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CONCEPTUAL AND DERIVATION SYSTEMS

Abstract. Pavel Materna proposed valuable explications of concept and
conceptual system. After their introduction, we contrast conceptual systems
with (a novel notion of) derivation systems. Derivation systems differ from
conceptual systems especially in including derivation rules. This enables us
to show close connections among the realms of objects, their concepts, and
reasoning with concepts.

Keywords: concepts; conceptual systems; deduction; derivation systems.

1. Introduction

The present study adheres to the tradition according to which concepts
are not linguistic expressions or ‘mental images’ but abstract (objective)
entities which determine, or pick out objects. Since there are various
relations between concepts we can consider various conceptual systems.

Though it is certainly true that we have concepts collected in con-
ceptual systems, it is also hardly deniable that we ratiocinate with (or
with the help of) these concepts. Framed within a conceptual system,
we perform operations (including inferences) with concepts, exploiting
various rules. We will call the entities involving both concepts and rules
derivation systems.

Rigorous work with our notions necessitates their proper explication.
There are more logical explications of the notion of concept at hand. The
present authors prefer the explication offered by Pavel Materna (Materna
1998, 2004) because we consider it well defended and best suitable for
our goals. The exclusive feature of Materna’s proposal consists in that it
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captures the structured and procedural (algorithmic) nature of concepts.
For that purpose, Materna profited from the logical theory developed by
Pavel Tichý, i.e., Transparent intensional logic, TIL (Tichý 2004, 1988).
Tichý also elaborated a noteworthy explication of the notion of (lin-
guistic) meaning as a structured and procedural entity. Note that one
thus can obtain a valuable connection of the explication of concepts with
the explication of meanings. Materna also offered an explication of the
notion of conceptual system (esp. Materna 2004) which gives us another
reason for the continuation in his research. On the other hand, we met
the need for an extension of his views, mainly by introducing the notion
of derivation system. This enables us to enrich his investigations con-
cerning concepts by means of Tichý’s works on deduction (cf. the papers
Tichý 1982, Oddie and Tichý 1982, Tichý 1986, which are collected in
Tichý 2004).

The paper is organized as follows. We begin  “From extensional
to hyperintensional explication of concepts”  with a selective overview
of explications of concept, motivating thus the choice of Materna’s pro-
posal. In “Tichý’s transparent intensional logic and meaning” we ex-
plain essential notions of Tichý’s logic, showing also how he explicated
meanings of linguistic expressions by means of TIL. The section “Ma-
terna’s concepts” presents main theses of Materna’s theory of concepts.
Materna’s theory of conceptual systems is explained in “Materna’s con-
ceptual systems”. The essentials of the system of deduction we prefer
are explained in “Tichý’s system of deduction”. Finally, we expose our
main notion “Derivation systems”.

It will be apparent from the paper that we subscribe to objectual
conception of logic. On this view, the subject matter of logic is not a
set of linguistic expressions of some artificial language but a range of
abstract entities coded by certain expressions. The overall aim of such
logic is to contribute to the explication of our whole conceptual scheme
which concerns with concepts rather than expressions.

2. From extensional to hyperintensional explication of concepts

There seem to be two traditions in the explication of concepts. Accord-
ing to the tradition A, concept is something general. horse is thus
construed as a concept, while the highest mountain is not. A typical
representative of this tradition, if we do not mention the traditional
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conception of concepts, is Gottlob Frege (esp. Frege 1891) who fittingly
claims that concept has a predicative nature. It is in the spirit of this
conception to view concept as a set of things or an entity determining
such set.

According to the tradition B, however, concept is any (or nearly
any) constituent of a thought (‘proposition’). Thus also the highest

mountain is construed as a concept. A prominent figure of this tra-
dition is Alonzo Church who wittingly expanded Frege’s theory which
was restricted to predicates. Church considered any sense of a word to
be a concept (Church 1956, 1985). Thus concept is something possibly
expressed by an expression of this or that language, whereas the concept
determines an object (a class or non-class), which is the denotatum of
that expression. Let us note that Materna was inspired by Church’s
conception; that is why we also adhere to the tradition B.

Frege’s penetrating idea was to explicate entities in terms of func-
tions. Unfortunately, he seems to oscillate between the old and modern
construal of function.1 This led to various obscurities in his theory (cf.
Tichý 1988). Anyway, Frege claimed that concept is a certain function
and he in fact identified concept with a characteristic function, i.e., class.
The view that concept is a class is still espoused by a wide range of
contemporary theoreticians.

There is, however, a serious objection to this extensional conception
of concept (as we call it). This conception cannot distinguish between
non-empirical (e.g., prime) and empirical (e.g., horse) concepts, which
is originated in ignorance of modal and temporal variability. While the
concept prime has one and the same extension in all possible worlds and
moments of times, the concept horse has various extensions across the
logical space and time-scale. Although the concept horse is still the
same, its extensions (i.e., classes of objects falling under this concept)
vary.

We have just sketched the core reason for intensional conception of
concept. According to this conception, empirical concept is a function
from possible worlds W and moments of times T (i.e., an intension) to
its extensions (in those W and T ). (In the case of the tradition B, the
values in W ’s and T ’s need not to be classes.) Non-empirical concept

1 According to the modern logical tradition, function is a mere correspondence
of arguments with values, a flat mapping. According to the older tradition, function
is a way or a rule how to get from arguments to values, i.e., a structured recipe.
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can be then identified either with the extension or with the respective
constant function from worlds and times.2

Though the intensional conception of concept just sketched seems to
be plausible enough, it still has drawbacks. The crucial objection was al-
ready formulated by Bernard Bolzano (Bolzano 1837) many decades be-
fore the modal and temporal variability (intensionality) was appreciated.
He attacked the traditional conception of concepts by means of examples
such as unlearned son of a learned father / learned son of an

unlearned father. Bolzano pointed out that these concepts cannot
be understood merely as a sum of their parts, i.e., un-, learned, son,

father. The two concepts are apparently different, thus there must be
something over this sum which makes them different. Obviously, it is
structuredness, which binds component subconcepts together and gives
rise to the structured complex whole, which is thus a feature peculiar to
(compound) concepts.

Bolzano’s lesson can be easily generalized to other examples (cf. Ma-
terna’s 1998, 2004). For instance, concepts number divisible by the

square root of twenty five and number divisible by five are
distinct. Yet no set-theoretical conception (extensional or intensional
one) can plausibly explain the difference between the two.

Two (other) kinds of conceptions can. One of their symptomatic
examples was developed by Church. An inspection of his work reveals
that his intensions were primitive entities of his system. Individuals are
members of ι0, the type of such primitive objects; concepts of individuals
(i.e., certain Church’s intensions) were collected in another atomic type,
namely ι1 (analogously up to ιn). The trouble is that no function from ι0

to ι1 (etc.) explains why something is a concept of some entity. Within
the system, we know only that a member of ι1 is a concept of certain
member of ι0. To make the example more concrete, we can only know
that five is a concept of the number 5 and that ten_minus_five is a
concept of 5 as well. We do not know, however, why this is so and how
the two concepts are related to each other. We do not properly know
that the second concept is compound, having the first concept as its own
subconcept. For the only thing we know about a member of an atomic
type is that it is self-identical and numerically distinct from any other

2 Let us remark that intensions of, e.g., Church are not functions from possi-
ble worlds. Consequently, Church could not distinguish between non-empirical and
empirical concepts.
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member of that type. Being primitive objects of the system, Church’s
intensions display no proper structuredness.

However, we need a conception which acknowledges that concept is a
structured entity; we would like to call such conception hyperintensional
conception. Concept would then be an entity composed, but not in a
set-theoretic fashion, from its parts which are organized into a unique
complex. This structured whole determines (in an algorithmic way) an
object, which is a class or non-class (e.g., an intension in the possible-
world sense). The features of concepts just discussed are incorporated
in Materna’s proposal; this is why we choose it.3 Materna’s explication
of (the notion of) concept is formulated in the frame of Tichý’s logical
system, thus we have to expose it first.

3. Tichý’s transparent intensional logic and meaning

Tichý presented basic ideas of TIL already in 1971 (cf. in Tichý 2004) and
he soon started to write an extensive monograph on TIL (Tichý 1976)
which has remained unpublished. There are several important differences
of this early TIL from the rivalling (and well-known) system developed
by Montague. Firstly, functions from possible worlds are represented by
λ-terms abstracting over possible worlds. The treatment of modal (and
temporal) parameter is quite explicit, which has many advantages. The
second major difference consists in that the explication of meaning is not
an intension (or simply an extension), but an objectual correlate, called
construction, of the λ-term representing that intension.

As any other object, an intension can be arrived at, constructed by
infinitely many constructions. Although such constructions are equiva-
lent (for they construct one and the same object), they are not identical.
This means that constructions have more fine-grained criteria of their
individuation than intensions (or extensions).

In other words, Tichý proposed a hyperintensional model of meaning.
Its need was found inevitable mainly in the 1980s and 1990s. There were
proposed many arguments in its favour (cf., e.g., Cresswell 1985), yet we
are going to formulate only one of the most persuasive ones. According
to intensional semantics, all true mathematical sentences have one and
the same proposition (namely the analytically true proposition) as their

3 Arguably, George Bealer (Bealer 1982) proposed another viable proposal.
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meaning. Nevertheless, an agent A can believe that 2 + 3 = 5 without
believing that

√
25 = 5, thus the argument ‘A believes that 2 + 3 = 5’,

‘2 + 3 =
√

25’, ‘Therefore, A believes that
√

25 = 5’ is incorrect. In spite
of that, intensional semantics renders it as valid (for A is supposed to
believe one and the same proposition). It follows that mere propositions
are too course-grained to be objects of beliefs / meanings of sentences.4

According to Tichý, objects of beliefs are constructions of propositions,
i.e., abstract structured entities of an algorithmic nature which yield
propositions. For a detailed argumentation in favour of this proposal,
see mainly (Tichý 1988).

Now let us say more about TIL, though the lack of space leads us to
a very simplified exposition (see thus Tichý 1988 for details).

TIL makes use of (Tichý’s) type theory. It is quite general because
it has an unspecified objectual basis OB (OB is a class of mutually non-
overlapping collections of objects). In its simple type-theoretic part,
common set-theoretical objects over OB are classified:

i. Any member of OB is a type over OB;
ii. If ζ, ξ1, . . . , ξm are (not necessarily distinct) types over OB, then

(ζξ1 . . . ξm), which is a collection of all total and partial functions
from ξ1, . . . , ξm into ζ, is a type over OB;

iii. Nothing is a type over OB unless it so follows from i.–ii.

Objectual basis of TIL comprises ι (individuals), o (truth-values T
and F), ω (possible worlds), and τ (time-moments/real numbers). Inten-
sions are functions from the members of ω to total or partial chronologies
of objects of type ξ; a chronology is a function of type (ξτ). Briefly
speaking, intensions are functions from 〈possible world, time-moment〉
couples; ‘((ξτ)ω)’ will be abbreviated to ‘ξτω’. Propositions are of type
oτω; properties of individuals are of type (oι)τω; individual offices are of
type ιτω; etc. Objects which are not intensions may be called extensions.
For instance, classical unary (¬) or binary (∧, ∨, →, ↔) truth-functions

4 Various attempts to solve the puzzles of hyperintensional contexts are easily
criticisable by Church-like arguments raised originally against Carnap’s notion of in-
tensional isomorphism because the proposals expose the idea that an agent is related
(or at least partly related) to the very expressions of natural or artificial language
which expresses the object of belief. (A remarkable ‘non-linguistic’ approach has
been developed by Cresswell; for its criticism cf. Tichý 2004.)
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are of types (oo) and (ooo), respectively; quantifiers (∀ξ, ∃ξ) are of type
(o(oξ)); =ξ is of type (oξξ).5

Objects are constructible by four kinds of constructions (Tichý 1988,
where also two other kinds are specified). They can be viewed as ob-
jectual correlates of λ-terms, namely of constants, variables (as letters),
applications, and λ-abstractions. Let X be any object (a construction
or non-construction) and C any construction; let v be any valuation (it
is a field consisting of sequences of objects of given types):

1. Trivialization 0X directly v-constructs X (i.e., 0X takes X and leave
it as it is).6

2. Variable xk v-constructs the k-th member of the sequence of objects
of a given type.

3. Composition [CC 1 . . . Cm] v-constructs the value of the function con-
structed by C at the string of objects (i.e., the argument for that
function) which are constructed by C1, . . . , Cm. If C or C1 (etc.)
does not v-construct such object(s) or the function is undefined for
that argument, [CC 1 . . . Cm] is v-improper, it does not v-construct
anything at all.

4. Closure λx[. . . x . . . ] v-constructs, in a nutshell, the function which
takes particular values of x to the objects v-constructed by [. . . x . . . ]
on the respective valuations like v.7

Realize clearly that constructions are not expressions  they are lan-
guage-independent entities. For instance, the term ‘λn[[n 0× n]0−03]’ is
used to denote the construction λn[[n 0× n]0−03]. Note also that the
term ‘λn[[n 0× n]0−03]’ denotes the procedure-construction as such, not
the function (which maps 1 to −2, 2 to 1, 3 to 6, etc.) constructed by
λn[[n 0× n]0−03]; analogously, ‘[080÷02]’ denotes the construction [080÷02],
not its result (the number 4).

For non-circularity constraints, Tichý introduced a sophisticated the-
ory of types which combines in fact certain simple and ramified theory of
types. Its definition (see Tichý 1988) has three parts: a. types of (‘clas-
sical’) set-theoretic objects (cf. the simple-type theoretic part above),

5 In our examples the proper type indications will be usually omitted.
6 Trivializations of well-known mathematical or logical binary functions will be

written in the infix manner.
7 For the definition of subconstructions and open/closed constructions, see, e.g.,

(Tichý 1988).
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b. types of constructions (some constructions are first-order construc-
tions, belonging to the type ∗

1, other constructions are second-, third-,
. . . , n-order constructions, belonging thus to the type ∗

2, ∗

3, . . . , ∗

n,
respectively), c. types of functions from/to constructions.

As mentioned above, Tichý proposed that constructions are explica-
tions of linguistic meanings. The semantic scheme of his semantic theory
is this:

an expression E

expresses (means) in L

a construction, which is the meaning (logical analysis) of E in L

constructs
an intension / non-intension / nothing (cf. ‘3 ÷ 0’), which is the

denotatum of E in L.
The value (if any) of an intension in a possible world W , moment of time
T is the referent (in L) of an empirical expression E (such as ‘dog’, ‘the
king of France’, ‘It rains in London’); the denotatum and referent of a
non-empirical expression are understood as identical.

Here is an example. Let w and t be variables v-constructing possible
worlds and moments of times, respectively; ‘Cwt’ abbreviates ‘[[Cw]t]’.
The sentence ‘The king of France is bald’ expresses (in English) the
construction λwλt[0Bald]wt

0KFwt] (of course, 0KF is a simplification).
The construction constructs the proposition “The king of France is bald”
which is denoted by that sentence.

Tichý’s semantic theory is easily capable to dissolve various puzzles
created by ‘intensional’ and ‘hyperintensional contexts’. To illustrate,
when an agent A seeks the king of France, she is related to the individual
office “the king of France” as such, not to its actual holder (if any); the
respective sentence is analyzed as expressing λwλt[0Seekwt

0A 0KF] (the
inference to ‘There is a individual which is the king of France’ is blocked,
which is right). When A calculates 2+3 (or 3÷0), A is not related to the
result (if any) of that calculation, but to the calculation-construction as
such (λwλt[0Calculatewt

0A 0[ 03 0÷ 00]]; note that [03 0÷ 00] is trivialized,
i.e., taken as it is, the constructing of [03 0÷ 00] is ‘stopped’). When A

believes that the king of France is bald and 2 + 3 = 5, A is related
exclusively to what is expressed by ‘The king of France is bald and
2 + 3 = 5’ (the analysis of the respective de dicto belief sentence is thus
λwλt[0Believewt

0A 0λwλt[[0Baldwt
0KFwt]

0∧[[02 0+03] 0 = 05]]]), A is not
related to the proposition which is denoted also by ‘The king of France
is bald and

√
25 = 5’ (the ‘paradox of omniscience’ is thus prevented).
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For many applications of TIL, see works by Tichý or his followers (e.g.,
Duží, Jespersen, Materna 2010, Kuchyňka 2011, Raclavský 2009).

4. Materna’s concepts

As concluded above, a plausible explication of concept should be a hyper-
intensional one. We have just presented elements of Tichý’s explication
of meaning which is hyperintensional. According to the line of explica-
tion of concepts followed by us, it is natural to maintain that every (or
nearly every) meaning of a linguistic expression is a concept. On the
basis of also other preferences formulated above, Tichý’s logical frame-
work and his explication of meaning is straightforwardly available for
the explication of (the notion of) concept. This task has been performed
by Materna; we can state here only key theses of his proposal (for more
see Materna 2004, for the earlier version see his 1998).

The crucial claim of his theory is this. Concept is a construction
which is (a) closed, (b) α-normalized, and (c) η-normalized. All three
specifications (a)–(c) are supported by Materna’s arguments for pre-
ferred intuitions.

Firstly consider:

(a) having λn[n 0> 07] and [n 0> 07] as an example. Whereas the first
construction corresponds to (and thus explicates) the intuitive con-
cept number higher than seven, there seems to be no intuitive
concept involving a free variable. Note also that what is constructed
by [n 0> 07] varies dependently on valuation and if [n 0> 07] was a
concept, it would be a concept of no particular object, which is also
counterintuitive.

Now consider:

(b) It seems counterintuitive to maintain that the two non-identical con-
structions λn[n 0> 07] and λm[m 0> 07] correspond to two distinct
intuitive concepts. Rather, they both seem to explicate one and the
same concept. In other words, α-convertibility of constructions (i.e.,
collisionless replacement of λ-bound variables) is a feature peculiar
to constructions, not to concepts. It seems thus adequate to choose
α-normalized construction as the explication of concept.8

8 Similarly to other such conversions, α-normalization leads to a unique construc-
tion.
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Very similarly:

(c) gives up η-convertibility of constructions. Thus not λnm[n 0> m],
but 0> is chosen as the explication of the intuitive concept higher

than.

Materna treated many topics disputed in theories of concepts (such
as emptiness of concepts, mentioning / using of concepts).

5. Materna’s conceptual systems

Conceptual systems have been studied by Materna already in his book
(Materna 1998). Nevertheless, he made some substantial changes in his
(Materna 2004). When presenting his main theses, we start with (a
version of) his earlier views, going then to his final proposal.

Conceptual system CS is a class of concepts. Materna suggests that
each conceptual system has some (first-order) concepts as basic, thus we
can identify SCCS, the class of simple concepts (Materna: ‘primitive’)
of that CS. The other concepts of CS, called by us compound concepts,
are made exclusively from the members of SCCS and variables by means
of modes of forming constructions (cf. the kinds of constructions in Sec-
tion 3). Here is an example: SCCS = {0Bald, 0Tom}, thus CS contains
also λwλt[0Baldwt

0Tom] (which is made from 0Bald, 0Tom, w and t by
means of composing and closing) and even the concept 00Tom (a concept
of the concept 0Tom; it is made from 0Tom by trivializing). Since they
are no principal restrictions on building of concepts from members of
SCCS, each CS is infinite. It also follows that every CS is uniquely
determined by its SCCS.

Before we expose Materna’s last proposal, we briefly remark that
conceptual systems can be compared or classified due to various criteria
(see Materna’s books for details). For example, CS is an empirical con-
ceptual system if at least one of its concepts determines a (non-constant)
intension; it is non-empirical otherwise. It is also clear that conceptual
systems can be in various set-theoretical relations, most notably “being
included in”. Conceptual systems cannot be sensibly compared due to
their cardinality (which is one and the same for all CSs), yet they can
be unequal as regards the number of objects determined by them. The
class of all objects determined by the members of CS is the area of that
CS. Comparing two conceptual systems with respect to their areas leads
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to important findings concerning their comprehensiveness. Of course, all
these classifications have a number of fruitful applications not only in
philosophy.

Materna’s late proposal preserves most of his elaborations of the
earlier one but it involves an important ramification of the very concept
of conceptual system. It is motivated by examples of conceptual sys-
tems like the following two. Consider a conceptual system CS1 within
which mathematicians count numbers, more concretely real numbers.
Now contrast it with a conceptual system CS2 of arithmetic of natural
numbers. Both systems operate over distinct systems of functions. The
division function in the area of CS1 is undefined for pairs 〈n, 0〉 (where n

is any real number). On the other hand, the division function in the area
of CS2 is not a partial function because the number 0 (and thus any pair
with it) is missing in the area of CS2. The phenomenon of two or more
such dissimilar systems has occurred in the development of mathematics
many times and even in the present times many such distinct conceptual
systems are in use (they all coexist in the realm of abstract entities).

Materna’s final explication of the notion of conceptual system charac-
terizes the just discussed specificity of conceptual systems as dependent
on specificity of objectual basis (and entities over it). According to Tichý,
if a particular objectual basis OB is given, there is a system of functions
over OB and then also a system of constructions (concepts among them)
of all such objects over OB. Realize that each OB is individuated not
only by types (such as ι) included in it, but also by the members of
these types (thus whether Tom is, or is not, a member of ι of a given
OB affects whether Tom can be a possible argument or value of some
function over OB).

Conceptual system is then characterized as a two-dimensional entity.
In its first dimension, all entities (including constructions) over OB are
given. In its second dimension, only some constructions (namely some
concepts) over OB are accepted. The second dimension amounts roughly
to conceptual system in Materna’s earlier sense; the first dimension adds
the variability (or specificity) in the very domain of objects. Conceptual
system CS is thus a quintuple (a slight adaptation of Materna 2004, 78):

〈OBCS , defTT, defKC, defC, SCCS〉,

where OBCS is a particular objectual basis, defTT is the definition of
Tichý’s type theory, defKC is the definition of kinds of constructions,
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defC is Materna’s definition of concept, and SCCS is a particular class
of simple concepts of that CS.9

6. Tichý’s system of deduction

We can easily see that Materna’s conceptual systems do not involve
deduction, they are rather fields for deduction. On the other hand, there
is a (general) system of deduction for TIL (and not only TIL) developed
by Tichý in his (Tichý 1976) and then in his three papers from 1980s
(see Tichý 2004). The aim of the present section is to introduce, in a bit
simplifying manner, its key notions.

Match M is an ordered couple X : C, where C is a simple or com-
pound construction and X is a trivialization of an object (of a given
type ξ) or a variable for the type ξ.10 A valuation v is said to satisfy
M if C v-constructs one and the same object as X . Sequent Φ ⇒ M

consists of a finite set of matches Φ and a match M . Φ ⇒ M is valid if
every valuation which satisfies all members of Φ satisfies also M .11 Rule
of derivation (rule of inference), Φ1 ⇒ M1; . . . ; Φn ⇒ Mn |= Φ ⇒ M ,
is a validity preserving operation on sequents  the sequent Φ ⇒ M is
valid if all Φ1 ⇒ M1, . . . , Φn ⇒ Mn are valid. A sequent Φ ⇒ M is said
to be derivable from a set of sequents according to a given derivation
rule. A finite string of sequents is said to be a derivation with respect
to a set of derivation rules R (writing it ⊢R Φ ⇒ M) if every item of
this string, i.e., every step of the derivation, is derivable from the earlier
steps according to some derivation rule from R.

Let us bring out a very important feature of some derivation rules,
namely the fact that they exhibit properties of constructions and objects
constructed by them. This enlightens some deep connections among ob-
jects, concepts, conceptual systems, and derivation systems (we intro-
duce below). First recall that every construction is specified by two
things: i. the object constructed by it and ii. how it constructs that
object (by means of which subconstructions). Now realize that deriva-

9 DefKC is in fact redundant here, constructions over OB are provided already
by defTT.

10 Two notes. Tichý viewed X simply as an object, not as the trivialization of
that object. Tichý allows also matches whose first component is missing.

11 Note that sequents concerning constructions of truth-values/propositions are
only special cases; it follows that Tichý system rather extends the field for deduction.
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tion rules of form |= x : C1 ⇔ x : C2 (i.e., |= {x : C1} ⇒ x : C2 and
|= {x : C2} ⇒ x : C1) show which object is constructed by the construc-
tion C1 (or C2). Some such derivation rules have one of C1 and C2 very
simple. Consider, for instance, |= f : λpq[p0∨q] ⇔ f : λpq[[0¬p] 0→q]
where p and q range over truth-values and f ranges over binary truth-
functions; the construction λpq[p0∨q] is η-reducible to 0∨. We view
definitions as rules of this sort.12 The definition just mentioned says
that λpq[p0∨q] is equivalent to λpq[[0¬p]0 →q], thus it enlightens exactly
which object (which truth-function) is constructed by 0∨. But there are
also other derivation rules displaying properties of objects. For instance,
one property of implication (viz. that it maps 〈T, T〉 to T) is exhibited
by the rule Φ ∪ {0T : p} ⇒ 0T : q |= Φ ⇒ 0T : [p 0→q].

7. Derivation systems

Putting it simply, derivation system is a couple 〈CC, R〉 whose first com-
ponent CC is a class of constructions and its second component R is a
class of derivation rules operating on CC. Analogously to conceptual
systems, a more accurate proposal is two-dimensional. Thus derivation
system DS is a quintuple:

〈OBDS , defTT, PCDS , QDS , RDS〉,

where:

– OBDS is a particular objectual basis;
– defTT is the definition of Tichý’s theory of types;
– PCDS is a particular class of trivializations, a subclass of the class AC

of all constructions over OBDS;
– QDS is a particular class of qualities of constructions from AC (i.e.,

properties such as “having the order k”, “having c as its subconstruc-
tion”, “having the complexity-rank r”), the ‘conjunction’ of all these
qualities characterizes the class CRDS , which is that subclass of AC
which contains all constructions occurring in members of RDS;

– RDS is a particular class of derivation rules whereas sequents involved
in these rules are made from matches of form X : C where X is a
variable or a member of PCDS and C is a member of CRDS.

12 It preserves many intuitions concerning definitions but we cannot discuss the
topic here.
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It is readily seen that, unlike conceptual systems, derivation systems
are characterized especially by their class of derivation rules. To put it
differently, there are various derivation systems for one and the same
conceptual system (whereas the derivation systems differ in their Rs).

Let us provide at least one illustration how the concept of derivation
system can be employed (the brevity of space does not enable us to offer
more). Consider the derivation system DSF of the standard axiomatic
system ZFC of the set theory. OBDSF = {o, σ}, where σ is the collection
of sets. PCDSF contains trivializations of truth-values, logical functions,
and the function ∈ of the type (oσσ). The conjunction of QDSF admits
only (first-order) constructions whose subconstructions are not variables
ranging over types other than σ, (oσ), and (oσσ). In RDSF there are
derivation rules corresponding to the axioms of ZFC. These rules spec-
ify the relation ∈; they expresses, among others, that all sets are well-
founded  and, consequently, that no set has the relation ∈ to itself.
Some authors (e.g., Aczel 1988) endeavour to propose variants of ZFC
violating the rule of well-foundedness. The concept of derivation system
makes clear (imagine the corresponding derivation rules) that what they
really do is specify some other relation than ∈. If we replace their sym-
bols ‘∈’, ‘{‘, ‘}’ by ‘∈∗’, ‘{∗’, ‘∗}’, we will readily see that ‘{∗Ω1, Ω2,. . . ∗}’
means nothing other than ‘ιx(∀y((y ∈ {Ω1, Ω2, . . . }) → (y∈∗x))’, i.e.,
‘the only set x such that all elements of {Ω1, Ω2, . . . } have the relation
∈∗ to x’.

The concept of derivation system as a framework of reasoning with
concepts seems to be intuitively known enough, thus it seems to need
no special justification. Nevertheless, one may raise the following ob-
jection: a conceptual system collects some concepts of certain objects;
since the very identity of those concepts is (partly) depending on those
objects, their properties are ‘supervening’ on the properties of those ob-
jects; derivation systems only make these properties explicit (by means of
derivation rules, cf. the second part of Section 6); thus the very concept
of derivation system is dispensable (why should we understand deriva-
tion systems as criteria for distinguishing between various systems of
concepts-constructions?).

Before we try to resist such objection, recall that any construction of
the truth-value T (or, e.g., conjunction ∧) has properties which are ‘su-
pervening’ on the properties of T (or ∧). The very reason of ‘interpreted
axiomatization’, i.e., the formulation of a derivation system for (say)
ZFC, is to make the investigation of such constructions quite systematic
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and rigorous.13 Without derivation rules, an equivalence (for example)
of two constructions would be rather a matter of intuitive insights 
which are often unclear and easily fallible.

Derivation systems are thus important for the study of concepts
(and other constructions) especially from the methodological point of
view. They enable us to precisely specify conceptual systems and to
prove claims about them. Therefore, they yield rigorous and controllable
results. Implicit relations between constructions (or objects) are made
explicit, which is inevitable if we need to move from our intuitive use of
concepts towards their conscious reflection.14

A final important comparison: Materna’s conceptual systems can be
seen as special cases of derivation systems. Their PCs comprise selected
simple closed constructions (viz. first-order trivializations of objects),
their Qs contain properties “having a member of PC or a variable as its
subconstruction”, “being closed and in α- and η-normal form”, and their
Rs are just ∅. Our concept of derivation system is thus demonstrably
more general than Materna’s concept of conceptual system. It is also
more fruitful because it is more useful for the formulation of general laws.
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