
Logic and Logical Philosophy
Volume 25 (2016), 521–534

DOI: 10.12775/LLP.2016.015

Alexandre Costa-Leite∗

INTERPLAYS OF KNOWLEDGE

AND NON-CONTINGENCY

Abstract. This paper combines a non-contingency logic with an epistemic
logic by means of fusions and products of modal systems. Some conse-
quences of these interplays are pointed out.
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1. Introduction

From the perspective of classical propositional logic, a formula ϕ is con-
tingent if there is a valuation which makes it true, but also a valuation
which makes it false. This is a propositional contingency. However, from
the viewpoint of modal logic, a formula ϕ is contingent if ϕ is possible
and ¬ϕ, its negation, is possible. This is a modal contingency. These two
forms of contingency are closely connected. The present paper is con-
cerned with modal (non-)contingency and its relations with knowledge.

Contingency logics, the mathematics of modal contingency, were de-
fined in [11] and [12]. A survey of them, augmented with further gen-
eral results about non-contingency, can be found in [8]. These logics
are normal modal logics taking the contingency operator as primitive
(formalized by ∇ and defined as ∇ϕ := 3ϕ ∧ 3¬ϕ, where 3 means
alethically it is logically possible that). Given a contingency operator,
its dual, non-contingency, formalized by ∆, is obtained by classically
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denying contingency (∆ϕ := �ϕ ∨ �¬ϕ, where � has an alethic read-
ing as it is logically necessary that). (Non-)contingency logics can be
translated into classical normal modal logics and they are sound and
complete with respect to some given class of Kripke frames, in the same
way normal modal logics are (see [14]).

Since the work developed in [7], a lot of important results have ap-
peared in the domain of epistemic logics. Many authors have studied
these systems especially concerning applications in Computer Science or
in modeling philosophical concepts (studies in the logics of knowledge
and belief can be found in [6, 10]). These epistemic systems formalize
concepts of knowledge and belief, and they are useful in understanding
formal properties shared by these notions. Epistemic logics have been
used for elucidating paradoxes, definitions and problems involving con-
cepts from formal epistemology. They capture principal attributes of
knowledge, and have a regular Kripke semantics, satisfying soundness
and completeness with respect to a certain class of Kripke frames.

In this research, the main purpose is to understand how (non-)con-
tingency logics behave in the presence of the knowledge operator. So, it
investigates a combination of a non-contingency logic with an epistemic
logic by means of fusions of modal logics. This is a method for generating
multimodal systems with many non-interdefinable operators. Further,
it also investigates the product of these logics, which is a much more
complex method, and which contains interactions of operators. These
methods have been studied in combination of logics.1

The present work in the domain of applied logic uses these procedures
for combining logics to investigate two theses proposed by Von Wright
in [13] connecting metaphysical and epistemic notions. After which, a
product of a non-contingency logic with an epistemic logic is defined and
used to study further interplays of knowledge and non-contingency.2

2. Fusion of epistemic and contingency logics

Let’s construct a logic able to deal with knowledge and (non-)contingency
simultaneously. All modal logics considered here are extensions of clas-

1 For a survey on the nature of fusions and products of modal logics, the reader
should check [5].

2 Some connections between contingency and knowledge were previously studied
in [2].
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sical propositional logic in a Hilbert-style presentation. To realize this
task, let us consider an alphabet composed by a set of propositional vari-
ables (let p be one of variables), Greek letters ϕ, ψ are used for schemas
of formulas. Truth-functional classical operators ¬ (negation), ∧ (con-
junction), ∨ (disjunction), → (implication) and ↔ (biconditional) are
adopted. Two non-truth-functional operators are taken as primitives:
K (knowledge) and ∆ (non-contingency), and contingency operator ∇ is
defined with negation and non-contingency. Modal operators are defined
straightforwardly. Syntactical logical consequence (⊢), proof, Kripke
frame, and all basic logical notions, are standard.

Considering this modal language with non-contingency operator ∆
meaning it is not contingent that and accepting a Hilbert-style presen-
tation, the non-contingency logic S5

∆ has the following set of axiom
schemas (as defined in [11]):

(A) ∆ϕ ↔ ∆¬ϕ;
(B) ϕ → (∆(ϕ → ψ) → (∆ϕ → ∆ψ));
(C) ∆∆ϕ.

It is usual in (non)-contingency logics to take ∆ϕ as ¬∇ϕ, while ∇ϕ is
¬∆ϕ. In this context, box is defined as �ϕ := (ϕ∧∆ϕ). In [11], authors
consider a modal language with contingency operator ∇ which means it

is contingent that defined by ∇ϕ := ¬∆ϕ, and several (non-)contingency
logics are axiomatized and proved to be deductively equivalent to nor-
mal modal logics. Thus, diamond is defined as 3ϕ := (ϕ ∨ ∇ϕ) and
contingency can be formalized as

(A’) ∇ϕ ↔ ∇¬ϕ.

To these axioms, the inference rule

⊢ ϕ ⇒ ⊢ ∆ϕ (R1)

is added. This rule allows us to put a ∆ in any provable formula, i.e.,
logical truth. Brief comments on these axioms: The first one states
that a formula is non-contingent if, and only if, its negation is non-
contingent. The same holds for contingency (A’): ϕ is contingent iff ¬ϕ
is contingent. This seems intuitive and corresponding to the very idea
of what contingency is. The second one states that non-contingency
distributes over implication, if we have the truth of the antecedent of
the implication. The third plausibly ensures that “it is not contingent
that it is not contingent ϕ”. These axioms are accepted as they seem to
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reflect essential formal properties of logical non-contingency, in the same
way the system S5 is used to model logical possibility and necessity.
We use here axiom (C) because we intend to capture the notion of non-
contingency based on logical possibility.3

Now, taking a modal language with knowledge operator K and con-
sidering a Hilbert-style presentation, the epistemic logic S5

∗ has the
following set of axiom schemas (as defined in [6]):

(D) (Kϕ ∧ K(ϕ → ψ)) → Kψ;
(E) Kϕ → ϕ;
(F) Kϕ → K Kϕ;
(G) ¬ Kϕ → K ¬ Kϕ.

The rule
⊢ ϕ ⇒ ⊢ Kϕ (R2)

is an inference rule of the system. There are many interpretations of
these axioms in the literature. As it is known, they reflect logical om-
niscience (D), axiom of knowledge (E) and forms of introspection  (F)
and (G).

So we have two logics and there are two non-interdefinable operators:
knowledge (K) and non-contingency (∆). Thus, in order to talk about
both at the same time, we need to put logics together into a single
formalism. Whenever there are non-interdefinable concepts in a given
situation, combining logics play a crucial role. This is the origin of the
fibring problem pointed out in [4]. If we have two concepts to be analyzed
in a structure able to interpret only one of them, we need to enhance the
expressive power of the structure in order to give the truth-condition for
the other concept. Thus we need to combine logics.

For combinations of axiomatic systems, the fusion ⊕ of a non-con-
tingency logic with an epistemic logic is a logic containing all axioms
and inference rules from both logics. This is a bimodal logic containing
two non-interdefinable modalities. Let’s call it

S5
∆ ⊕ S5

∗

The logic above contains all the axioms from (A) to (G) and inference
rules (R1) and (R2). When required 3, � and ∇  definable operators,

3 In [11] and [12] the authors define many modal systems with a different variety
of modal axioms. For instance, to get S4 it would be enough to introduce ∆ϕ → ∆∆ϕ

instead of (C). The reader should also check [8] for a detailed research on non-
contingency logics.
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and their properties are used, especially because there are immediate
conservative translations from S5 to S5

∆, and vice-versa (see [14]). A
few words on this combined system: technically, it is quite simple to
generate this logic, and its semantics is simple. A Kripke frame F∆ for
S5

∆ is defined as F∆ = 〈W,R〉, where W is non-empty and R is an
accessibility relation, truth-conditions for classical operators remain the
same. For non-contingency, truth-condition is:

w � ∆ϕ ⇐⇒ for all w′ such that wRw′, w′
� ϕ

or for all w′ such that wRw′, w′
2 ϕ.

A Kripke frame for S5
∗ is F ∗ = 〈W,P 〉, where W is non-empty

and P an accessibility relation for knowledge.4 We take standard truth-
condition for K:

s � Kϕ ⇐⇒ for all s′ such that sPs′, s′
� ϕ.

A frame for S5
∆ ⊕ S5

∗ is a combination of F∆ and F ∗ generated by
a fusion of frames. This combined structure F∆ ⊕F ∗ = 〈W,R, P 〉 is such
that F∆ = 〈W,R〉 is a frame for S5

∆ and F ∗ = 〈W,P 〉 is a frame for
S5

∗. A result on fusions is that it preserves soundness and completeness
of the combined systems. In this sense, if two logics are sound and
complete, their fusion is sound and complete, and then these properties
are transferred to the combined systems.5 Given that both S5

∆ and S5
∗

are sound and complete with respect to the class of Kripke frames with
accessibility relations satisfying reflexivity, symmetry and transitivity, it
follows that the combined S5

∆ ⊕S5
∗ is sound and complete with respect

to the combined class of frames.
An interactive law connecting knowledge and non-contingency arises

automatically given axioms (B) of S5
∆ and (E) of S5

∗, because impli-
cation is classical and, therefore, a transitive relation. This is a new
theorem which does not hold in any of the logics used in the fusion but
holds in the fusion itself:

Kϕ → (∆(ϕ → ψ) → (∆ϕ → ∆ψ)) (KC)

A connection like (KC) is accidental because fusions of modal logics in
general do not give rise to any interactive law, that is, modal operators

4 To define a fusion it is mandatory to take domains as equal. When elements of
W are connected by P , we refer to them as s to reveal epistemic aspects of worlds.

5 This result has been proved by [9] and [3]. For more properties preserved by
fusions, like finite model property, decidability, see [5].
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stay without any communication, or interaction, as we learn from com-
bining logics (see [5]). When two or more logics are fused we normally
found no bridge principle. A similar example does occur in [1], where the
logic of conjunction is combined with the logic of disjunction giving rise
to a new property which does not hold in any of the systems used in the
combination: the distributivity of these operators. Another example is
verified even in a fusion of reflexive epistemic logic and reflexive alethic
modal logic: given Kϕ → ϕ and ϕ → 3ϕ (a version for 3 of axiom (T)),
it follows that

Kϕ → 3ϕ.6 (INT)

The combined system S5
∆ ⊕ S5

∗ allows us to reason about interactions
of knowledge and non-contingency. Suppose, for instance, that ⊢ Kϕ.
Given that ⊢ Kϕ → ϕ, it follows, by modus ponens (MP), that ⊢ ϕ.
Thus, by rule (R1), ⊢ ∆ϕ. This generates a derived inference rule:

⊢ Kϕ ⇒ ⊢ ∆ϕ.

We also get
⊢ Kϕ or ⊢ K ¬ϕ ⇒ ⊢ ∆ϕ,

because from ⊢ K ¬ϕ → ¬ϕ and ⊢ K ¬ϕ we have ⊢ ¬ϕ and then ⊢ ∆¬ϕ
which, in turn, is equivalent to ⊢ ∆ϕ. From ⊢ Kϕ → ϕ and ⊢ Kϕ we
have ⊢ ϕ and then ⊢ ∆ϕ.

Now we use the fusion to think about a result from Von Wright
on the nature of knowledge with consequences on the metaphysics of
epistemology.

2.1. Von Wright on contingent and necessary knowledge

Von Wright in [13] explores connections between metaphysical concepts
such as contingency and necessity with epistemic notions like knowledge.
He states that:

[. . . ] if the object of knowledge is contingent, then knowledge of it is
contingent too. [13, p. 68]
Knowledge of contingent truths must itself be contingent knowledge.
But knowledge of necessary truths may, as far as logic is concerned, be
either contingent or itself necessary. [13, p. 69]

Indeed, he proves the following reasoning, assuming an atomic proposi-
tion p:

6 (INT) is also valid in the fusion S5
∆ ⊕ S5

∗.
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(CK) Given that p is contingent and known, it follows that knowledge
of p is contingent.

If an agent knows contingent truths, then his or her knowledge is con-
tingent. The inference can be developed in a bimodal combined logic
with knowledge and logical possibility. He uses a bimodal logic with 3

and K, a system equivalent to the fusion S5
∆ ⊕ S5

∗. Below the result is
reproduced.7

The inference runs as follows: Given that knowledge implies truth
K p → p is an axiom of the combined logic, then, by necessitation,
�(K p → p). Using normality and (MP), we deduce that �K p → �p.
By contraposition and box-diamond duality, it follows 3¬p → 3¬ K p.
By assumption, p is contingent and, for this reason, 3¬p. Thus, using
(MP) again, a consequence is 3¬ K p. An instance of the dual version
of the axiom (T) assures that K p → 3K p and, by hypothesis, using
the fact that p is known, it follows 3K p. Therefore, Von Wright infers
contingent knowledge:

3K p ∧ 3¬ K p

from the fact that p is contingent and known. (CK) shows an important
fact about the nature of knowledge. If an agent knows an empirical
proposition (that is, a contingent one), then knowledge is itself contin-
gent:

((3p ∧ 3¬p) ∧ K p) ⊢ (3K p ∧ 3¬ K p)

Von Wright realizes the reasoning above using a fusion of a modal
logic for possibility with a modal logic for knowledge, although he did not
mention anything concerning this logic. The combined system S5

∆⊕S5
∗

can be applied as a framework to analyze this result on metaphysics of
epistemology, but now without using boxes and diamonds, but only re-
sources of the fused language, that is: (non-)contingency and knowledge.
So, in the fused language we have to prove (CK):

∇p,K p ⊢ ∇ K p

Assume that we have ∇p and K p. By an instance of axiom (B), we have
that K p → (∆(Kp → p) → (∆ K p → ∆p)). It follows then, by (MP),
∆(K p → p) → (∆ K p → ∆p). Given axiom (E) and (R1), we have

7 Indeed, Von Wright’s argument takes into account temporal dimensions of
knowledge, but the result follows even if no temporal aspect is considered. Here
we proceed without considering time.
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∆(K p → p) and, again by (MP), ∆ K p → ∆p. By contraposition, and
the interdefinability of ∆ and ∇, it follows ∇p → ∇ K p. Given that p
is, by assumption, contingent, we have that ∇ K p.

This result by G. H. Von Wright on the metaphysical status of knowl-
edge containing connections of knowledge and (non-)contingency, de-
veloped in the fusion, is relevant for the metaphysics of epistemology
because it elucidates properties of the nature of knowledge. From a
metaphysical viewpoint, propositions could be classified as (im)possible,
necessary and (non-)contingent. We saw Von Wright’s argument con-
necting knowledge and contingency and producing contingent knowledge.
In addition, note that given the dual ϕ → 3ϕ of the famous axiom (T)
in alethic shape formulated as �ϕ → ϕ here called in epistemic ver-
sion as (E)  it is easy to see that knowledge is a sufficient condition
for possible knowledge: (Kϕ → 3Kϕ). However, it is not immediate
to check what are sufficient conditions for necessary knowledge and non-

contingent knowledge. Von Wright argues that in order to have necessary

knowledge an agent should be omniscient because we have to assume that
this agent “necessarily knows whether any given proposition is true or
not [. . . ]” (p. 69). So, let’s call (NK) the thesis according to which there
is, under certain assumptions, necessary knowledge:

(NK) Given that an agent necessarily knows whether p or ¬p and given
that p is necessary (not contingent, therefore), then knowledge of
p is necessary.

Formally:

�(K p ∨ K ¬p),�p ⊢ �K p (NK)

Von Wright has a proof for (NK) (p. 69), and it goes here in a slightly
different argumentation:8 Verify first that �(K p ∨ K ¬p) ⊢ �p → K p.
Assume �p and consider that �p → ¬3¬p. By (INT), we have that
K ¬p → 3¬p and, by classical reasoning, ¬3¬p → ¬ K ¬p. Given that
�p, it follows ¬ K ¬p. But if �(K p∨K ¬p), then K p∨K ¬p also holds (by
axiom (T)), and by classical reasoning again, K p. So, �p → K p. Now,
we can deduce  using deduction theorem which holds in modal logic9 
that ⊢ �(K p ∨ K ¬p) → (�p → K p). Moreover, by the derived rule

8 Note that the following reasoning is not realized inside our fusion, but in a
translation of it with � instead of ∆. So, it is realized in the fusion of standard S5

with its epistemic counterpart.
9 Assuming a suitable restricted version of it.
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⊢ ϕ → ψ ⇒ ⊢ �ϕ → �ψ, it follows ⊢ ��(K p ∨ K ¬p) → �(�p → K p).
In S5, we have reduction of modalities, especially here we use the fact
that ��ϕ ↔ �ϕ, and get  using normality �(ϕ → ψ) → (�ϕ → �ψ) 
that ⊢ �(K p∨K ¬p) → (�p → �K p). (NK) follows by two applications
of modus ponens in the last formula.

So, Von Wright states:

It used to be one of the disputed things in the philosophy of modal
logic whether the necessary entails its own necessity, or not. The an-
swer, in my opinion, depends upon what ‘type’ of necessity is involved.
Some necessity is itself necessary; other necessity is contingent. It is,
moreover, feasible to think that logical necessity is of the former type,
but that natural or physical necessity is of the latter. Accepting this
we could say that God, since he necessarily knows whether any given
proposition is true or not, also necessarily knows all logically necessary
truths but not all ‘natural’, i.e., contingent necessities. Knowledge of
them is contingent knowledge. [13, pp. 69–70]

According to Von Wright, the above argument for necessary knowl-
edge seems plausible if the agent under consideration is omniscient, but
it fails to be the case when the agent in not omniscient, as the case of
human beings: “[. . . ] it is hard to see that there are any specific truths
which are such that any man necessarily knows them.” [13, p. 71]

3. Product of epistemic and contingency logics

The product of two modal logics, besides introducing multimodalities,
generates multidimensional modal logics in which consequence relation �

is defined between n-tuples 〈x1, . . . , xn〉 of worlds (n > 1) and formulas:
〈x1, . . . , xn〉 � ϕ. We follow [5] (p. 222) in the presentation of products,
and we take into account only n = 2, that is, two-dimensional products.
Consider now that F∆ = 〈W,R〉 is a frame for the interpretation of ∆,
while F ∗ = 〈S, P 〉  for K, where S is non-empty, both with behavior
like in the fusion, but without restrictions concerning domains (W and
S can be or not equal). Thus, a product of them is a frame F∆ × F ∗ =
〈W × S,R∆

h , P
∗
v 〉 such that:

〈w, s〉R∆
h 〈w′, s′〉 iff wRw′ and s = s′,

〈w, s〉P ∗

v 〈w′, s′〉 iff sPs′ and w = w′.
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In this product of frames, worlds are complex pairs 〈w, s〉 ∈ W × S con-
taining metaphysical and epistemic ingredients. Considering a product
of Kripke frames F∆ ×F ∗, we have now to examine the truth-conditions
for ∆ and K. Truth-condition for ∆ is:

〈w, s〉 � ∆ϕ ⇐⇒ for all w′ such that wRw′, 〈w′, s〉 � ϕ
or for all w′ such that wRw′, 〈w′, s〉 2 ϕ.10

For K operator, we have that:

〈w, s〉 � Kϕ ⇐⇒ for all s′ such that sPs′, 〈w, s′〉 � ϕ.11

Note that in the truth-condition for ∆, epistemic states are fixed (that
is, the condition does not involve a change of s), while the formula ϕ

moves in the ‘horizontal’ direction. Differently, in the truth-condition
for K, possible worlds are fixed (that is, the condition does not contain a
change of w) and formula ϕ moves in the ‘vertical’ direction. So we have
in this particular bidimensional product two new accessibility relations
R∆

h and P ∗
v generated by the relations R and P respectively. These new

relations characterize the two-dimensional aspect of the combined frame.
Concerning products of modal logics, a natural question posed by re-

searchers in the field is: how to axiomatize a product of Kripke frames?
Or, as Gabbay puts it in [4] (p. 327), “What kind of modal logics cor-
respond to those frames?”. There are some logics which are product-

matching, this means that they can be axiomatized by a fusion extended
by two new axioms: commutativity and Church-Rosser. In the case
studied here we are lucky enough to have a bidimensional product based
in a fusion which is, indeed, a case of product-matching.12 For commu-
tativity we would have (3¬ K ¬ϕ ↔ ¬ K ¬3ϕ), and for Church-Rosser
(3Kϕ → K3ϕ). The modality ¬ K ¬ is the dual of the operator K.
However, in our language we do not have diamonds, so we have to for-
mulate these axioms properly. ∆ is the horizontal operator, while K

represents the vertical one in standard products:

(H) (Kϕ → (K ∆ϕ ↔ ∆ Kϕ)
(I) (∆ Kϕ → Kϕ) → K(∆ϕ → ϕ)

Axioms (H) and (I) are obtained with transformations in the commu-
tativity and Church-Rosser using basically classical propositional logic,

10 In this case, 〈w, s〉R∆

h 〈w′, s〉.
11 Similarly, we have here that 〈w, s〉P ∗

v 〈w, s′〉.
12 This result is proved in [5], p. 230, Corollary 5.10.
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modal axioms of the fused logics and 3ϕ := (ϕ ∨ ∇ϕ). Although pre-
viously not mentioned, we make use of two important metatheorems
which hold in normal modal logics: replacement of provable equivalents
and uniform substitution.

The axiom (H) is obtained from 3¬ K ¬p ↔ ¬ K ¬3p (the commu-
tativity law) using the following inference and finally substitution of ϕ
for p:

3¬ K ¬p ↔ ¬ K ¬3p df. of 3
⇐⇒

(¬ K ¬p ∨ ∇¬ K ¬p) ↔ (¬ K ¬(p ∨ ∇p))
classical logic

⇐⇒
(K ¬p → ∇¬ K ¬p) ↔ (¬ K(¬p ∧ ∆p))

(A’) and the replacement
⇐⇒

(K ¬p → ∇ K ¬p) ↔ (¬ K(¬p ∧ ∆p))
classical logic

⇐⇒
K(¬p ∧ ∆p) ↔ ¬(K ¬p → ∇ K ¬p)

distributivity of K and classical logic
⇐⇒

(K ¬p ∧ K ∆p) ↔ ¬(¬ K ¬p ∨ ∇ K ¬p)
classical logic

⇐⇒
(K ¬p ∧ K ∆p) ↔ (K ¬p ∧ ∆ K ¬p) subst. p/¬p, double negation, (A)

and extensionality
⇐⇒(K p ∧ K ∆p) ↔ (K p ∧ ∆ K p)

classical logic
⇐⇒

K p → (K ∆p ↔ ∆ K p)

Axiom (I) is obtained from (3Kϕ → K3ϕ) (Church-Rosser) in the
following way:

(3Kϕ → K3ϕ)
df. of 3
⇐⇒

(Kϕ ∨ ∇ Kϕ) → K(ϕ ∨ ∇ϕ)
df. of ∇
⇐⇒

(Kϕ ∨ ¬∆ Kϕ) → K(ϕ ∨ ¬∆ϕ)
classical logic

⇐⇒
(∆ Kϕ → Kϕ) → K(∆ϕ → ϕ)

Observe that (I) implies (∆ Kϕ → Kϕ) → (K ∆ϕ → Kϕ), given axiom
(D); Thus, the product is the fusion S5

∆ ⊕ S5
∗ with axioms (H) and

(I). Let’s denote it S5
∆ ⊕ S5

∗ ⊕ (H) ⊕ (I) or, simply, S5
∆ × S5

∗.
From axiom (H), we infer that if ϕ is any logical theorem or any

known proposition, then K ∆ϕ and ∆ Kϕ are equivalents. Moreover,
assuming that the fusion is a sublogic of the product, as it is a product-
matching, then Von Wright’s argument for contingent knowledge also
holds in the product, but now we prove it using axiom (H): assume
that ∇p and K p. Then, by (MP) and the axiom (H), it follows that
K ∆p ↔ ∆ K p. As an instance of axiom (E), K ∆p → ∆p, and consider-
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ing transitivity of implication, we have ∆ K p → ∆p. By contraposition
and (MP), we derive ∇ K p.

Up to now, we have seen how to get possible, contingent and neces-
sary knowledge. But what about non-contingent knowledge? What are
sufficient conditions for it? A natural conjecture is that:

(nCK) Given that p is non-contingent and known, then knowledge of p
is non-contingent.

In a language with ∆ and K, it is formulated as:

∆p,K p ⊢ ∆ K p (nCK)

The conjecture (nCK) is inspired by the two questions above proposed
by Von Wright. If �(K p ∨ K ¬p) and �p are sufficient conditions for
necessary knowledge, then they also are for non-contingent knowledge,
given that �K p → (�K p∨�¬ K p). If the conjecture (nCK) holds, then
omniscience can be eliminated even to produce non-contingent knowl-
edge, but we do not have a proof of this fact, and we leave it as an open
question.

4. Conclusion

The contributions of this paper are in the domain of philosophical logic.
We have proposed logics able to deal with interplays of knowledge and
non-contingency. These connections have been obtained by fusions and
products of modal logics. Concerning fusions, we saw that the combined
logic contains an axiom (i.e. (KC)) which connects in a single formula
knowledge and non-contingency. This is another example of the prob-
lem mentioned in [1]. Then, as a special case, Von Wright’s arguments
for contingent and necessary knowledge were presented in distinct ap-
proaches inside the fused logic. Indeed, we took his initial argument
for contingent and necessary knowledge, and we have formulated simi-
lar questions for possible and non-contingent knowledge. With respect
to products, we gave truth-conditions for ∆ in bidimensional frames
and provided an axiomatic system for a two-dimensional modal logic
containing interplays of knowledge and non-contingency. In addition,
inspired by Von Wright’s proofs, we have formulated in the product
logic a question of whether non-contingent knowledge can be obtained
by non-contingency and knowledge.
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The product S5
∆ × S5

∗ is the simplest scenario to take into account
connections between knowledge and non-contingency. Logics for knowl-
edge and logics for (non-)contingency have been widely studied in the
literature, but it seems that this is the first time both are studied in a sin-
gle formalism. Axioms like (KC), (H) and (I) show, therefore, what are
the basic properties for these relations. Other properties should also be
investigated and other philosophical implications of these combinations
should also be taken into consideration in the future.
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