Tomasz Skura

THE RM PARACONSISTENT REFUTATION SYSTEM

Abstract. The aim of this paper is to study the refutation system consisting of the refutation axiom \(p \land \neg p \rightarrow q \) and the refutation rules: reverse substitution and reverse modus ponens \((B/A, \text{if } A \rightarrow B \in \text{RM})\). It is shown that the refutation system is characteristic for the logic of the 3-element \(\text{RM}\) algebra.

Keywords: refutation systems, paraconsistent logic, relevance logic.

1. Introduction

A refutation system is an inference system consisting of some refutation axioms (which are non-valid formulas) and some refutation rules (which are inference rules preserving non-validity) (see [2]). Refutation systems can be regarded as alternative axiom systems capturing some intuitions about non-valid formulas as well as valid ones. It seems worth investigating such systems in paraconsistent logics, which are defined as non-classical logics rejecting the explosive law \((E) := p \land \neg p \rightarrow q\) (cf. [3]). In this paper we study the refutation system consisting of the refutation axiom \((E)\) and the refutation rules: reverse substitution and reverse modus ponens \((B/A, \text{where } A \rightarrow B \in \text{RM})\). It is shown that this refutation system generates the set of formulas non-valid in the 3-element \(\text{RM}\) algebra. The resulting paraconsistent logic (that is, the set of formulas non-refutable in this system) is simple (3-valued), natural (i.e. \((E)\) is rejected and refutability is justified by derivability in \(\text{RM}\); a useful standard relevance logic), and maximal.
2. Preliminaries

Let \(\text{FOR} \) be the set of formulas generated from a set \(\text{VAR} = \{p, q, \ldots\} \) of propositional variables by the connectives: \(\neg, \land, \lor, \rightarrow \). We define

\[
A \equiv B := (A \rightarrow B) \land (B \rightarrow A).
\]

\(\text{RM} \) is the set of formulas provable in the following axiom system.

Axioms:

\[
\begin{align*}
A & \rightarrow A \\
(A \rightarrow B) & \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C)) \\
A & \rightarrow ((A \rightarrow B) \rightarrow B) \\
(A \rightarrow (A \rightarrow B)) & \rightarrow (A \rightarrow B) \\
A & \rightarrow (A \rightarrow A) \\
A \land B & \rightarrow A \\
A \land B & \rightarrow B \\
((A \rightarrow B) \land (A \rightarrow C)) & \rightarrow (A \rightarrow B \land C) \\
A & \rightarrow A \lor B \\
B & \rightarrow A \lor B \\
((A \rightarrow C) \land (B \rightarrow C)) & \rightarrow (A \lor B \rightarrow C) \\
(A \land (B \lor C)) & \rightarrow ((A \land B) \lor C) \\
(A \rightarrow \neg B) & \rightarrow (B \rightarrow \neg A) \\
\neg\neg A & \rightarrow A
\end{align*}
\]

Rules:

\[
\begin{align*}
\text{(modus ponens)} & \quad \frac{A}{B} \\
\text{(adjunction)} & \quad \frac{A \quad B}{A \land B}
\end{align*}
\]

\(\text{RM} \) can be characterized by the matrix \(\mathbf{M} = \langle \mathbb{Q}, \mathcal{D}, -, \land, \lor, \rightarrow \rangle \) (see [1]), where \(\mathbb{Q} \) is the set of rational numbers, \(\mathcal{D} := \{x \in \mathbb{Q} : x \geq 0\} \), and

\[
\begin{align*}
x \land y & := \min(x, y), \\
x \lor y & := \max(x, y), \\
x \rightarrow y & := \begin{cases}
\max(-x, y) & \text{if } x \leq y, \\
\min(-x, y) & \text{otherwise.}
\end{cases}
\end{align*}
\]
Thus \textbf{RM} is the set of formulas valid in \textbf{M}, that is, \(A \in \textbf{RM} \) iff \(v(A) \in \textbf{D} \) for every valuation \(v \) in \textbf{M}.

We take for granted the following \textbf{RM} laws:

(1) \((A \to (B \to C)) \to (B \to (A \to C))\) \(\)
\((A \to (B \to C)) \to ((A \to B) \to (A \to C))\) \(\)
\(A \land B \equiv B \land A\) \(\)
\(A \lor B \equiv B \lor A\) \(\)

(2) \((A \to (B \equiv C)) \to ((A \to (C \equiv D)) \to (A \to (B \equiv D)))\) \(\)
\((B \equiv C) \to (D \equiv D(B/C))\) \(\)

(3) \((A \to (B \equiv C)) \to (A \to (D \equiv D(B/C)))\) \(\)

where \(D(B/C)\) results from \(D\) by replacing some occurrences of \(B\) by \(C\).

3. Validity

Let \(P := p \land \neg p\) and \(Q := q \land \neg q\).

\textbf{Lemma 1.} The following formulas are in \textbf{RM}:

\[
\begin{align*}
P & \to (\neg Q \equiv \neg Q) \\
P & \to (\neg \neg Q \equiv Q) \\
P & \to (\neg P \equiv P) \\
P & \to (Q \land \neg Q \equiv Q) \\
P & \to (P \land Q \equiv Q) \\
P & \to (P \land \neg Q \equiv P) \\
P & \to (Q \lor \neg Q \equiv \neg Q) \\
P & \to (P \lor Q \equiv P) \\
P & \to (P \lor \neg Q \equiv \neg Q) \\
P & \to ((Q \to Q) \equiv \neg Q) \\
P & \to ((P \to P) \equiv P) \\
P & \to ((\neg Q \to \neg Q) \equiv \neg Q) \\
P & \to ((Q \to \neg Q) \equiv \neg Q) \\
P & \to ((\neg Q \to Q) \equiv Q) \\
P & \to ((P \to Q) \equiv Q)
\end{align*}
\]
\[P \to ((Q \to P) \equiv \neg Q) \]
\[P \to ((P \to \neg Q) \equiv \neg Q) \]
\[P \to ((\neg Q \to P) \equiv Q) \]

Proof. First we note the following simple facts. Let \(x, y \in Q \). We put

\[
X := x \land \neg x, \quad Y := y \land \neg y, \quad \text{and} \quad Z := \{X, \neg X, Y, \neg Y\}.
\]

Then we have:

(I) \(X \leq 0 \) and \(Y \leq 0 \).

(II) If \(a, b \in Z \) then \(-a, a \land b, a \lor b, a \to b \in Z\).

Next we consider the above formulas. They are of the form

\[P \to A(P, Q) \]

Now let \(v \) be any valuation in \(M \). Then, by (II), we have

\[(\ast) \quad v(A(P, Q)) \in \{v(P), -v(P), v(Q), -v(Q)\}. \]

For \(v \) we consider two cases.

Case 1. \(v(P) \leq v(Q) \). Then, by (I) and (\(\ast \)), we get \(v(P) \leq v(A(P, Q)) \).

Hence \(v(P \to A(P, Q)) = \max(-v(P), v(A(P, Q))) \geq 0 \).

Case 2. \(v(P) > v(Q) \). Then it is easy to check that

\[(\ast\ast) \quad v(A(P, Q)) \in \{v(P), -v(P), -v(Q)\}. \]

We give details only for the cases eighth, fourteenth, and eighteenth; the other ones being similar.

\[
v(P \lor Q \equiv P) = v(P \lor Q \to P) \land v(P \to P \lor Q) = v(P \to P) \land v(P \to P) = \max(-v(P), v(P)) = -v(P), \text{ because } v(P \lor Q) = v(P).
\]

\[
v((-Q \to Q) \equiv Q) = v((-Q \to Q) \to Q) \land v(Q \to (-Q \to Q)) = v(Q \to Q) \land v(Q \to Q) = -v(Q), \text{ because } -v(Q) > v(Q).
\]

\[
v((-Q \to P) \equiv Q) = v((-Q \to P) \to Q) \land v(Q \to (-Q \to P)) = v(Q \to Q) \land v(Q \to Q) = -v(Q), \text{ because } -v(Q) > v(P).
\]

Therefore, by (I) and (\(\ast\ast \)), \(v(P) \leq v(A(P, Q)) \), and so \(v(P \to A(P, Q)) = \max(v(-P), v(A(P, Q))) \geq 0 \).

Thus, for any valuation \(v \) in \(M \) we have \(v(P) \leq v(A(P, Q)) \), and so \(v(P \to A(P, Q)) \geq 0 \) which gives the result. \(\square \)
4. Refutability

Let $\mathbf{3}$ be the submatrix $\langle \{-1, 0, 1\}, \{0, 1\}, -, \land, \lor, \rightarrow \rangle$ of \mathbf{M}. We put: $G_{-1} := Q$, $G_{0} := P$, and $G_{1} := \neg Q$. For any valuation v in $\mathbf{3}$, let s_v be the following substitution:

$$s_v(A) = G_{v(A)} \quad \text{(for any } A \in \text{VAR}).$$

Lemma 2. For any $B \in \text{FOR}$ we have $P \rightarrow (s_v(B) \equiv G_{v(B)}) \in \text{RM}.$

Proof. By induction on the complexity of B.

Let $B \in \text{VAR}$. Then this is true, because $s_v(B) = G_{v(B)}$ and $v(s_v(B) \equiv G_{v(B)}) \geq 0$.

Let $B \notin \text{VAR}$. We assume that the lemma holds for formulas simpler than B. Then

$$B \in \{-C, C \land D, C \lor D, C \rightarrow D\}$$

and by the induction hypothesis we have

$$P \rightarrow (s_v(C) \equiv G_{v(C)}) \in \text{RM},$$

$$P \rightarrow (s_v(D) \equiv G_{v(D)}) \in \text{RM}.$$

Hence, by (3) and *modus ponens*, we get

$$P \rightarrow (\neg s_v(C) \equiv \neg G_{v(C)}) \in \text{RM},$$

$$P \rightarrow ((s_v(C) \otimes s_v(D)) \equiv (G_{v(C)} \otimes G_{v(D)})) \in \text{RM},$$

where $\otimes \in \{\land, \lor, \rightarrow\}$. Since by Lemma 1 we have

$$P \rightarrow (\neg G_{v(C)} \equiv G_{v(\neg C)}) \in \text{RM},$$

$$P \rightarrow ((G_{v(C)} \otimes G_{v(D)}) \equiv (G_{v(C \otimes D)})) \in \text{RM},$$

by (2) and *modus ponens* we obtain

$$P \rightarrow (s_v(B) \equiv G_{v(B)}) \in \text{RM}$$

as required.

We say that a formula is *refutable* iff it is derivable in the following refutation system.

\[\square\]
Refutation axiom:
(E) \(p \land \neg p \rightarrow q \)

Refutation rules:
(reverse substitution) \(B/A \), if \(B \) is a substitution instance of \(A \).
(reverse modus ponens) \(B/A \), if \(A \rightarrow B \in RM \).

THEOREM. A formula is refutable if and only if it is not valid in 3.

PROOF. \((\Rightarrow)\) This follows from the fact that (E) is not valid in 3 and the refutation rules preserve non-validity in 3.

\((\Leftarrow)\) Assume that \(A \) is not valid in 3. Then \(v(A) = -1 \) for some valuation \(v \) in 3, so \(G_{v(A)} = G_{-1} := q \land \neg q \). By Lemma 2 we have
\[
P \rightarrow (s_v(A) \equiv q \land \neg q) \in RM.
\]
Hence
\[
P \rightarrow (s_v(A) \rightarrow q) \in RM,
\]
so, by (1) and modus ponens, we obtain
\[
s_v(A) \rightarrow (p \land \neg p \rightarrow q) \in RM.
\]
Therefore \(s_v(A) \) is refutable, by reverse modus ponens and (E), and so \(A \) is refutable, by reverse substitution, which was to be shown.

References

