ON THE DISCUSSIVE CONJUNCTION IN THE PROPOSITIONAL CALCULUS FOR INCONSISTENT DEDUCTIVE SYSTEMS*

Two-valued discussive systems (cf. [1]) of the propositional calculus D_2 can be enlarged by means of the discussive conjunction \land_d. To this end instead of the definition M_2 def. 1 from [1] we need to posit the following definition:

\[p \land_d q := p \land q. \]

After this emendation we can simplify the definition of the discussive equivalence by replacing M_2 def. 2 by the following:

\[p \leftrightarrow_d q := (p \rightarrow_d q) \land_d (q \rightarrow_d p) \]

The metalogical theorem 1 (cf. [1], p. 68) remains valid in the following generalized form: Each thesis A of the two-valued classical calculus L_2 containing no other symbols than \rightarrow, \leftrightarrow, \lor or \land is transformed into thesis of the discussive calculus D_2 by replacing in A functors \rightarrow by \rightarrow_d, \leftrightarrow by \leftrightarrow_d, and \land by \land_d, respectively.

The proof of the theorem contains no essential change in comparison with the proof of the metalogical theorem 1 from my original paper [1]. We must only use theorems 5–7 of \(M_2 \) (cf. [1], p. 68) plus a new thesis of \(M_2 \):

\[
M_2 \quad 7.1 \quad \Diamond (p \land q) \leftrightarrow (\Diamond p \land \Diamond q).
\]

The law of the inconsistency for the discussive conjunction is the following thesis of \(D_2 \):

\[
D_2 \quad 4.1 \quad \neg (p \land \neg p),
\]

whereas the refuted conjunctive form [i.e., Duns Scotus Law – J.P.] is

\[
(non\; D_2) \quad 3.1 \quad (p \land \neg p) \rightarrow a q
\]

despite the fact that previously we had an analogous theorem for the usual [classical – J.P.] conjunction, which in my previous paper [1] is denoted by \(D_2 \) 5 (cf. [1], p. 69).

References

(translated by Jerzy Perzanowski)

Comments of the translator

1. The main result of this very short, but quite important, note is its main metatheorem that \(D_2 \) in fact contains the full positive part of the classical logic plus observation (\(M_2 \) 7.1) that with the new notion of discussive conjunction Jaśkowski’s basic transformation is remarkably simplified, becoming a common homomorphism.
Moreover, on the ground of a modified D_2 we have quite a lot of nice new
theorems, such as the law of inconsistency (D_2 4.1). Indeed, on the basis of
M_2 (i.e., $S5$) we have that:

\[\neg(p \land \neg p) \implies \lozenge \neg \neg(p \land \lozenge \neg p) \]
\[\neg \lozenge (p \rightarrow \square p) \]
\[\neg \lozenge (\square p \rightarrow \lozenge \square p). \]

3. It is clear that on the ground quite close to the modified D_2 we can define
quite a lot of new discussive connectives, including discusive negation:

\[(\neg_d) \]
\[\neg_d p := \lozenge \neg p. \]

Indeed, in $S5$ it is easy to verify that

\[\neg_d p \iff \lozenge \neg p \]
\[\iff ((p \rightarrow p) \land \lozenge \neg p) \]
\[\iff ((p \rightarrow p) \land_d \neg p). \]

Also reversely,

\[(p \land_d q) \iff (p \land \lozenge q) \]
\[\iff (p \land \lozenge \neg q) \]
\[\iff (p \land \neg_d \neg q). \]

Discusive conjunction and discussive negation are thereby interdefinable on
the ground $S5$, hence they are closely interconnected in the modified version
of D_2.

4. Of course, we have

\[\neg \neg_d p \rightarrow p \]
\[\neg p \rightarrow \neg_d p, \]
\[p \rightarrow \neg_d \neg p, \]
\[\neg_d \neg_d p \rightarrow p. \]

But not reversely. For in $S5$ we easily obtain

\[\lozenge p \iff \neg_d \neg p, \]

whereas

\[\square p \iff \neg \neg_d p, \]
\[\iff \neg_d \neg_d p. \]

J.P.