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1. Introduction

Alexander Vladimirovich Kuznetsov contributed to several areas of mathe-
matical logic, including the theory of recursive functions, general problems of
decidability for propositional logics, problems of expressiveness for proposi-
tional and predicate many-valued logics, algebraic analysis of superintuition-
istic logics, structural analysis of the lattice of those logics, and investigation
of particular modal systems, as well as comparative investigation of lattices
of extensions of such systems. I will only discuss here Kuznetsov’s con-
tribution to the two last areas, with which I am most familiar and where
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Kuznetsov and I closely collaborated. On a personal note, I want to say
that throughout this collaboration I learned not merely mathematical logic,
since I never took a university course in the subject, but also Kuznetsov’s
manner of thinking in solving logic problems so that I had emulated his way
of handling problems long in my work until I developed my own style.

I was introduced to Kuznetsov in about 1969, but our collaboration began
only in 1973, when I returned to Chişinău, Moldova, after military service.
Prof. V. Ja. Gerčiu was granted a doctoral degree just a year before, in 1972.1

Thus it was a time, I believe, when Kuznetsov felt that he needed to make
some changes in his research to explore other themes in logic, so to speak.

Whichever course his thought was taking at that time, Kuznetsov always
focused on a triangle: Computability-Algebra-Logic. He saw the interactions
of these three fields, explained in [Kuz 87], though the idea could be traced
back to [Kuz 79a], as follows.

In [Kuz 79a] Kuznetsov writes that for detecting incompleteness or incon-
sistency of a calculus, it suffices to find a formula that is not derivable from
the axioms of the calculus. An analogous task is needed to show that two
calculi are not equal in extension; then it suffices to find a formula derivable
in one calculus and refutable in the other. Thus, it would be advantageous
to find means for detecting refutable formulas. For most known calculi, such
means are known as logical matrices, that is, universal algebras with a pred-

icate for designated elements (cf. [Men 97, Cze 80]). Then the complexity of
derivability in a calculus can be investigated through the complexity of the
matrices, by which the formulas non-derivable in the calculus could be re-
futed. In general, Kuznetsov calls a separating means an object that stands
to the logic in question in some relation R but a refutable formula does not.

One vertex, Logic, in the triangle above was a priority for Kuznetsov.
Focusing on a logic system, he concentrated mostly on semantic, namely
algebraic, issues and, when it was possible, gave computable estimates of
separating means. Although he considered topological or relational models
as well (see e.g. [Kuz 79b]), algebraic models were a universal tool because
many logics can be associated with varieties, or equational classes, [MMT 87]
of similar algebras.

The present paper is organized as follows. In Section 2, I give an expos-
itory framework of what Kuznetsov had known about modal logic before he
started his research, as well as the results he learned from other researchers

1See the list of A. V. Kuznetsov’s Ph. D. students in A. Y. Muravitsky, “Alexander
Vladimirovich Kuznetsov” (this issue).
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in the field, which influenced him. Section 3 contains his own and joint con-
tributions to the subject. I also include there additional references to the
results that acted as direct creative impulses for him. Finally, in Section 4
I point out some further and recent developments that have been based on
or inspired by those discussed in Section 3 and obtained after the untimely
death of A. V. Kuznetsov.

2. Kuznetsov’s knowledge obtained from outside

There was an area, comprised of Kuznetsov’s research interests, which in-
cluded only logical-algebraic context. In this relation, his attention was
directed to the propositional intuitionistic logic, Int, and its extensions.
Originated in the papers of Gödel [Göd 32] and Jaśkowski [Jaś 33], the
research of the lattice of the extensions of the intuitionistic propositional
logic, Ext Int, reached its highest point in the mid-1970s. Kuznetsov and
his school contributed considerably to this field. Actually, he was one of the
pioneers in investigating Ext Int among the Soviet logicians in 1960s.2 The
resulting paper of those contributions, [Kuz 75], was the text of his invited
lecture3 submitted to the International Mathematical Congress in Vancou-
ver, Canada in 1975. Gradually, modal logic S4 and other modal systems
had become involved in the circle of his interests so that approaches devel-
oped for Ext Int were applied to the lattice of the normal4 extensions of S4,
Ext S4, and other logics.

Now it is a well-known fact that logics Int and S4 are interrelated via
Gödel-McKinsey-and-Tarski’s Theorem on Embedding (Theorem 1 below;
cf. [Göd 33], [MT 48], and also [Mur 06].), To explain this theorem we have
to introduce two propositional languages. One, assertoric language, is based
on the denumerable set of propositional variables p, q, r, . . . (with or without
indices) and the (assertoric) connectives: ∧ (conjunction), ∨ (disjunction),
→ (implication) and ¬ (negation); the other, a modal language, is the expan-
sion of the former by adding modality 2 understood as a unary connective.
The notion of a formula for both languages is defined in a usual manner. We
will be using A, B, . . . throughout as metavariables for assertoric formulas

2Two other Soviet logicians who contributed significantly in the beginning were
V. A. Jankov (or Yankov) and Ya. S. Smetanich.

3Kuznetsov could not participate at the Congress for medical reasons. His talk, which
is an exact copy of the published version, was read by Yuri L. Ershov.

4A modal logic is called normal, if it allows the rule α/2α.
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and α, β, . . . as those for modal formulas. The Greek letters Σ and Γ will
be used as metavariables for sets of such formulas, respectively.

We also introduce a special operation of embedding of the assertoric
language into the modal language, which for any formula A returns the
modal formula At by placing modality 2 in front of every subformula of A.
Accordingly, we define Σt = {At | A ∈ Σ}.

Theorem 1 (On embedding). For any formula A, the following equivalence

holds:

Int ⊢ A if and only if S4 ⊢ At.

This theorem has been significantly generalized since the first proof of it
had appeared in print in [MT 48]. Although Kuznetsov did not contribute
to this matter, he was an active participant in discussions, which occurred
sporadically at a number of All-Soviet conferences on logic and algebra in
the 1970s. These discussions led, on the one hand, to the generalization of
the Theorem on Embedding (see Theorem 2 below) and, on the other hand,
drew Kuznetsov’s attention to provability interpretation of Int and, then,
to the definition of Proof-Intuitionistic Logic, KM, and finally to his Full
Conservativeness Theorem (see Theorem 17 below).

The Theorem on Embedding demonstrated that Int can be embedded
into a classical modal context with respect to S4. Almost two decades later,
Grzegorczyk showed in [Grz 67] that S4 in the equivalence above can be
replaced with its proper extension, Grz, which is usually defined as S4

augmented with the axiom:5

grz = 2(2(p → 2p) → p) → p .

In view of Grzegorczyk’s result, it was very natural to ask about other
logics among the normal extensions of S4: Which of them stand in the same
relation to Int as S4 and Grz? A partial answer to the question gave the
following:

Theorem 2 (generalized on embedding [MT 48]+[Mak 75]). For any modal

logic M such that S4 ⊆ M ⊆ Grz and any set of classical tautologies Σ,

Int + Σ ⊢ A if and only if M + Σt ⊢ At .

5In fact, Grzegorczyk used a two-variable formula in his axiomatization of Grz. Sobo-
ciński was possibly the first who discussed the formula grz. Segerberg in [Seg 71], p. 169,
mentions that Grz equals Grzegorczyk’s original logic from [Grz 67].
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Theorem 2 indicated that there is an interconnection between Ext Int

and Ext S4. Indeed, in 1974 Maksimova and Rybakov wrote an interesting
paper [MR 74] on interrelation of these lattices, which was a pioneering com-
parative investigation of lattices of extensions of different logics. Although
at first Kuznetsov’s receipt of some of the results of [MR 74] was rather
cool, his very last paper [KM 86] was similarly about functional connections
between pairs of lattices of the extensions of logics, developing further the
topic begun in [MR 74] and involving four lattices of extensions of logics.
However, he came to the last point of his research career more through the
equivalence in the Theorem on Embedding than through [MR 74]. From
[MR 74] Kuznetsov, as well as I myself, learned important mappings: τ , ρ,
and σ.

The logics in Ext Int are called intermediate, since L ∈ Ext Int if and
only if Int ⊆ L ⊆ Cl, where Cl is the classical propositional logic.6 We
regard Ext S4 as comprising only consistent normal extensions of S4. Just
as Ext Int has the greatest element, which is Cl, the lattice Ext S4 has the
greatest element S4+p → 2p. In general, for any set of classical tautologies
Σ, we denote by Int + Σ the intermediate logic obtained by adding Σ to Int

as additional axioms. In the same manner we define an extension S4 + Γ for
any set of modal formulas Γ valid in S4 + p → 2p.

For any logic L ∈ Ext Int, we define

τ(L) = S4 + {At | A ∈ L}.

Also, we define for any logic M ∈ Ext S4 (cf. [MR 74]),

ρ(M) = {A | At ∈ M} .

As established in [MR 74], ρ(M) ∈ Ext Int; moreover, ρ is an epimorphism
from Ext S4 onto Ext Int.

Thus Theorem 1 can be written by the equation ρ(S4) = Int.
Now we define

σ(L) = τ(L) ⊕ Grz ,

where ⊕ is the join operation in Ext S4, as well as in other lattices of logics
being considered here.

6Kuznetsov included the absolutely inconsistent logic, that is, the set of assertoric
formulas, into consideration and preferred the term superintuitionistic logic, referring it to
any logic containing Int and closed under substitution and modus ponens.
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The following two statements probably indicate the highest point of
Kuznetsov’s knowledge that originated in Theorem on Embedding.

Based on some results of Maksimova and Rybakov in [MR 74] and [Mak
75] and especially on one crucial result proved independently by Blok and
Esakia in [Blo 76] and [Esa 76], respectively, it was possible to establish the
following property:

Theorem 3 (Blok-Esakia inequality). For every modal logic M ∈ Ext S4,

τ ◦ ρ(M) ⊆ M ⊆ σ ◦ ρ(M).

Corollary 3.1 (Folklore). Let M ∈ Ext S4. Then the equivalence

Int ⊢ A if and only if M ⊢ At ,

that is, ρ(M) = Int, is equivalent to the inequality M ⊆ Grz. Or more

general: the equivalence

Int + Σ ⊢ A if and only if M + Σt ⊢ At

is equivalent to the inequality M ⊆ σ(Int + Σ).

3. Provability logic, proof-intuitionistic logic

and the lattices of their extensions

3.1. Calculi related to provability interpretation

Kuznetsov learned the Theorem on Embedding (Theorem 1) from the lecture
course on Constructive (read: intuitionistic) Mathematical Logic that P.S.
Novikov taught at the Moscow State University in 1955.7 Novikov in his
course devoted some time to interpretation of Int in terms of constructive
steps that are to establish the intuitionistic validity of a statement. Unlike
Kolmogorov’s interpretation that was based on a problem-be-solved notion,
Novikov used terminology of finding approximations when one weighs to
determine the heaviness of something.8 According to Kuznetsov, Novikov

7In 1977, i.e. long after Novikov’s death, the course was published as a book [Nov 77].
The editors of the book, F. A. Kabakov and B. A. Kushner, used lecture notes taken by
a number of those attended Novikov’s lectures, including the notes of Kuznetsov’s. The
present author studied Theorem on Embedding first from the latter source.

8He probably did not elaborate in detail in classroom so that the idea was discussed
on merely two or three pages of Kuznetsov’s notes. It is no wonder that the editors of
[Nov 77] decided to omit it.
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did interpret modality in S4 as “provability”, denoting this modality by a D
letter,9 but Novikov’s provability was based on approximations of weights.
Thus in 1974, Kuznetsov hoped to find a provability interpretation for Int in
terms Novikov’s approach, by making it more mathematically precise, and
via the Theorem on Embedding.

In 1974, Kuznetsov clearly was not aware of Gödel’s remark in [Göd 33]
that a direct provability interpretation of S4 through the standard provabil-
ity predicate with respect to the formal Peano Arithmetic (PA) faces Gödel’s
Second Incompleteness Theorem as an obstacle. In about 1975, he learned
from me Löb’s Theorem for PA and we defined calculus D0 with the axioms:
Axioms of Classical Logic, 2(p → q) → (2p → 2q), 2p → 22p, and the
rules of inference: substitution, modus ponens, α/2α (Necessitation), 2α/α
(Weakening) and 2α → α/α (Löb Rule). We realized very quickly that we
get a calculus (named later D) equal to D0 in extension, when we replace
Löb Rule with the axiom:

2(2p → p) → 2p . (Löb Formula)

Because of Theorem 4(a), below, we abandoned D0 for the sake of D.
Also, we started considering the calculus D− obtained from D by removing
the Weakening from the list of postulated rules of inference. The justification
for these moves was as follows.

Two calculi, C1 and C2, (of the same language) are deductively equiva-

lent if

C1 + α ⊢ β if and only if C2 + α ⊢ β.

Assuming that both C1 and C2 contain Cl, if C1 and C2 are deductively
equivalent then they are equal in extension, that is, the calculi C1 and C2

determine the same set of theorems.

Theorem 4 ([KM 80]). (a) Calculi D0 and D are deductively equivalent.

(b) Calculi D and D− are equal in extension, though they are not deduc-

tively equivalent.

Remark 1. It should be noted that logic D− is the same as K4W considered
by Segerberg as early as in [Seg 71]. This logic attracted much attention
after publication of Solovay’s paper [Sol 76], where the completeness of it

9Russian “Dokazuemo” (Dokazuemo) means “Provable”. Note that Russian and English
D letters look alike in script.
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with respect to arithmetical interpretation was proven. Shortly thereafter,
this logic received a new name, GL, after Gödel and Löb. The abstract
[KM 76] also appeared in 1976, but, despite its title, The Logic of Provability,
it did not deal with any precise interpretation of modality and the term
“provability” was used rather as an inclination to use logic D somehow to
interpret Int through the former.

In the spring of 1974, following a suggestion from my friend Nikolai
Shakenko, Kuznetsov and I defined the split operation s as follows:

ps = p,

(α ∧ β)s = αs ∧ βs,

(α ∨ β)s = αs ∨ βs,

(α → β)s = αs → βs,

(2α)s = αs ∧ 2αs.

Remark 2. In our discussions with Kuznetsov, this definition preceded the
following Working Hypothesis: There is a formula of one variable, say γ(p),
of the modal language, which expresses the actual provability in PA by
means of calculus D. Then, we found it natural to expect γ(p) to satisfy the
following conditions:

(i) D ⊢ γ(p) → p,

(ii) D ⊢ γ(p) → 2p,

(iii) D ⊢ γ(p → p).

Theorem 5 ([KM 80]). Let γ(p) be a formula of one variable p, satisfying

the conditions (i)–(iii) above. Then D ⊢ γ(p) ↔ p ∧ 2p.

Theorem 6 ([KM 76, KM 80]). {A | D + (At)s is consistent} = LC, where

LC is Dummett’s Logic10 from [Dum 59].

Theorem 7 ([KM 80]). For any formula α,

Grz ⊢ α if and only if GL ⊢ αs.11

By virtue of Theorem 2 (or Grzegorczyk’s result mentioned above), the
following holds:

10We remind that LC = Int + (p → q) ∨ (q → p).
11This theorem was proved by the present author in 1976 and was included in [KM 80].
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Corollary 7.1 ([KM 80]). For any formula A,

Int ⊢ A if and only if GL ⊢ (At)s.12

For any logic L ∈ Ext Int, we call L a t-fragment of some logic M ∈
Ext S4 if L = {A | M ⊢ At}. For any modal logic M ∈ Ext S4, we call M
an s-fragment of an extension of GL (or D), say M ′, if M = {α | M ′ ⊢ αs}.
Finally, for any logic L ∈ Ext Int, we call L an st-fragment of an extension
of GL (or D), say M , if L = {A | M ⊢ As◦t}.

Thus, according to Theorem 2, any logic Int + Σ is a t-fragment of any
logic M + Σt, where S4 ⊆ M ⊆ Grz. Then, by virtue of Theorem 7, Grz

is an s-fragment of GL, as well as of D. Hence, (Corollary 7.1) Int is an
st-fragment of GL, as well as of D. Finally, Theorem 6 implies that if
L ∈ Ext Int is a t-fragment of some extension of D, then L ⊆ LC. However,
as the reader will see in Section 3.3, any logic L ∈ Ext Int is a t-fragment of
some extension of GL.

Theorem 8 ([KM 80]). The modal logic of the frame (N, >), where N is the

set of natural numbers, is the greatest consistent extension of D. Moreover,

the st-fragment of this extension equals LC.

3.2. Magari algebras and KM-algebras

A universal algebra (B, ∧, ∨, ¬, 1,2) is called a Magari13 (or diagonalizable)
algebra if (B, ∧, ∨, ¬, 1) is a Boolean algebra with the unit 1 and the oper-
ation 2 is subjected to the following identities:

2(x ∧ y) = 2x ∧ 2y,

2x ∨ 22x = 22x,

2(¬2x ∨ x) ∨ 2x = 2x,

21 = 1 .

Both logics GL and D are determined by Magari algebras. There is a
one-to-one correspondence between the normal extensions of GL and the
varieties of Magari algebras.

Now we define

2
sx = x ∧ 2x.

12This result was also obtained in 1976.
13Magari algebras are named after Roberto Magari who was the first to attempt in the

mid-1970s to analyze Diagonal Lemma in PA by algebraic means (cf. [Mag 75]).
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Let us be reminded that a universal algebra (B, ∧, ∨, ¬, 1,2) is called an
S4-algebra (or an interior algebra) if it is a Boolean algebra with respect to
assertoric operations and the unit 1 and the unary operation 2 satisfies the
identities:

2(x ∧ y) = 2x ∧ 2y,

2x ∧ x = 2x,

2x ∨ 22x = 22x,

21 = 1.

An S4-algebra is a Grz-algebra (or Grzegorczyk algebra) if, in addition,
it has the following property:

2(¬2(¬x ∨ 2x) ∨ x) = 2x.

We denote by Bt the Heyting algebra of the open elements of an S4-
algebra B. Thus if we denote the set of this set of open elements by Bt, then
Bt = (Bt, ∧, ∨, →, 1, 2), where operation ∧ and ∨ are the same as in Bt,
and x → y = 2(¬x ∨ y).

Theorem 9 ([KM 77]). If B = (B, ∧, ∨, ¬, 1,2) is a Magari algebra, then

Bs = (B, ∧, ∨, ¬, 1,2s) is a Grz-algebra.

Thus, starting from a Magari algebra B, we, according to Theorem 9,
get first a Grz-algebra Bsand on the next step a Heyting algebra Bst.

Theorem 10 ([KM 77]). All the algebras of the form Bst, where B is a

Magari algebra, generate the variety of Heyting algebras.

Theorem 11 ([KM 77]). Suppose a Grz-algebra (B, ∧, ∨, ¬, 1,2s) was ob-

tained from a Magari algebra (B, ∧, ∨, ¬, 1,2). Then the operation 2 can

be uniquely recovered from the operation 2
s by defining 2x as the greatest

element y such that 2
sx ≤ y, and 2

sx ≤ z ≤ y implies 2
sz = z. Also,

any finite Grz-algebra B = (B, ∧, ∨, ¬, 1,⊡) can be converted to a Magari

algebra B∗ = (B, ∧, ∨, ¬, 1,2) by the definition of 2x as the greatest ele-

ment y such that ⊡x ≤ y, and ⊡x ≤ z ≤ y implies ⊡z = z, in which case

⊡x = 2
sx.

For the rest of this subsection, we limit ourselves with logics containing
GL. We say that a class Θ of similar algebras corresponds to a calculus C

if for any formula α, C ⊢ α if and only if α is valid on all the algebras in Θ.
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Also, we say that Θ fully corresponds to C if for any formulas α and β,
C + α ⊢ β if and only if β is valid on an algebra in Θ whenever α is valid
on it (cf. [KM 80], p. 214).

It is clear that if Θ fully corresponds to C then the former corresponds
to the latter, since C ⊢ p → p.

Let MC be the variety of algebras, determining C, and let NC be the
(abstract) class of the algebras, whose logics are extensions of C, that is,
containing the axioms of C and closed under all the postulated rules of
inference of C.

Theorem 12 ([KM 80]). The following items hold:

(i) NC ⊆ MC.

(ii) Class NC fully corresponds to C.

(iii) If a class Θ fully corresponds to C, then Θ ⊆ NC.

(iv) If a class Θ fully corresponds to C and is a variety, then Θ = MC =
NC.

Theorem 13 ([KM 80]). The variety of Magari algebras fully corresponds

to GL, that is, MGL = NGL, and it corresponds to D.

Theorem 14 ([KM 80]). ND ⊂ NGL. Hence, no variety fully corresponds

to D.14

An element x of a Magari algebra B = (B, ∧, ∨, ¬, 1,2) is called open,
if 2sx = x, that is, if x is open in the Grz-algebra Bs.

It was noticed in [KM 80] that if x is an open element of a Magari algebra
B = (B, ∧, ∨, ¬, 1,2) then 2x is open as well. This observation suggested
to consider the algebra B◦ = (Bt,2), where Bt is the Heyting of the open
elements of the Grz-algebra Bs. Thus B◦ is a Heyting algebra with modal
operation 2.

Theorem 15 ([KM 80]). Abstract class {B◦ | B ∈ MGL} forms a variety

given by the identities:

(i) x ≤ 2x,

(ii) 2x → x = x,

(iii) 2x ≤ y ∨ (y → x).

14Almost nothing is known about classes fully corresponding to D. The question in [KM
80], whether ND is a quasi-variety, was answered negatively in [Mur 83]: Class ND is not
universally axiomatizable.
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A universal algebra (H, ∧, ∨, →, 1,2), where (H, ∧, ∨, →, 1) is a Heyting
algebra and 2 is subjected to the identities i)–iii) above, is called KM-
algebra15.

Having borrowed a central idea from [Esa 78], Kuznetsov made the fol-
lowing observation:

Theorem 16 ([Kuz 79b]). Let C be the Heyting algebra of a topological

space (X, I), endowed by the operation 2A =
⋃

{I(A ∪ {x}) | x ∈ X}. Then

C is a KM-algebra if and only if (X, I) is a scattered space. If X is finite,

then C is a KM-algebra if and only if (X, I) is a T0-space.

3.3. Lattices of extensions

Logic KM16 can be defined by adding to Int, now understood in the modal
language, the following three axioms:

p → 2p,

(2p → p) → p,

2p → (q ∨ (q → p)).

Kznetsov noticed in [Kuz 78] (see also [Kuz 85]) that KMcan also be ax-
iomatized by the calculus, where the last formula in the above definition of
KMis replaced with

((p → q) → p) → (2q → p).

We denote the latter calculus by I
∆. It is especially convenient when we

ask about the Separation Property, which will be discussed in Section 4.
Since Int has the Finite Model Property and, by virtue of Theorem 11,

one can prove that KMis a conservative extension of Int. Developing this
idea, Kuznetsov proved his Full Conservativeness

Theorem 17 ([Kuz 85]). For any assertoric formulas A and B, the following

equivalence holds:

Int + A ⊢ B if and only if KM + A ⊢ B,

or in a more general form:

Int + Σ ⊢ B if and only if KM + Σ ⊢ B.

15This term is due to Esakia (cf., e.g., [Esa 06]). The original name was ∆-pseudo-

Boolean algebra.
16This current name was given by Esakia (cf., e.g., [Esa 06]). The original name was I

∆.
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A Heyting algebra (H, ∧, ∨, →, 1) is called enrichable, if it is possible to
define somehow a unary operation 2 so that the expanded algebra (H, ∧, ∨,
→, 1, 2) is a KM-algebra. It should be noted that in an enrichable Heyting
algebra the modality 2 can be defined uniquely (cf.̃[Mur 90]).

The following statement is equivalent to Theorem 17:

Corollary 17.1 ([Kuz 85]). Any variety of Heyting algebras is generated

by its enrichable algebras.

Theorem 17 has another interesting algebraic reading. It is quite easy to
see, though some knowledge of model theory is needed, that Theorem 17 is
equivalent to the

Corollary 17.2 ([Kuz 85]). Any Heyting algebra C is embedded into an

enrichable Heyting algebra C∗ such that the latter generates the same variety

of Heyting algebras, as does the former.

Remark 3. There is merely a sketch of the proof of Theorem 17 in [Kuz 85],
though Kuznetsov presented a proof of that theorem in full detail in the
Seminar on Mathematical Logic at the Institute of Mathematics of Moldova
Academy of Sciences in 1984. In a conversation with Kuznetsov before [Kuz
85] had been handed in for publication, I pointed out that Corollary 17.2
(Corollary 2 in [Kuz 85]) is in fact equivalent to Theorem 17. A proof
of it can be obtained as follows. Let C be a Heyting algebra and A be
the class of enrichable algebras in the variety generated by C. Then, by
virtue of Corollary 17.1, C ∈ HSP(A). Since every Heyting algebra has
the Congruence Extension Property, HSP(A) = SHP(A). Now we notice
that “being enrichable” is a ∀∃∀-property, where ∀∃∀-prefix is applied to
the conjunction of equalities, that is, to a Horn predicate. Therefore, this
property is strictly multiplicatively stable in the sense of [Mal 73, Ch. 7.5].
Also, it is a well-known fact that the first-order properties are preserved by
the homomorphism.17

Let ExtGrz and ExtKM be the lattices of consistent normal extensions
of Grz and extensions of KM, respectively.

Now we generalize operation s ◦ t, expanding it to the formulas of modal
language. We denote this new operation by tr and define it as follows.

17The problem of obtaining more “direct” and “visible” algebraic embedding construc-
tion remains open. The construction proposed in [Mur 86] gives merely an embedding of
a Heyting algebra into an enrichable one, though it does allow one to see that the latter
generates the same variety as does the former.
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Taking a formula α as an argument, we first place 2
s in front of every

subformula of α and, then, transform each subformula 2
sβ into (β ∧ 2β).

We introduce the following four mappings λ : Ext GL −→ Ext KM,
κ : Ext KM −→ Ext GL, µ : Ext GL −→ Ext Grz and χ : Ext KM −→
Ext Int as follows:

λ(M) = {α | M ⊢ tr(α)}, κ(M) = GL + {tr(α) | M ⊢ tr(α)},

µ(M) = {α | M ⊢ αs} and χ(M) = {A | M ⊢ A}.

It was proved in [Mur 85] that λ and κ are isomorphisms and inverses
of one another. Also, by using Theorem 3, one can derive that ρ (re-
duced to Ext Grz) and σ establish inverse isomorphisms between Ext Int

and Ext Grz, respectively.

Theorem 18 ([KM 86]). For the mappings λ, κ, µ, χ above, the following

equation holds:

χ ◦ λ = κ ◦ µ .

Moreover, χ and µ are meet semilattice epimorphisms that are not commu-

tative with ⊕.

This theorem immediately implies the

Corollary 18.1 ([KM 86]). Any normal consistent extension of Grz is the

s-fragment of some normal extension of GL and any intermediate logic is

the st-fragment of some normal extension of GL.

4. Some further developments after A. V. Kuznetsov

First, I would like to mention the Separation Property for the calculus I
∆

(= KM in extension), proved in [Mur 86] and [Sim 87] independently and
at about the same time. Simonova also proved in [Sim 90] the Interpolation
Property for KMand constructed a continuum of extensions of KM, having
this property, as well as an extension without it.

Further, it was proved that the following statements are equivalent:

(i) KM + Σ ⊢ A,

(ii) GL + Σs◦t ⊢ As◦t,

(iii) Grz + Σt ⊢ At.
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Also, for any set Γ of modal formulas and any α [Mur 88],

Grz + Γ ⊢ α if and only if GL + Γs ⊢ αs,

and [Mur 89]

GL + Γ ⊢ α if and only if KM + tr(Γ) ⊢ tr(α).

Esakia defined the calculus mHC as follows:

mHC = Int+ (2(p → q) → (2p → 2q)+ p → 2p +2p → (q ∨ (q → p)),

where Int should be understood in the modal language.
It is clear that KM = mHC + (2p → p) → p. Now let

K4.Grz = K4 + 2(2(p → 2p) → p) → 2p.

Then

mHC ⊢ α if and only if K4.Grz ⊢ tr(α).18

Also,

Grz ⊢ α if and only if K4.Grz ⊢ αs.

Moreover, K4.Grz is the least normal extension of K4, for which the last
equivalence holds (see [Esa 06]).

For algebraic developments, one can mention the following continuation
of the theme of Theorem 11.

We call a Grz-algebra B enrichable if the Heyting algebra Bt is enrich-
able.

The following statements hold:

(i) An S4-algebra is embedded into an enrichable Grz-algebra if and only
if the former is a Grz-algebra;

(ii) The class of enrichable Grz-algebras is an ∀∃-class but not an ∀-class
(cf. [Mur 90]).

18In [Esa 06] Esakia uses an embedding operation #(α), which is different from tr(α) in
the clauses of definition for disjunction and conjunction; namely, #(α ◦ β) = #(α) ◦ #(β),
where ◦ ∈ {∧, ∨}, whereas tr(α ◦ β) = 2

s(tr(α) ◦ tr(β)). However, one can prove that the
formulas #(α) and tr(α) are equivalent in K4.
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