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Abstract. Internalization is a key property of justification logics. It states

that justification logics internalize their own notion of proof which is essen-

tial for the proof of the realization theorem. The aim of this note is to show

how to make use of internalization to track where an agent’s knowledge

comes from and how to apply this to the problem of data privacy.
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1. Introduction

Justification logics [3] are epistemic logics that include explicit justifica-
tions for an agent’s knowledge and they allow to reason with and about
these justifications. The first justification logic, the logic of proofs, has
been developed by Artemov [1, 2] to provide S4 with a provability se-
mantics. Since then justification logics have been applied to a variety
of problems. For instance, these logics have been used to create a new
approach to the logical omniscience problem [5], to study self-referential
proofs [8], and to investigate the role of the announcement as a justifi-
cation in public announcement logics [7].

Instead of statements A is known, denoted by �A, justification logics
reason about justifications for knowledge by using constructs t : A that
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stand for t is a justification for A. In those statements, the evidence
term t can be viewed as an informal justification for A or a formal math-
ematical proof of A depending on the application.

The structure of terms in a given justification logic corresponds to
the axiomatization of that theory so as to guarantee the property of
internalization: for each derivation D of a theorem A of the logic in
question, there is a step-by-step construction that transforms D into a
term tD in such a way that tD : A is also a theorem of the logic. Therefore,
the term tD, describes the reasons, according to the logic, why A must
hold. This suggests that we can think of a term t in a formula t : A as
an explicit reason that justifies the assertion A.

The aim of the present note is to show how to make use of inter-
nalization for inference tracking. Assume that a formula A is derivable
from a theory ∆. Internalizing a derivation of A from ∆ gives a term tD

which basically is a blueprint of that derivation. In particular, we can
read off from the evidence term tD which axioms of ∆ have been used
in the derivation of A. Artemov [4] considers an example of evidence
tracking where the structure of evidence terms allows to discern factive
and non-factive justifications.

We are going to use inference tracking to study certain data privacy
issues. A user of an information system usually has only limited access
to the data stored in the system. This is controlled by assigning to the
user a view definition which is a restricted set of queries that the user
is allowed to issue. The only way the user can get information about
the data stored in the system is via the queries provided by the view
definition. There are two problems that need to be addressed in this
approach.
1. What can the user infer from the information he may gain by issuing

the queries? That means in particular, is privacy preserved or is
it possible to infer sensitive information from the answers to the
queries?

2. If privacy is not preserved, that is if the view definition leaks sensitive
information, how can the user’s access rights be restricted in order
to keep the secrets.

We will see in this note that internalization and inference tracking pro-
vide means to approach these two problems.

In the next section we introduce the justification logic J, which is
the justified counterpart of the modal logic K, and we recall the inter-
nalization property for J. Section 3 presents our running example and



Justification Logic, inference tracking, and data privacy 299

illustrates how inference tracking works. Then, in Section 4, we give a
formal definition of the problem of data privacy and study it from the
point of view of justification logic. We conclude the paper in Section 5.

2. Justification Logic and Internalization

Definition 1 (Language). We fix countable sets Con = {c1, c2, . . .} of
constants, Var = {x1, x2, . . .} of variables, and Prop of atomic proposi-
tions. The language of J consists of the terms t ∈ Tm and the formu-
las A ∈ Fml formed by the following grammar

t ::= x | c | (t · t) | !t

A ::= p | ¬A | (A → A) | t : A

where x ∈ Var, c ∈ Con, p ∈ Prop. We define the connectives ∧ and ∨
as usual. To say that a term t ∈ Tm is ground means that t does not
contain variables

Often the language of justification logic also includes a binary term
operator +. However, for the purpose of this paper we do not need this
operator and, therefore, dispense with it.

Definition 2 (Deductive System). The axioms of J consist of all Fml-
instances of the following schemes.

1. All classical propositional tautologies
2. t : (A → B) → (s : A → t · s : B) (application)
A constant specification CS is any subset

CS ⊆ {c : A | c ∈ Con and A is an axiom of J}.

A constant specification CS is called axiomatically appropriate if for each
axiom A of J there is a constant c ∈ Con such that c : A ∈ CS.

The deductive system J(CS) is the Hilbert system consisting of the
above axioms of J and the following rules of modus ponens (MP) and
axiom necessitation (AN):

A A → B

B
,

c : A ∈ CS

!! . . .!
︸ ︷︷ ︸

n

c : . . . : !c : c : A ,

where n ≥ 0 is an integer.
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For an arbitrary CS we write ∆ ⊢CS A to state that A is derivable
from ∆ in J(CS).

Internalization is a crucial property of justification logics. It states
that the logic internalizes its own notion of proof which is a key ingredient
in the proof of the realization theorem [2].

Lemma 3 (Internalization). Let CS be an axiomatically appropriate con-

stant specification. If

B1, . . . , Bn ⊢CS A

then there is a term t(x1, . . . , xn) ∈ Tm such that

x1 : B1, . . . , xn : Bn ⊢CS t(x1, . . . , xn) : A.

Proof. The proof is by induction on the length of the derivation of A.
We distinguish the following cases.

1. A is an axiom of J. Since CS is axiomatically appropriate, there
exists a constant c such that ⊢CS c : A.

2. A is one of the Bis. We have xi : Bi ⊢CS xi : Bi.
3. A is the conclusion of B and B → A by modus ponens. By the

induction hypothesis we find that there exist terms t1 and t2 such that

x1 : B1, . . . , xn : Bn ⊢CS t1(x1, . . . , xn) : B

and
x1 : B1, . . . , xn : Bn ⊢CS t2(x1, . . . , xn) : B → A.

By the application axiom and modus ponens we find

x1 : B1, . . . , xn : Bn ⊢CS t2(x1, . . . , xn) · t1(x1, . . . , xn) : A.

4. A is the conclusion of axiom necessitation. Then there exists a
ground term t such that t : A also follows from axiom necessitation. ⊣

Remark 4. It is easy to see that the term t(x1, . . . , xn) constructed
in the proof of the internalization lemma directly corresponds to the
original derivation of A from B1, . . . , Bn. In particular, we see that if
a variable xi does not occur in the constructed justification term for A,
then the corresponding assumption Bi has not been used to derive A.
That is we have

B1, . . . , Bi−1, Bi+1, . . . , Bn ⊢CS A.
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3. Inference Tracking

For the rest of this paper, we assume that we have a fixed axiomatically
appropriate constant specification CS and we will write ⊢ for ⊢CS .

Let us now introduce our running example dealing with a set ∆ of
medical knowledge. Of course, this is only a toy example. For privacy
issues concerning similar real world data we refer to [9]. The set ∆
includes the following facts:
1. Patient 1’s diagnosis is broken leg or cancer :

Patient1 → brokenLeg ∨ cancer. (A)

2. Patient 1 lives in city A:

Patient1 → cityA. (B)

3. Patient 1 receives a high cost treatment:

Patient1 → highCosts. (C)

4. A cancer diagnosis entails a high cost treatment:

cancer → highCosts. (D)

5. A broken leg diagnosis entails a low cost treatment (i.e. not high
cost):

brokenLeg → ¬highCosts. (E)

We easily find A, B, C, D, E ⊢ Patient1 → cancer. Let us now look at
an internalization of this fact. We first assume the following assignment
of variables to facts: Γ := x1 : A, x2 : B, x3 : C, x4 : D, x5 : E. Further we
assume that our constant specification CS contains the following, where
we let the constants justify axiom schemes.

c1 : (A → ¬B) → (B → ¬A)

c2 : (A → B) → ((B → C) → (A → C))

c3 : (A → (B ∨ C)) → ((A → ¬B) → (A → C))

Thus we obtain

Γ ⊢ c1 · x5 : highCosts → ¬brokenLeg



302 Thomas Studer

Γ ⊢ c2 · x3 : (highCosts → ¬brokenLeg) → (Patient1 → ¬brokenLeg)

Γ ⊢ (c2 · x3) · (c1 · x5) : Patient1 → ¬brokenLeg

Γ ⊢ c3 · x1 : (Patient1 → ¬brokenLeg) → (Patient1 → cancer)

Γ ⊢ (c3 · x1) · ((c2 · x3) · (c1 · x5)) : Patient1 → cancer

We see that the last evidence term, which justifies Patient1 → cancer,
does not contain the variables x2 and x4. That means the statements B

and D have not been used in the derivation of Patient1 → cancer.
Moreover, if we assume that the constant specification is such that

each constant justifies at most one axiom scheme, i.e. it is schematically
injective, then we can read off from the term (c3 · x1) · ((c2 · x3) · (c1 · x5))
the concrete reasoning process that led from the knowledge base to the
conclusion.

4. Data Privacy

We start with defining the basic notions we need for a precise treatment
of the privacy problem.
1. A knowledge base KB is a deductively closed set of formulas, that is

KB ⊢ A =⇒ A ∈ KB for all formulas A.

2. A query Q is a formula of Fml.
3. An knowledge base KB answers yes to a query Q if and only if Q ∈

KB. Otherwise it answers no.
4. A view definition VD is a set of queries.
5. A view V of a knowledge base KB under a view definition VD is a

subset of VD consisting of those queries for which KB answers yes.
Formally we set V := VD ∩ KB.

6. A secret is a formula of Fml.
In a knowledge base system, privacy is ensured by restricting the set

of queries a user is allowed to issue. Usually he is granted only access
to a given view definition VD. That means he is only allowed to issue
those queries that are elements of VD. The system will then answer
those queries which results in a view V . The problem of data privacy
is to decide whether it might be possible for that user to infer from
the knowledge of VD and V whether a given secret S belongs to the
underlying unknown knowledge base KB.
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Assume that VD = {V1, . . . , Vn} is a view definition and S is a secret.
In the simple setting presented above, the more queries answer yes, the
more a user can infer. Thus to solve the problem of data privacy, we
assume that all queries of the view definition answer yes. We find that
privacy is preserved if VD 6⊢ S and that the secret is revealed if VD ⊢ S.

In the case of VD ⊢ S we can apply internalization and obtain

x1 : V1, . . . , xn : Vn ⊢ t : S

for some term t. Again, the variables occurring in t tell us which queries
of VD contributed to the derivation of S, i.e. are responsible for the pri-
vacy breach. This information can be used to find a more restrictive view
definition, which is a subset of VD, that preserves privacy. Of course,
simply removing one of the queries that was involved in the derivation
of S does not guarantee privacy for there may be other derivations of S.
Still, this approach provides valuable information for finding a privacy
preserving view definition.

Instead of altering the view definition, another approach to privacy [6]
suggest to alter the knowledge base (that is to make it lying) in order to
preserve privacy. In that approach we could use the information provided
by the justification terms to find a minimal change to the knowledge base
that makes it privacy preserving.

As an example, consider the formulas A, B, C, D, E from the previous
section. Assume that we are given an information system where a user
is granted access to the view definition VD = {A, B, C} and assume that
D, E are general background knowledge the user has without accessing
the information system. The confidential information that we want to
keep secret is

Patient1 → brokenLeg and Patient1 → cancer.

That is want to hide the actual diagnosis of Patient 1. If either of the
above statements were derivable, then we would know the diagnosis and
privacy would be violated.

Since we have

Γ ⊢ (c3 · x1) · ((c2 · x3) · (c1 · x5)) : Patient1 → cancer, (1)

we know that privacy does not hold. Moreover, the justification term in
(1) tells us that only the queries A and C (but not B) have been used to
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derive the secret. Thus, to make the view definition privacy preserving,
we have to remove either A or C from it (thereby restricting the user’s
access rights).

The definitions and techniques introduced before refer to so-called
incomplete information system. Let us now turn to complete information
systems. These systems work with a closed world assumption which in
our setting means that we have

A ∈ KB or ¬A ∈ KB for each formula A.

Thus if the answer of KB to a query Q is no, then ¬Q ∈ KB holds.
Consider again the view definition VD = {A, B, C} and assume that

the view V of KB under VD consists only of A. That means in particular
that the answer of KB to C is no. In the case where KB is incomplete,
privacy is preserved since we cannot infer the actual diagnosis of Pa-
tient 1. However, if KB is complete, then we find that ¬C ∈ KB. Hence
we get

KB ⊢ Patient1 → brokenLeg.

Deciding whether privacy holds is more complex for complete knowl-
edge bases than it is for incomplete ones. As an example, we assume
again that VD = {V1, . . . , Vn} is a view definition and S is a secret. As
seen before, for incomplete knowledge bases we simply test VD ⊢ S to
decide privacy. For complete knowledge bases, however, we also have to
take into account the possibility that a user may know ¬Vi for a Vi ∈ VD.
Of course, we have

V1, ¬V1, . . . , Vn, ¬Vn ⊢ A (2)

for any formula A. Thus simple logical consequence cannot be used as a
test for privacy (unlike in the case of incomplete systems).

Let us now study the internalized version of (2) which is

x1 : V1, x2 : ¬V1, . . . , x2n−1 : Vn, x2n : ¬Vn ⊢ t : A (3)

for some term t. First we note that (3) does not hold for all terms t.
Let t be such that (3) holds, then again t carries information on the
derivation of A. We find that
1. if (3) holds for a term t that does not contain both x2i−1 and x2i for

all 1 ≤ i ≤ n, then the view leaks the secret.
2. if (3) only holds for terms t that for some 1 ≤ i ≤ n contain both

x2i−1 and x2i, then privacy holds.
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5. Conclusion

In this note we showed how to apply the internalization property of
justification logics to problems of data privacy. The key property is that
if a secret is derivable from a given view, then internalization allows us to
reason about what part of the view is responsible for the privacy breach.

On a technical level, the reason for this is that justification logics
explicitly include terms witnessing the reason why an agent knows some-
thing. In a pure modal logic approach, the formula �A does not tell us
why a secret A is known to the agent. Thus we have no information about
how to restrict the agent’s access rights such that privacy is preserved.
In justification logic we have t : A and the term t includes the information
which queries of the view are responsible for leaking the secret.

For complete information systems we need justifications already to
test whether privacy holds or not. In the modal logic K

�V1,�¬V1, . . . ,�Vn,�¬Vn ⊢ �A

holds for any formula A. Thus we cannot use modal logic to test whether
a secret A is revealed or not. In the justified version (3) of the above
expression, the conclusion contains more information. There it reads
t : A, which is not derivable for all terms t, and we can use the term t in
(3) to check whether the view reveals the secret.

Finally, we would like to mention that the approach presented in
this paper does not only work for propositional knowledge bases. It
can be extended, for example, to deal also with the privacy problem for
description logic knowledge bases [10]. For this we need a justification
logic that is defined over a description logic, which recently has been
developed in [11].
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