the Feys’ logic S1◦

from [5] is described as the smallest strictT classical modal logic which
contains the formulae (X) and �(X), and is closed under (SMP). Thus,S1◦ contains (K) and �(K), by Lemma A.8. So, it is also a strict classical
rte-logic.

Moreover, in [4] the logic S0.9◦ is described as the smallest strictT

classical modal logic which contains the formulae (K) and �(K), and is
closed under (SMP).

Thus we have the following axiomatizations (of course, in each case
PL, (MP) and (US) are added as default items):

• S0.9: �Taut, �(K), (T), �(T) and (RSET),

• S0.9◦: �Taut, (K), �(K), (RRSET) and (SMP),

• S1: �Taut, �(X), (T), �(T) and (RRSET),

• S1◦: �Taut , (X), �(X), (RRSET) and (SMP).

By Lemma A.10 the logic S0.9◦ is also closed under the rules (RSET)
and (RSE). So S0.9◦ ( S0.9, since S0.9 is also closed under (SMP) and
(T),�(T) /∈ S0.9◦. Hence �(X) /∈ S0.9◦, since �(X) /∈ S0.9. ThereforeS0.9◦ ( S1◦. Moreover, because S1 is also closed under (SMP), but
(T),�(T) /∈ S1◦, so we have S1◦ ( S1.

By Lemma A.6, the logics S0.9◦, S1 and S1◦ are a t-normal rte-logic.
Moreover, by lemmas A.3, A.11, A.9 and A.6, we have:

Corollary A.12 ([4]). S0.9 is strictT and strict classical, and it is a

t-normal rte-logic.

Notice that using lemmas given in sections A.1 and A.2 as well as
Lemma 1.1 we obtain the following facts.

Fact A.13 ([4]). 1. S0.9 is the smallest rte-logic which is closed under

(RN∗) and (RRSE) (resp. (RRSET)), and contains the formulae (N),
�(T) and �(K).
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2. S0.9◦ is the smallest rte-logic which is closed under (RN∗) and (RRSE)
(resp. (RRSET)), and contains the formulae (N) and �(K).

3. S1 is the smallest rte-logic which is closed under (RN∗) and (RRSE)
(resp. (RRSET)), and contains the formulae (N), �(T) and �(X).

4. S1◦ is the smallest rte-logic which is closed under (RN∗) and (RRSE)
(resp. (RRSET)), and contains the formulae (N) and �(X).

Fact A.14. 1. S0.9 is the smallest strict (resp. strictT) classical logic

which is closed under (RN∗), and contains the formulae �(T) and

�(K).

2. S0.9◦ is the smallest strict (resp. strictT) classical logic which is closed

under (RN∗), and contains the formula �(K).

3. S1 is the smallest strict (resp. strictT) classical logic which is closed

under (RN∗), and contains the formulae �(T) and �(X).

4. S1◦ is the smallest strict (resp. strictT) classical logic which is closed

under (RN∗), and contains the formula �(X).

A.4. The logics S2, S2◦, S3, S3.5, S4 and S5
We say the a modal logic Λ is closed under Becker’s rule iff

if pϕ J ψq ∈ Λ, then p�ϕ J �ψq ∈ Λ. (RB)

In [9] (see also [1]) the logic S2 is described as the smallest modal
logic which includes �Taut, contains the formulae (T), �(T), and �(K),
and is closed under (RB). Of course, S2 includes �PL, contains (K) and,
by Lemma A.3, it is closed under (RN∗) and (SMP).

Moreover, in [1] the logic S2◦ is described as the smallest modal logic
which includes �Taut, contains �(K), and is closed under (RB) and
(RN∗). Of course, S2◦ includes �PL, contains (K) and, by Lemma A.3,
it is closed under (SMP). So S2◦ ( S2. For example (T),�(T) /∈ S2◦.

Moreover, by (RB) and PL, the logics S2 and S2◦ are closed under
(RSET). Thus, by lemmas A.3, A.11 and A.9, the logics S2 and S2◦ are
strictT and strict classical, but they are not congruential.

In [4] the Lewis version Lew(Λ) of a logic Λ understood as the small-
est modal logic which includes Λ and contains the formula (N). We have:S2◦ = Lew(C2) and S2 = Lew(E2). Moreover, for every ϕ ∈ For:
ϕ ∈ C2 iff p�ϕq ∈ S2◦; ϕ ∈ E2 iff p�ϕq ∈ S2 (see e.g. [4, 8]).
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In [9] Lemmon proved that �(X) ∈ S2. His proof shows that also
�(X) ∈ S2◦. We have that S1◦ ( S2◦ and S1 ( S2. For example,
the formulae ‘�(p ∧ q) J (� p ∧ � q)’, ‘(� p ∧ � q) J �(p ∧ q)’ and
‘♦(p ∧ q) J ♦ p’ belong to S2◦, but they are not members of S1.

In [9] the logic S3 is described as the smallest modal logic which
includes �Taut and contains the formulae (T), �(T) and �(sK). Of
course, S3 contains (sK) and (K). Moreover, it contains also �(K).6 SoS3 is also closed under (RB), (RSET), (RSE), and it is strictT and strict
classical. We have S2 ( S3. For example (sK),�(sK) /∈ S2. We have:S3 = Lew(E3). Moreover, for every ϕ ∈ For: ϕ ∈ E3 iff p�ϕq ∈ S3 (see
e.g. [8]).

Åqvist’s logic S3.5 is obtained by adding

♦ p ⊃ �♦ p (5)

or equivalently

p ⊃ �♦ p (B)

to Lewis’ logic S3 (see e.g. [6, p. 208]). We have that S3 ( S3.5. For
example (5), (B) /∈ S3.

In [9] the logic S4 is described as the smallest modal logic which
contains the formulae (T) and (sK), and is closed under (RN). Of course,S4 contains (K), �(K), �(sK), it is closed under (RB) and (RSET), and
it is strictT and strict classical. It is known (see e.g. [9]) that S4 is the
smallest normal logic which contains the formulae (T) and

� p ⊃ �� p (4)

We have that S3 ( S4. For example (4) /∈ S3.
Finally, S5 is the smallest normal logic which contains (T) and (5).

Moreover, S5 is the smallest normal logic which contains (T), (B) and (4);
resp. (D), (B) and (4); resp. (D), (B) and (5); resp. (D) (5) and (Tq). It
is known that S3.5 ( S5 and S4 ( S5. For example �(5) /∈ S3.5 and
(5) /∈ S4. Note that �(5) strengthens S3 to S5 (see e.g. [6, p. 208]).

6Notice the formula ‘�(p ⊃ �q) ⊃ �(p ⊃ q)’ belongs to S2 and S3. By the
substitution p/�(p ⊃ q) and q/�p ⊃ �q we have p�(sK) ⊃ �(K)q.
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A.5. Location

Using semantics result we will to situate the logics C1, D1, C1+(Tq), E1,S0.5◦, S0.5◦+(D), S0.5◦+(Tq), S0.5, C1rte, D1rte, E1rte+(Tq), E1rte, S0.5◦rte,S0.5◦rte+(D), S0.5◦rte+(Tq) and S0.5rte among other logics (see Fig. 1; see
also diagrams in [1, p. 3], [3, p. 132], [4, p. 21], [9, p. 186], [10, p. 48] and
[11, p. 58]).

Using names of formulae, to simplify notation of normal logics we
write the Lemmon code KA1 . . .An to denote the smallest normal logic
containing the formulae (A1), . . . , (An) (see [2, 3]). Thus, for example,KT4 is the smallest normal modal logic which contains (T) and (4). We
standardly put T := KT and D := KD. We have S4 = KT4, KT = KDTq,KB4 = KB5 = K5Tq and S5 = KT5 = KTB4 = KDB4 = KDB5 =KD5Tq (see e.g. [9, 10, 4]).
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