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MAXIMALITY OF THE MINIMAL R-LOGIC

Abstract. The minimal system of the connective of realization  Jarmużek

and Pietruszczak’s MR  is examined. The single-index rule is defined.

Then it is claimed that if a single-index rule non-derivable in MR is deriv-

able in a strengthening of MR, then the strengthening is inconsistent. This

property may be called single-index maximality.
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1. Introduction

The system MR that we will be dealing with is a logic of the connective
‘R’ of realization, relating sentences to the contexts they are true in. The
first to examine systematically the logical properties of the connective of
realization was Jerzy Łoś in his paper [4]. Łoś’ objective was to provide
a logical tool for formalizing empirical sentences such as ‘it is raining in
Lublin on 11th May 2015’. According to him the logical schemata of such
sentences should reflect their being composed of a propositional function,
referring to some physical phenomenon, and a temporal determination.
The expression ‘at . . . it is the case that . . . ’ that Łoś studied may be
called the connective of temporal realization. Yet realization does not
need to be understood temporally: ‘R’ may instead stand for some epis-
temic, spatial, deontic, or other connective of natural language. Logics
containing the connective of realization, irrespective of interpretation,
are usually known as topological [6], locative [1] or positional [2] logics.

Tomasz Jarmużek and Andrzej Pietruszczak’s system MR has been
constructed as the minimal one such that the connective of realization
is distributive over all classical connectives. It is claimed here that MR

is, in addition, maximal in an interesting sense.
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2. Basic positional language

The basic R-language L is determined by the set SL of sentence letters
and the set IN of individual constants, both infinite but denumerable,
and connectives: ‘¬” of negation, ‘∧’ of conjunction, ‘∨’ of disjunction,
‘→’ of conditional, ‘≡’ of biconditional, and the positional connective
‘R’ (or the connective of realization), as well as parentheses.

The smallest set containing the set SL and such that if ϕ ∈ QF, then
p(¬ϕ)q ∈ QF, and given that both ϕ and ψ ∈ QF all p(ϕ∧ψ)q, p(ϕ∨ψ)q,
p(ϕ → ψ)q, p(ϕ ≡ ψ)q ∈ QF, will be referred to as QF or the set of quasi–
formulas. Clearly, the set QF is equal to the set of formulas of classical
propositional language. Nevertheless, in the language L quasi–formulas
represent propositional functions rather than full–blooded propositions,
and may exclusively play the role of arguments (together with individual
constants) of the connective ‘R’ in atomic formulas of L.

Accordingly, by an atomic formula we shall mean a string of symbols
of the form pRαϕq, where ϕ ∈ QF, α ∈ IN. pRαϕq may be read “ϕ at α”,
or similarly, in conformity with the intended interpretation. All atomic
formulas are in L.

Compound formulas of L are built up by means of the propositional
connectives in the usual way: if A ∈ L, then p¬Aq ∈ L, if both A,B ∈ L,
then p(A ∧B)q, p(A ∨B)q, p(A → B)q, p(A ≡ B)q ∈ L.

Substitutions relevant to the language L are determined by the fol-
lowing mappings: l in the set IN and e from SL into the set QF. If sube

is an endomorphism in QF extending e, then a substitution in L is any
mapping Sub

e
l : L −→ L, such that:

Sub
e
l (Rαϕ) := pRl(α)(sub

e(ϕ))q,

Sub
e
l (¬A) := ¬Sub

e
l (A),

Sub
e
l (A ∗B) := pSub

e
l (A) ∗ Sub

e
l (B)q, for ∗ ∈ {∧,∨,→,≡}.

If X ⊆ L, then Sub
e
l (X) is an image of X under the function Sub

e
l .

The substitution Sub
e
l is adopted, with a slight modification, from [7,

pp. 203–204].
A rule r in L is a set of pairs (X,A), such that X ⊆ L, A ∈ L. All the

rules closed under Sub
e
l (and only those), i.e., such that for all X ⊆ L,

A ∈ L, and for all e, l, if (X,A) ∈ r, then (Sub
e
l (X),Sub

e
l (A)) ∈ r, are

said to be structural in L.
The simplest extensions of the basic positional language with the

above vocabulary involve admitting sentence letters as atomic formu-
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las and allowing for iterations of ‘R’. Early studies of positional logic
concerned even stronger languages containing additional symbols.

3. Maximality

What we are aiming at is to prove a certain kind of maximality result. In
the sequel we will make use of some basic proof-theoretic notions. The
present section will supply the needed definitions as applied to the basic
positional language L. Still more importantly, as we dare to name a new
property with an old label, it will serve to situate our approach in the
context of the former practice.

A system S in L is defined by a set Φ ⊆ L of axioms and a set R of
primitive rules in L.

Definition 1. Given A ∈ L, X ⊆ L, A is a consequence of X in S

(symbolically: X ⊢S A) if and only if there is a finite sequence of formulas
each of which is either an axiom of S or a member of X or is obtained
from preceding members by means of a primitive rule of S, and whose
last member is A. Whenever S is fixed unambiguously, we will forgo the
subscript in ⊢S.

If ∅ ⊢S A (⊢S A for short), then A is said to be a theorem of S.

Definition 2. A rule r is derivable in S (or simply: is a rule of S) if
and only if X ⊢S A, for every (X,A) ∈ r.

Theorem 1. If a rule r is derivable in S, then the set of S’s theorems is

closed under r, i.e., if (X,A) ∈ r and for every B ∈ X , ⊢S B, then ⊢S A.

Theorem 1 may be easily proved using definitions 1 and 2.

Definition 3. X ⊆ L is inconsistent in S, if X ⊢S A, for every A ∈ L.
Otherwise X is consistent.

Definition 4. A system S is a subsystem of a system S′ (symbolically:
S 4 S′) if and only if for all X ⊆ L, A ∈ L: if X ⊢S A, then X ⊢S′ A.

Definition 5. A system S is a proper subsystem of a system S′ (sym-
bolically: S ≺ S′) if and only if S 4 S′, but S′ 64 S.

If S ≺ S′, then S′ is said to be properly stronger then S (or an
extension of S) and S  weaker then S′.

Definition 6. A consistent logic S is maximal if and only if any system
S′ such that S ≺ S′ is inconsistent.
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Definition 6 determines the classical notion of maximality. Several
non-classical counterparts of the notion of maximality and of related
notion of Post-completeness have been defined, as it has been realized
that the classical account does not meet the cases of invariant systems,
i.e., systems whose all derivable rules are structural. For a general survey
see [5]; let us mention here just two examples. First, even if a invariant
system cannot be maximal (provided it is consistent), it can still be the
strongest among invariant systems. Thus it may be more reasonable
to consider only invariant strengthenings instead of considering every
strengthening possible. This is how ∗-maximality can be characterized.

Definition 7. A consistent and invariant system S is ∗-maximal if and
only if every invariant S′, such that S ≺ S′, is inconsistent.

In an attempt to provide a uniform and generalized treatment, Po-
gorzelski and Wojtylak introduced the notion of Γ-maximality [5, p. 92].
In short, generalized maximality, or Γ-maximality, is a maximality rela-
tivized to some subset Γ of the set of formulas of the apposite language L.
Let a rule r be Γ-structural, iff for arbitrary formula A, a set of formulas
X and a mapping e : At −→ Γ (At being the set of atoms), if (X,A) ∈ r,
then (e(X), e(A)) ∈ r [5, p. 29]. A system is Γ-invariant if its derivable
rules are Γ-structural.

Definition 8. A system S is said to be maximal with respect to Γ (Γ-
maximal) if and only if S is Γ-invariant and every Γ-invariant S′, such
that S ≺ S′, is inconsistent.

Any system S, if consistent, is ∅-maximal if and only if S is maximal
and S is L–maximal if and only if S is ∗-maximal [5, pp. 98, 120].

4. The system of minimal realization

The system MR in L has been defined by Jarmużek and Pietruszczak
based on classical propositional logic (hereafter: PC): every instance of
any PC theorem is an axiom and modus ponens is assumed as the unique
primitive rule of inference. MR’s specific axioms include formulas of the
following forms:

Rαϕ, for any PC tautology ϕ, (A1)

Rα¬ϕ ≡ ¬Rαϕ, (A2)

Rαϕ ∧ Rαψ → Rα(ϕ ∧ ψ). (A3)
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According to (A1) every atomic formula having a classical logic theorem
as its argument is an axiom of MR. Schemata (A2) and (A3) determine
the relationship between internal (i.e., in the scope of R) and external
(outside the scope of R) occurrences of the negation and conjunction
connectives.

Formulas falling under (A2) or (A3) are only some examples of dis-
tributional laws characteristic for MR. In fact, ‘R’ is distributive over all
propositional connectives, that is all equivalences: (A2) and

Rα(ϕ ∧ ψ) ≡ Rαϕ ∧ Rαψ,

Rα(ϕ ∨ ψ) ≡ Rαϕ ∨ Rαψ,

Rα(ϕ → ψ) ≡ Rαϕ → Rαψ,

Rα(ϕ ≡ ψ) ≡ (Rαϕ ≡ Rαψ),

are schemata of MR’s theorems [2, pp. 151–153]. Actually, MR is in-
tended to be the minimal calculus enjoying this property.

The original semantic interpretation of MR is provided by the struc-
ture of the form M = 〈X, d, v〉, where X is a non-empty set, d is a
mapping interpreting members of IN, i.e., d : IN −→ X, and v is a map-
ping interpreting members of QF, i.e., v : X × QF −→ {1, 0} and for all
ϕ, ψ ∈ QF and x ∈ X satisfies the following conditions:

v(x, p¬ϕq) = 1 if and only if v(x, ϕ) = 0,

v(x, pϕ ∧ ψq) = 1 if and only if v(x, ϕ) = 1 and v(x, ψ) = 1,

v(x, pϕ ∨ ψq) = 1 if and only if v(x, ϕ) = 1 or v(x, ψ) = 1,

v(x, pϕ → ψq) = 1 if and only if v(x, ϕ) = 0 or v(x, ψ) = 1,

v(x, pϕ ≡ ψq) = 1 if and only if v(x, ϕ) = v(x, ψ).

(⋆)

Quasi-formulas that are assigned 1 in a point x of a model are said to
be satisfied at the point of the model. Quasi-formulas satisfied at every
point of every model are said to be valid, and quasi-formulas not satisfied
at any point of any model are said to be unsatisfiable.

An atomic formula pRαϕq is true in a model M if and only if the
quasi-formula ϕ is satisfied at a point x of M such that x is d(α), i.e.,

M |= pRαϕq if and only if v(d(α), ϕ) = 1.

The truth-conditions for compound formulas are classical:

M |= p¬Aq if and only if M 6|= A,

M |= pA ∧Bq if and only if M |= A and M |= B,
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M |= pA ∨Bq if and only if M |= A or M |= B,

M |= pA → Bq if and only if M 6|= A or M |= B,

M |= pA ≡ Bq if and only if M |= A,B or M 6|= A,B.

Let K be the collection of all models. A ∈ L is a tautology of K if and
only if M |= A, for every M ∈ K. Call E(K) the set of all tautologies
of K. A ∈ L is an antilogy of K if and only if M 6|= A for every model
M ∈ K. Call E(K) the set of all antilogies of K. It may be easily seen
that the members of E(K) are exactly p¬Aq, for every A ∈ E(K).

Definition 9. M |= X , where X ⊆ L, if and only if M |= A for every
A ∈ X . Given X ⊆ L, A ∈ L, X entails A, symbolically X |= A, if and
only if for every model M ∈ K, if M |= X , then M |= A.

Jarmużek and Pietruszczak proved the adequacy (i.e., both sound-
ness: if X ⊢ A, then X |= A, and completeness: if X |= A, then X ⊢ A,
for arbitrary X ⊆ L, A ∈ L) of MR with respect to this semantics.

Theorem 2 ([2, pp. 155–159]). For all X ⊆ L and A ∈ L:

X ⊢ A iff X |= A.

In what follows we take for granted this important result, which
ensures the interchangeability of the notions of entailment and conse-
quence, and in particular of MR’s tautology and theorem.

Alternative semantic structures, as well as different axiomatizations
of the system MR have been defined and examined in [8] and [3]. In
particular, it has been shown that the semantics presented here may be
generalized, without affecting the set of formulas true in a model, to
the cases in which the interpretation of quasi-formulas in positions non
denoted by constants from IN need not behave classically [3, pp. 51–60].

5. Possible extensions

First, notice that MR is neither maximal nor ∗-maximal. To prove this,
consider the formula

Rap → Rbp. (1)

Whenever d(a) 6= d(b), it suffices to put v(d(a), p) = 1 and v(d(b), p) = 0

to determine the countermodel to (1). Thus MR does not include (1).
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Nevertheless, not only (1) but all its substitutions may be consistently
added as axioms to MR. The schema corresponding to (1), namely

Rαϕ → Rβϕ, (2)

defines a set of models with unit set universe. In such models all individ-
ual constants have the same referent and, consequently, every example
of (2) is true. Thus the system MR

+, being MR strengthened with the
axiom (1) or the schema (2) of axioms, is consistent and MR ≺ MR

+.
A similar argument applies to another sample schema:

Rαϕ ∧ Rβψ → Rγ(ϕ ∧ ψ). (3)

Observe that schemata of MR’s specific axioms (A1)–(A3), unlike (2)
and (3), involve only one (albeit possibly repeated) position indicator.
Likewise, all MR’s rules with the exception of instances of the rules of
classical logic determine solely relations among formulas having identical
indexes. This may be easily justified, since valuations of quasi-formulas
in different points of a model are independent one of another (compare
(⋆)). Consequently, if α 6= β and formulas pRαϕq and pRβψq are neither
tautological nor contradictorily by themselves, then there exist models
M and M

′ such that M |= pRαϕq, but M 6|= pRβψq, and M
′ 6|= pRαϕq,

but M′ |= pRβψq. In this respect, atomic formulas with different indexes
behave like sentence letters in propositional languages.

We claim that consistent strengthening of the system MR cannot
employ a rule non-derivable in MR and defining relations among formulas
involving a single individual constant. We call this property single-index

maximality.

6. Single-index maximality

In order to state our claim more accurately, we introduce two auxiliary
notions: that of an α-formula and of a single-index rule.

Definition 10. The set of α-formulas is the smallest collection contain-
ing every atomic formula of the form pRαϕq, for any quasi-formula ϕ,
and such that if A is an α-formula, then p(¬ϕ)q is an α-formula, and
given that both ϕ and ψ are α-formulas all pϕ ∧ ψq, pϕ ∨ ψq, pϕ → ψq,
and pϕ ≡ ψq are α-formulas as well.

Definition 11. A rule r is single-index if and only if for any (X,A) ∈ r

there is α ∈ IN such that each B ∈ X and A are α-formulas.
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We will argue that if a non-derivable α-rule gets derivable in an
extension of MR, then the extension is inconsistent. Thus single-index
maximality is maximality restricted to the set of single-index rules. In
this regard our idea may be considered analogous to Pogorzelski and
Wojtylak’s idea of generalized maximality.

The scheme of argumentation for our claim is analogous to that used
in the case of the classical propositional calculus, but a little more com-
plex. Let us begin with the following lemmas.

Lemma 3. Let X ⊆ L, A ∈ L. If X 0 A, then X ∪ {p¬Aq} is consistent.

Lemma 4. X is consistent if and only if M |= X , for some M ∈ K.

We omit the routine proofs of lemmas 3 and 4.

Lemma 5. Given an arbitrary model M = 〈X, d, v〉 and u ∈ X, let

e : SL −→ QF be a mapping relative to u such that:

if v(u, ϕ) = 1, then e(ϕ) = ‘p ≡ p’,

if v(u, ϕ) = 0, then e(ϕ) = ‘p ≡ ¬p’.

For any ψ ∈ QF, if v(u, ψ) = 1, then sub
e(ψ) is a valid quasi-formula

and if v(u, ψ) = 0, then sub
e(ψ) is unsatisfiable.

Proof. The proof proceeds by induction on the length of a quasi-
formula. The only exception is relativization to u, which is not vital
for the proof.

The base step is obvious, as ‘p ≡ p’ is valid and ‘p ≡ ¬p’ is unsatis-
fiable. Since the connectives ‘∧’, ‘→’, ‘≡’ are definable by means of ‘¬’
and ‘∨’, we will restrict the inductive step to the cases of negation and
disjunction. Assume that this lemma is true for quasi-formulas ϕ and ψ.

If v(u, p¬ϕq) = 1, then v(u, ϕ) = 0 and sub
e(ϕ) is, by the inductive

hypothesis, unsatisfiable, which means that sub
e(p¬ϕq) = p¬sube(ϕ)q

is valid.
If v(u, p¬ϕq) = 0, then v(u, ϕ) = 1 and sub

e(ϕ) is, by inductive hy-
pothesis, valid, which means that sub

e(¬ϕ) = ¬sube(ϕ) is unsatisfiable.
If v(u, pϕ ∨ ψq) = 1, then either v(u, ϕ) = 1 or v(u, ψ) = 1. Hence

by inductive hypothesis either sub
e(ϕ) or sub

e(ψ) is valid. In any case
psub

e(ϕ) ∨ sub
e(ψ)q is also valid and since sub

e(pϕ ∨ ψq) = psub
e(ϕ) ∨

sub
e(ψ)q we get that sub

e(pϕ ∨ ψq) is valid too.
If v(u, ϕ ∨ ψ) = 0, then v(u, ϕ) = v(u, ψ) = 0 and by inductive

hypothesis both sub
e(ϕ) and sub

e(ψ) are unsatisfiable. Consequently
sub

e(ϕ ∨ ψ)q is unsatisfiable too.
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Lemma 6. Let A be an α-formula and let e be mapping relative to the

point d(α) and l(α) = α. For an arbitrary model M the following holds:

if M |= A, then Sub
e

l
(A) ∈ E(K),

if M 6|= A, then Sub
e

l
(A) ∈ E(K).

Proof. The proof of this lemma is similar to the proof of Lemma 5.
(a) Let A be pRαϕq, for some ϕ ∈ QF. According to the lemma

5, if M′ |= pRαϕq, that is v′(d(α), ϕ) = 1, sub
e(ϕ) relative to d(α)

is valid (takes the value 1 in all positions of any model M). Hence
Sub

e

l
(pRαϕq) ∈ E(K).

If on the other hand M′ 6|= pRαϕq, that is v′(d(α), ϕ) = 0, then
sub

e(ϕ) relative to d(α) is unsatisfiable and for any model M, M 6|=
Sub

e

l
(pRαϕq), that is Sub

e

l
(pRαϕq) ∈ E(K).

(b) Assume that Lemma 6 is true for some formulas B,C ∈ L.
If A = p¬Bq, then M′ |= A if and only if M′ 6|= B. Since Sub

e

l
(p¬Bq)

= p¬Sub
e

l
(B)q, then by inductive hypothesis Sub

e

l
(A) ∈ E(K), provided

M
′ |= A, and Sub

e

l
(A) ∈ E(K), provided M

′ 6|= A.
If A = pB ∨ Cq, then M′ |= pAq if and only if either M′ |= B or

M′ |= C, so by inductive hypothesis in both cases for any model M, M |=
Sub

e

l
(B) or M |= Sub

e

l
(C), then also M |= pSub

e

l
(B)∨Sub

e

l
(C)q. Since

Sub
e

l
(pB ∨ Cq) = pSub

e

l
(B) ∨ Sub

e

l
(C)q, we get M |= Sub

e

l
(pA ∨ Bq)

for any model M. Consequently Sub
e

l
(A) ∈ E(K); M′ 6|= pA∨Bq, when

both M′ 6|= A and M′ 6|= B, so by the inductive assumption for any model
M M 6|= Sub

e

l
(A) and M 2 Sub

e

l
(B). Consequently M 6|= pSub

e

l
(A) ∨

Sub
e

l
(B)q. Since Sub

e

l
(pA∨Bq) = pSub

e

l
(A) ∨Sub

e

l
(B)q, we get M 6|=

Sub
e

l
(pA∨Bq) for any model M, that means Sub

e

l
(pA∨Bq) ∈ E(K).

Essentially the substitution Sub
e

l
transforms formulas true in a given

model into tautologies, and formulas false in that model into antilogies.
To give an example of such substitution, consider a model M, such that
X = {u}, d(a) = u, v(u, p) = 1, v(u, q) = 0 and the formula

Ra(p ∧ q) → Raq .

According to the definition of e, for the sentence letters occurring in the
formula in question we have sub

e(p) = ‘p ≡ p’ and sub
e(q) = ‘p ≡ ¬p’.

Consequently:

Sub
e

l
(Ra(p ∧ q) → Raq) = Ra((p ≡ p) ∧ (p ≡ ¬p)) → Ra(p ≡ ¬p).
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Theorem 7. Let MR
+ be an extension of MR. If for some single-index

structural rule r, r is not derivable in MR, but derivable in MR
+, then

MR
+ is inconsistent.

Proof. Assume r is a structural single-index rule and is not derivable
in MR, then for some X ⊆ L and A ∈ L such that (X,A) ∈ r, X 6⊢MR A.
Hence the set X ∪ {p¬Aq} is consistent and for some model M, all
formulas B ∈ X and p¬Aq are true, i.e., for any B ∈ X , M |= B and
M 6|= A. Then by Lemma 6, substitution Sub

e

l
, determined by the model

M and d(α), makes MR’s tautologies out of the elements of X and an
antilogy out of A, i.e., Sub

e

l
(B) ∈ E(K) for all B ∈ X , Sub

e

l
(A) ∈ E(K).

Thus, by Theorem 2, ⊢MR Sub
e

l
(B), for any B ∈ X , and ⊢MR ¬Sub

e

l
(A)

and by assumption ⊢MR+ Sub
e

l
(B), for any B ∈ X , and ⊢MR+ ¬Sub

e

l
(A).

Since r is structural and 〈X,A〉 ∈ r, then (Sub
e
l (X),Sub

e
l (A)) ∈ r

for arbitrary e, l, that is also (Sub
e

l
(X),Sub

e

l
(A)) ∈ r and since it is

derivable in MR
+, we get by Theorem 1 that ⊢MR

+ Sub
e

l
(A) as well.

Thus, by Duns Scotus rule (PC), we have A,¬A ⊢ B. So the system
MR

+ is inconsistent.
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